1
|
Liu L. Hydride-Abstraction-Initiated Catalytic Stereoselective Intermolecular Bond-Forming Processes. Acc Chem Res 2022; 55:3537-3550. [PMID: 36384272 DOI: 10.1021/acs.accounts.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stereoselective intermolecular bond-forming reactions through the direct manipulation of ubiquitous yet inert C(sp3)-H bonds represent an important and long-standing goal in chemistry. In particular, developing such a stereoselective bimolecular transformation involving carbocation intermediates generated via site-selective hydride abstraction or formal hydride abstraction by organic oxidants would avoid the preinstallation of directing groups and is therefore attractive. Hydride-abstraction-initiated bimolecular transformations have received considerable attention, but existing examples lack stereoselective studies. Prevalent stereoselective studies typically suffer from the narrow substrate scope of specific and highly reactive N-aryl amines and diarylmethanes together with limited synthetic utility. This Account describes our recent advances in the development and synthetic application of hydride-abstraction-initiated stereoselective intermolecular C-C and C-H bond-forming processes with significantly expanded scopes involving structurally diverse N-acyl amines and ethers together with nitriles, esters, and perfluoroalkyl moieties.We first explored hydride-abstraction-initiated stereoselective intermolecular C-C bond-forming processes. Utilizing triarylmethyl cations or oxoammonium ions as hydride abstractors, we accomplished the diastereoselective oxidative C-H functionalization of structurally diverse N-acyl amines and ethers with a range of organoboranes and C-H components, efficiently installing a series of alkyl, alkenyl, aryl, and alkynyl species into the α-position of heteroatoms with good levels of diastereocontrol. Subsequently, we developed an "acetal pool" strategy as the toolbox to regulate the stability of cationic intermediates and the compatibility of organic oxidants with a delicate asymmetric catalysis system. Utilizing this strategy, we achieved the catalytic enantioselective oxidative C-H alkenylation, arylation, alkynylation, and alkylation of diverse N-acyl heterocycles with a range of boronates and C-H components. Simultaneously, we extended this strategy to the asymmetric oxidative C-H alkylation of ethers. Notably, the method allows solvents that are used daily, such as tetrahydrofuran, tetrahydropyran, and diethyl ether, to be facilely transformed to high-value-added optically pure bioactive molecules. We further expanded the scope of this challenging area from the C(sp3)-H bond adjacent to electron-donating heteroatoms to valuable electron-withdrawing functional groups including nitriles, esters, and perfluoroalkyl moieties for the stereoselective construction of single and vicinal quaternary carbon stereocenters, respectively.We studied hydride-abstraction-initiated catalytic asymmetric intermolecular C-H bond-forming processes, known as redox deracemization. Utilizing the acetal pool strategy, we reported the first redox deracemization of cyclic benzylic ethers. Later, we disclosed an aerobic one-pot deracemization of diverse α-amino acid derivatives with excellent functional group compatibility. We further achieved the deracemization of the tertiary stereogenic center adjacent to electron-withdrawing groups including perfluoroalkyl, cyano, and ester moieties, which are otherwise difficult to construct.
Collapse
Affiliation(s)
- Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| |
Collapse
|
2
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α-C-H Amination of Cyclic Amine Scaffolds Enabled by Polar-Radical Relay. Angew Chem Int Ed Engl 2022; 61:e202202971. [PMID: 35403797 DOI: 10.1002/anie.202202971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Herein, we report a polar-radical relay strategy for α-C-H amination of cyclic amines with N-chloro-N-sodio-carbamates. The relay is initiated by in situ generation of cyclic iminium intermediate using N-iodosuccinimide (NIS) oxidant as an initiator, which then operates through a series of polar (addition and elimination) and radical (homolysis, hydrogen- and halogen atom transfer) reactions to enable the challenging C-N bond formation in a controlled manner. A broad range of α-amino cyclic amines were readily accessed with excellent regioselectivity, and the superb applicability was further demonstrated by functionalization of biologically relevant compounds.
Collapse
Affiliation(s)
- Wongyu Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Xu X, Zheng W, Ren L, Jiao P. Thermodynamic and Kinetic Studies on Copper-Catalyzed Cross-Dehydrogenative Couplings of N-aryl Glycine Esters with Phenols. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofei Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lufei Ren
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | | |
Collapse
|
4
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α‐C−H Amination of Cyclic Amine Scaffolds Enabled by Polar‐Radical Relay. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wongyu Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sangwon Seo
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
5
|
Liu X, Zhao C, Zhu R, Liu L. Construction of Vicinal Quaternary Carbon Stereocenters Through Diastereo- and Enantioselective Oxidative 1,6-Conjugate Addition. Angew Chem Int Ed Engl 2021; 60:18499-18503. [PMID: 34278672 DOI: 10.1002/anie.202105594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/01/2021] [Indexed: 12/23/2022]
Abstract
The asymmetric construction of vicinal quaternary carbon stereocenters with at least one moiety in acyclic systems is a formidable challenge. We disclose a solution involving diastereo- and enantioselective oxidative 1,6-conjugate addition. The practical asymmetric cross-dehydrogenative coupling of 2,2-diarylacetonitriles and diverse α-substituted cyclic 1,3-dicarbonyls proceeds, for vicinal quaternary carbon stereocenters with one center in acyclic systems, in excellent yields and stereoselectivities. The generality of the approach is further demonstrated by the stereoselective creation of vicinal quaternary carbon stereocenters with both centers in acyclic systems using acyclic β-ketoesters as coupling partners. Computational studies elucidate the origins of both diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Xigong Liu
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Changyin Zhao
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rongxiu Zhu
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lei Liu
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Liu X, Zhao C, Zhu R, Liu L. Construction of Vicinal Quaternary Carbon Stereocenters Through Diastereo‐ and Enantioselective Oxidative 1,6‐Conjugate Addition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xigong Liu
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Changyin Zhao
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Rongxiu Zhu
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
7
|
Proctor RJ, Chuentragool P, Colgan AC, Phipps RJ. Hydrogen Atom Transfer-Driven Enantioselective Minisci Reaction of Amides. J Am Chem Soc 2021; 143:4928-4934. [PMID: 33780237 PMCID: PMC8033566 DOI: 10.1021/jacs.1c01556] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Minisci-type reactions constitute one of the most powerful methods for building up complexity around basic heteroarenes. The most desirable variants involve formal oxidative coupling of a C-H bond on each partner, leading back to the simplest possible starting materials. We herein disclose a method that enables such a coupling of linear amides and heteroarenes with full control of enantioselectivity at the newly formed stereocenter as well as site selectivity on both the heteroarene and the amide. This is achieved by the use of a chiral phosphoric acid catalyst in conjunction with diacetyl as a combined hydrogen atom transfer reagent and oxidant. Diacetyl is directly photoexcitable, and thus, no extraneous photocatalyst is required: an added feature that contributes to the simplicity and practicality of the protocol.
Collapse
Affiliation(s)
- Rupert
S. J. Proctor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Avene C. Colgan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Chen W, Cheng Y, Zhang T, Mu Y, Jia W, Liu G. Ni/AntPohs-Catalyzed Stereoselective Asymmetric Intramolecular Reductive Coupling of N-1,6-Alkynones. J Org Chem 2021; 86:5166-5182. [PMID: 33760614 DOI: 10.1021/acs.joc.1c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient nickel-catalyzed stereoselective asymmetric intramolecular reductive coupling of N-1,6-alkynones is reported. A P-chiral monophosphine ligand AntPhos was found to be a privileged catalyst for constructing versatile functionalized chiral pyrrolidine rings using triethylsilane as the reducing reagent. Concise synthesis of pyrrolidines with chiral tertiary allylic alcohols was achieved in high yields (99%), excellent stereoselectivity (>99:1 E/Z), and enantioselectivity (>99:1 er) with very broad substrate scope. Totally, thirty-five N-1,6-alkynones were synthesized and applied in this reaction successfully. This reaction can be scaled up to gram scale without loss of its enantioselectivity. Ligand effects and reaction mechanism are investigated in detail. While the developed asymmetric synthesis of pyrrolidine with chiral tertiary allylic alcohols is anticipated to find wider applications in organic synthesis and chemical biology, the discovered new reactions of N-1,6-alkynone with AntPhos using different catalyst systems would further expanded its new research fields and attract more detailed explorations in the future.
Collapse
Affiliation(s)
- Wanjun Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Road, Hohhot 010021, China
| | - Yaping Cheng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Road, Hohhot 010021, China
| | - Tao Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Road, Hohhot 010021, China
| | - Yu Mu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Road, Hohhot 010021, China
| | - Wenqi Jia
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Road, Hohhot 010021, China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Road, Hohhot 010021, China.,State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| |
Collapse
|
9
|
Yang WL, Liu TT, Ni T, Zhu B, Luo X, Deng WP. Iridium-Catalyzed Asymmetric Cascade Allylation/Pictet-Spengler Cyclization Reaction for the Enantioselective Synthesis of 1,3,4-Trisubstituted Tetrahydroisoquinolines. Org Lett 2021; 23:2790-2796. [PMID: 33734718 DOI: 10.1021/acs.orglett.1c00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed trifluoroacetic acid-promoted asymmetric cascade allylation/Pictet-Spengler cyclization reaction of azomethine ylides with aromatic allylic alcohols is reported. This protocol provides a facile and scalable method for the construction of 1,3,4-trisubstituted tetrahydroisoquinolines containing two stereogenic centers in good yields (up to 96%) with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Furthermore, a series of aromatic heterocycle-fused piperidines were also obtained with excellent enantiocontrol by this methodology.
Collapse
|
10
|
Wang H, Ying P, Yu J, Su W. Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Unglaube F, Hünemörder P, Guo X, Chen Z, Wang D, Mejía E. Phenazine Radical Cations as Efficient Homogeneous and Heterogeneous Catalysts for the Cross‐Dehydrogenative Aza‐
Henry
Reaction. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Felix Unglaube
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| | - Paul Hünemörder
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| | - Xuewen Guo
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| | - Zixu Chen
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Dengxu Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Esteban Mejía
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a DE-18059 Rostock Germany
| |
Collapse
|
12
|
Rostoll‐Berenguer J, Blay G, Pedro JR, Vila C. Asymmetric Oxidative Mannich Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jaume Rostoll‐Berenguer
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - José R. Pedro
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Carlos Vila
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| |
Collapse
|
13
|
Xia Q, Li Y, Wang X, Dai P, Deng H, Zhang WH. Visible Light-Driven α-Alkylation of N-Aryl tetrahydroisoquinolines Initiated by Electron Donor-Acceptor Complexes. Org Lett 2020; 22:7290-7294. [PMID: 32902295 DOI: 10.1021/acs.orglett.0c02631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The visible light-driven α-alkylation of N-aryl tetrahydroisoquinolines was initiated through electron donor-acceptor complex photochemistry. The reaction can proceed smoothly without the addition of any photocatalysts, transition-metal catalysts, or additional oxidants. The proposed mechanism was supported by various mechanistic studies, and the reactive open-shell alkyl radicals were generally produced from an alkylamine and underwent radical coupling for alkylating a wide range of N-aryl tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongping Deng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Yang X, Xie Z, Li Y, Zhang Y. Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes via cooperative photoredox catalysis and organocatalysis. Chem Sci 2020; 11:4741-4746. [PMID: 34122929 PMCID: PMC8159221 DOI: 10.1039/d0sc00683a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes, which provides an efficient approach for the rapid synthesis of enantiopure unnatural α-alkyl α-amino acid derivatives in good yield with excellent diastereo- (up to >99 : 1) and enantioselectivities (up to 97% ee). This process includes the direct photoinduced oxidation of glycine derivatives to an imine intermediate, followed by the asymmetric Mannich-type reaction with an enamine intermediate generated in situ from a ketone or aldehyde and a chiral secondary amine organocatalyst. This mild method allows the direct formation of a C–C bond with simultaneous installation of two new stereocenters without wasteful removal of functional groups. A visible-light-induced enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes is achieved.![]()
Collapse
Affiliation(s)
- Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| |
Collapse
|
15
|
Synthesis of Chiral Triarylmethanes Bearing All‐Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross‐Coupling of 2,2‐Diarylacetonitriles and (Hetero)arenes. Angew Chem Int Ed Engl 2020; 59:3053-3057. [DOI: 10.1002/anie.201912739] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/31/2019] [Indexed: 02/06/2023]
|
16
|
Pan X, Wang Z, Kan L, Mao Y, Zhu Y, Liu L. Cross-dehydrogenative coupling enables enantioselective access to CF 3-substituted all-carbon quaternary stereocenters. Chem Sci 2020; 11:2414-2419. [PMID: 34084405 PMCID: PMC8157275 DOI: 10.1039/c9sc05894j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
A cross-dehydrogenative coupling strategy for enantioselective access to acyclic CF3-substituted all-carbon quaternary stereocenters has been established. By using catalytic DDQ with MnO2 as an inexpensive terminal oxidant, asymmetric cross coupling of racemic δ-CF3-substituted phenols with indoles proceeded smoothly, providing CF3-bearing all-carbon quaternary stereocenters with excellent chemo- and enantioselectivities. The generality of the strategy is further demonstrated by efficient construction of all-carbon quaternary stereocenters bearing other polyfluoroalkyl and perfluoroalkyl groups such as CF2Cl, C2F5, and C3F7.
Collapse
Affiliation(s)
- Xiaoguang Pan
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Zehua Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Linglong Kan
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Ying Mao
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Yasheng Zhu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|
17
|
Wang Z, Zhu Y, Pan X, Wang G, Liu L. Synthesis of Chiral Triarylmethanes Bearing All‐Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross‐Coupling of 2,2‐Diarylacetonitriles and (Hetero)arenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zehua Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yasheng Zhu
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Xiaoguang Pan
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Gang Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| |
Collapse
|
18
|
Jiang D, Wu Z, Wang J. NHC‐catalyzed Redox‐Neutral Aza‐Benzoin Reaction of Aldehydes with Tetrahydroisoquinolines. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Di Jiang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Zijun Wu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| |
Collapse
|
19
|
Gandhi S. Catalytic enantioselective cross dehydrogenative coupling of sp 3 C-H of heterocycles. Org Biomol Chem 2019; 17:9683-9692. [PMID: 31710329 DOI: 10.1039/c9ob02113b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-C bond formation in heterocycles via the direct coupling of C-H bonds, under oxidative conditions, classified as cross dehydrogenative coupling (CDC), is without doubt one of the most atom efficient methods for the functionalization of these molecules. The most common is the coupling at the position alpha to the heteroatom, owing to the stabilization of forming carbocation by the heteroatom. The corresponding asymmetric versions, except for a few isolated reports, have been rather evasive for several years. Optically active heterocycles with the chiral center alpha to the heteroatom are widely present in natural products and pharmaceuticals, thus making them an attractive synthetic target. Persistent efforts towards the asymmetric CDC of heterocycles since the beginning of this decade have led to several developments in this challenging area. Particularly, in the last few years, considerable progress has been witnessed in this field. This review summarizes the progress made in the area of asymmetric cross dehydrogenative coupling of heterocycles in recent years. The review covers the catalytic asymmetric CDC of sp3 C-H bonds of the heterocycles with various coupling partners and illustrates the different catalytic systems employed.
Collapse
Affiliation(s)
- Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760 010, India.
| |
Collapse
|
20
|
Rostoll-Berenguer J, Blay G, Muñoz MC, Pedro JR, Vila C. A Combination of Visible-Light Organophotoredox Catalysis and Asymmetric Organocatalysis for the Enantioselective Mannich Reaction of Dihydroquinoxalinones with Ketones. Org Lett 2019; 21:6011-6015. [DOI: 10.1021/acs.orglett.9b02157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jaume Rostoll-Berenguer
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - José R. Pedro
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
21
|
Feng G, Sun C, Xin X, Wan R, Liu L. Cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with 1,3-dicarbonyls and aryl moieties. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Wang Z, Mao Y, Guan H, Cao M, Hua J, Feng L, Liu L. Direct oxidative C(sp3) H cyanation of secondary benzylic ethers. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Advances in the Organocatalytic Asymmetric Mannich Reaction of Six‐Membered Unsaturated Heterocycles: Methodology and Application. ChemCatChem 2019. [DOI: 10.1002/cctc.201900379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Tan Q, Yang Z, Jiang D, Cheng Y, Yang J, Xi S, Zhang M. Copper‐Catalyzed Aerobic Oxidative Cyclization Cascade to Construct Bridged Skeletons: Total Synthesis of (−)‐Suaveoline. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 China
| | - Yuegang Cheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 China
| | - Song Xi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 China
- School of Chemistry and Chemical EngineeringChongqing University Chongqing 401331 China
| |
Collapse
|
25
|
Tan Q, Yang Z, Jiang D, Cheng Y, Yang J, Xi S, Zhang M. Copper-Catalyzed Aerobic Oxidative Cyclization Cascade to Construct Bridged Skeletons: Total Synthesis of (-)-Suaveoline. Angew Chem Int Ed Engl 2019; 58:6420-6424. [PMID: 30835928 DOI: 10.1002/anie.201902155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/13/2022]
Abstract
Based on the discovery of copper-catalyzed cyclopropanol ring-opening addition to iminium ions, an unprecedented catalytic aerobic C-H oxidation/cyclopropanol cyclization cascade using CuCl2 as the multifunctional catalyst and air as the oxidant was developed to construct the azabicyclo[3.3.1]nonane skeleton, which is widespread in natural products and medicines. Using this method, concise asymmetric total synthesis of the indole alkaloid (-)-suaveoline was achieved. This study not only provides an efficient, low-cost, and environmentally benign method for constructing such bridged frameworks, but also enriches the realm of cyclopropanol chemistry and C-H functionalization.
Collapse
Affiliation(s)
- Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yuegang Cheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Song Xi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
26
|
|
27
|
Mal K, Chatterjee S, Bhaumik A, Mukhopadhyay C. Mesoporous MCM‐41 Silica Supported Pyridine Nanoparticle: A Highly Efficient, Recyclable Catalyst for Expeditious Synthesis of Quinoline Derivatives through Domino Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201803708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kajal Mal
- Department of ChemistryUniversity of Calcutta 92 APC Road Kolkata-700009 India
| | - Sauvik Chatterjee
- Department of Materials ScienceIndian Association for the Cultivation of Science, Jadavpur Kolkata 700 032 India
| | - Asim Bhaumik
- Department of Materials ScienceIndian Association for the Cultivation of Science, Jadavpur Kolkata 700 032 India
| | | |
Collapse
|
28
|
Catalytic enantioselective oxidative coupling of saturated ethers with carboxylic acid derivatives. Nat Commun 2019; 10:559. [PMID: 30718486 PMCID: PMC6362111 DOI: 10.1038/s41467-019-08473-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/15/2019] [Indexed: 11/23/2022] Open
Abstract
Catalytic enantioselective C–C bond forming process through cross-dehydrogenative coupling represents a promising synthetic strategy, but it remains a long-standing challenge in chemistry. Here, we report a formal catalytic enantioselective cross-dehydrogenative coupling of saturated ethers with diverse carboxylic acid derivatives involving an initial oxidative acetal formation, followed by nickel(II)-catalyzed asymmetric alkylation. The one-pot, general, and modular method exhibits wide compatibility of a broad range of saturated ethers not only including prevalent tetrahydrofuran and tetrahydropyran, but also including medium- and large-sized cyclic moieties and acyclic ones with excellent enantioselectivity and functional group tolerance. The application in the rapid preparation of biologically active molecules that are difficult to access with existing methods is also demonstrated. Cross-dehydrogenative coupling (CDC) is a powerful method for C-C bond formation however the enantioselective variant is underdeveloped. Here, the authors show a formal enantioselective CDC method involving unactivated ethers and carboxylic acid derivatives allowing for the rapid preparation of biologically active molecules.
Collapse
|
29
|
Xin X, Pan X, Meng Z, Liu X, Liu L. Catalytic enantioselective cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with aldehydes. Org Chem Front 2019. [DOI: 10.1039/c9qo00123a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first catalytic asymmetric cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans and aldehydes with excellent enantioselectivity is described.
Collapse
Affiliation(s)
- Xiaodong Xin
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| | - Xinhui Pan
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Zhilin Meng
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Xigong Liu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
- School of Pharmaceutical Sciences
| |
Collapse
|
30
|
Mao Y, Cao M, Pan X, Huang J, Li J, Xu L, Liu L. Bimolecular oxidative C–H alkynylation of α-substituted isochromans. Org Chem Front 2019. [DOI: 10.1039/c9qo00352e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The first bimolecular oxidative C–H functionalization of secondary benzylic ethers for tertiary ether synthesis has been established in high efficiency.
Collapse
Affiliation(s)
- Ying Mao
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Min Cao
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| | - Xiaoguang Pan
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Jiancheng Huang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| | - Liren Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| | - Lei Liu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
31
|
Visible-light-induced 1,2-alkylarylation of alkenes with a-C(sp3)–H bonds of acetonitriles involving neophyl rearrangement under transition-metal-free conditions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Pan X, Liu X, Sun S, Meng Z, Liu L. Catalytic Asymmetric Cross-Dehydrogenative Coupling of 2H
-Chromenes and Aldehydes. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xinhui Pan
- School of Pharmaceutical Sciences; Shandong University; Jinan Shandong 250012 China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education; School of Pharmaceutical Sciences, Shihezi University; Shihezi Xinjiang 832002 China
| | - Xigong Liu
- School of Pharmaceutical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Shutao Sun
- School of Pharmaceutical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Zhilin Meng
- School of Pharmaceutical Sciences; Shandong University; Jinan Shandong 250012 China
| | - Lei Liu
- School of Pharmaceutical Sciences; Shandong University; Jinan Shandong 250012 China
- School of Chemistry and Chemical Engineering; Shandong University; Jinan Shandong 250100 China
| |
Collapse
|
33
|
Behera A, Sau P, Sahoo AK, Patel BK. Cyano-Sacrificial (Arylthio)arylamination of Quinoline and Isoquinoline N-Oxides Using N-(2-(Arylthio)aryl)cyanamides. J Org Chem 2018; 83:11218-11231. [PMID: 30102040 DOI: 10.1021/acs.joc.8b01797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper(I)-catalyzed regioselective arylthio-arylamination of quinoline and isoquinoline N-oxides has been achieved at the expense of a cyano (CN) group from N-(2-(arylthio)aryl)cyanamides. This reductive amination proceeds in one pot at 80 °C in the absence of any additives. This is a unique demonstration of aryl cyanamides serving as arylaminating agents on quinoline/isoquinoline N-oxides with concurrent autoreduction of N-oxide.
Collapse
Affiliation(s)
- Ahalya Behera
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati - 781039 , India
| | - Prasenjit Sau
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati - 781039 , India
| | - Ashish Kumar Sahoo
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati - 781039 , India
| | - Bhisma K Patel
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati - 781039 , India
| |
Collapse
|
34
|
Zhou W, Zhang YX, Nie XD, Si CM, Sun X, Wei BG. Approach to Chiral 1-Substituted Isoquinolone and 3-Substituted Isoindolin-1-one by Addition-Cyclization Process. J Org Chem 2018; 83:9879-9889. [PMID: 29952568 DOI: 10.1021/acs.joc.8b01282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An approach to access 1-substituted isoquinolones has been developed through the addition-cyclization of imines with Grignard reagents in the presence of 2,2'-dipyridyl. A number of substituted aromatic magnesium reagents were amenable to this process, and the desired products were obtained with excellent yields and outstanding diastereoselectivities ( dr > 99:1). The utility of this convenient approach is demonstrated by the formal synthesis of ( S)-cryptostyline II. Moreover, N-methylmorpholine (NMM) was found to be an effective additive for the formation of 3-substituted isoindolin-1-ones using one-pot addition-cyclization-deprotection of imine with Grignard reagents.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Yan-Xue Zhang
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Xiao-Di Nie
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Chang-Mei Si
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Xun Sun
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Bang-Guo Wei
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| |
Collapse
|
35
|
Lee A, Betori RC, Crane EA, Scheidt KA. An Enantioselective Cross-Dehydrogenative Coupling Catalysis Approach to Substituted Tetrahydropyrans. J Am Chem Soc 2018; 140:6212-6216. [PMID: 29714480 PMCID: PMC6052785 DOI: 10.1021/jacs.8b03063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An enantioselective cross-dehydrogenative coupling (CDC) reaction to access tetrahydropyrans has been developed. This process combines in situ Lewis acid activation of a nucleophile in concert with the oxidative formation of a transient oxocarbenium electrophile, leading to a productive and highly enantioselective CDC. These advances represent one of the first successful applications of CDC for the enantioselective couplings of unfunctionalized ethers. This system provides efficient access to valuable tetrahydropyran motifs found in many natural products and bioactive small molecules.
Collapse
Affiliation(s)
- Ansoo Lee
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rick C. Betori
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Erika A. Crane
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A. Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Nisha, Sharma MC, Kumar R, Kumar Y. Regioselective Copper(I)-Catalyzed Ullmann Amination of Halopyridyl Carboxylates using Sodium Azide: A Route for Aminopyridyl Carboxylates and their Transformation to Pyrido[2, 3-d]pyrimidin-4(1H)-ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201800907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nisha
- Department of Chemistry; Faculty of Physical Sciences; SGT University; Gurugram Haryana-122505 India
| | - Mr. Chetan Sharma
- Department of Chemical Sciences; IKG Punjab Technical University; Kapurthala Punjab-144603 India
| | - Rupesh Kumar
- Department of Chemical Sciences; IKG Punjab Technical University; Kapurthala Punjab-144603 India
| | - Yogesh Kumar
- Department of Chemical Sciences; IKG Punjab Technical University; Kapurthala Punjab-144603 India
- UNAM-National Nanotechnology Research Center; Institute of Materials Science and Nanotechnology and Department of Chemistry; Bilkent University; 06800 Ankara Turkey
| |
Collapse
|
37
|
Zhu L, Wang D, Jia Z, Lin Q, Huang M, Luo S. Catalytic Asymmetric Oxidative Enamine Transformations. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01263] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lihui Zhu
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Dehong Wang
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Zongbin Jia
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Qifeng Lin
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
| | - Mouxin Huang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Sanzhong Luo
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100490, People’s Republic of China
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
38
|
Chen L, Sun C, Feng G, Cao M, Zhao SL, Yan J, Wan RZ, Liu L. Direct oxidative C-H alkynylation of N-carbamoyl tetrahydroisoquinolines and dihydroisoquinolines. Org Biomol Chem 2018; 16:2792-2799. [PMID: 29611855 DOI: 10.1039/c8ob00373d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient oxidative C-H alkynylation of N-carbamoyl tetrahydroisoquinolines mediated by a TEMPO oxoammonium salt has been established. A variety of electronically varied N-carbamoyl tetrahydroisoquinolines reacted with a range of alkynyl potassium trifluoroborates smoothly under mild metal-free conditions. Dihydroisoquinolines were also suitable components for the reaction. The synthetic applicability of the method for facile access to structurally diverse bioactive molecules was further demonstrated.
Collapse
Affiliation(s)
- Lei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang T, Liang W, Huang Y, Li X, Liu Y, Yang B, He C, Zhou X, Zhang J. Bifunctional organic sponge photocatalyst for efficient cross-dehydrogenative coupling of tertiary amines to ketones. Chem Commun (Camb) 2018; 53:12536-12539. [PMID: 29109986 DOI: 10.1039/c7cc06997a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel bifunctional organic sponge photocatalyst can enable the efficient coupling of tertiary amines with ketones in water. The asymmetric transformation can be also achieved by using this sponge photocatalyst.
Collapse
Affiliation(s)
- Teng Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun Q, Zhang YY, Sun J, Han Y, Jia X, Yan CG. Construction of C(sp2)–X (X = Br, Cl) Bonds through a Copper-Catalyzed Atom-Transfer Radical Process: Application for the 1,4-Difunctionalization of Isoquinolinium Salts. Org Lett 2018; 20:987-990. [DOI: 10.1021/acs.orglett.7b03751] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qiu Sun
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yuan-Yuan Zhang
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jing Sun
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ying Han
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Chao-Guo Yan
- School of Chemistry and Chemical
Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
41
|
Nisha, Bhargava G, Kumar Y. Copper(I)-Catalyzed Regioselective C-H Amination of N
-Pyridyl Imines Using Azidotrimethylsilane and TBHP: A One-Pot, Domino Approach to Substituted Imidazo[4, 5-b]pyridines. ChemistrySelect 2017. [DOI: 10.1002/slct.201700969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nisha
- Department of Chemistry; Faculty of Physical Sciences; SGT University; Gurugram Haryana-122505 India
| | - Gaurav Bhargava
- Department of Chemical Sciences; IKG Punjab Technical University; Kapurthala Punjab-144603 India
| | - Yogesh Kumar
- Department of Chemical Sciences; IKG Punjab Technical University; Kapurthala Punjab-144603 India
- Sphaerapharma Pvt. Ltd.; Manesar, Haryana India-122051 India
| |
Collapse
|
42
|
Lakshman MK, Vuram PK. Cross-dehydrogenative coupling and oxidative-amination reactions of ethers and alcohols with aromatics and heteroaromatics. Chem Sci 2017; 8:5845-5888. [PMID: 28970941 PMCID: PMC5618789 DOI: 10.1039/c7sc01045a] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022] Open
Abstract
Cross-dehydrogenative coupling (CDC) is a process in which, typically, a C-C bond is formed at the expense of two C-H bonds, either catalyzed by metals or other organic compounds, or via uncatalyzed processes. In this perspective, we present various modes of C-H bond-activation at sp3 centers adjacent to ether oxygen atoms, followed by C-C bond formation with aromatic systems as well as with heteroaromatic systems. C-N bond-formation with NH-containing heteroaromatics, leading to hemiaminal ethers, is also an event that can occur analogously to C-C bond formation, but at the expense of C-H and N-H bonds. A large variety of hemiaminal ether-forming reactions have recently appeared in the literature and this perspective also includes this complementary chemistry. In addition, the participation of C-H bonds in alcohols in such processes is also described. Facile access to a wide range of compounds can be attained through these processes, rendering such reactions useful for synthetic applications via Csp3 bond activations.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry , The City College of New York , 160 Convent Avenue , New York 10031 , USA .
- The Ph.D. Program in Chemistry , The Graduate Center of The City University of New York , New York 10016 , USA
| | - Prasanna K Vuram
- Department of Chemistry , The City College of New York , 160 Convent Avenue , New York 10031 , USA .
| |
Collapse
|
43
|
Kumar G, Verma S, Ansari A, Khan NUH, Kureshy RI. Enantioselective cross dehydrogenative coupling reaction catalyzed by Rose Bengal incorporated-Cu(I)-dimeric chiral complexes. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
44
|
Huang T, Liu X, Lang J, Xu J, Lin L, Feng X. Asymmetric Aerobic Oxidative Cross-Coupling of Tetrahydroisoquinolines with Alkynes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01912] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyu Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jiawen Lang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
45
|
|
46
|
Narute S, Pappo D. Iron Phosphate Catalyzed Asymmetric Cross-Dehydrogenative Coupling of 2-Naphthols with β-Ketoesters. Org Lett 2017; 19:2917-2920. [DOI: 10.1021/acs.orglett.7b01152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sachin Narute
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
47
|
Fu N, Li L, Yang Q, Luo S. Catalytic Asymmetric Electrochemical Oxidative Coupling of Tertiary Amines with Simple Ketones. Org Lett 2017; 19:2122-2125. [DOI: 10.1021/acs.orglett.7b00746] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niankai Fu
- Key
Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department
of Chemistry, University of Chinese Academy of Sciences, 10049 Beijing, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Longji Li
- Key
Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department
of Chemistry, University of Chinese Academy of Sciences, 10049 Beijing, China
| | - Qi Yang
- Key
Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department
of Chemistry, University of Chinese Academy of Sciences, 10049 Beijing, China
| | - Sanzhong Luo
- Key
Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department
of Chemistry, University of Chinese Academy of Sciences, 10049 Beijing, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
48
|
Yang Q, Zhang L, Ye C, Luo S, Wu L, Tung C. Visible‐Light‐Promoted Asymmetric Cross‐Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angew Chem Int Ed Engl 2017; 56:3694-3698. [DOI: 10.1002/anie.201700572] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Qi Yang
- Key Laboratory for Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Long Zhang
- Key Laboratory for Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Sanzhong Luo
- Key Laboratory for Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
49
|
Yang Q, Zhang L, Ye C, Luo S, Wu L, Tung C. Visible‐Light‐Promoted Asymmetric Cross‐Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700572] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qi Yang
- Key Laboratory for Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Long Zhang
- Key Laboratory for Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Sanzhong Luo
- Key Laboratory for Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
50
|
Affiliation(s)
- Yan Qin
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhu
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanzhong Luo
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|