1
|
Hess SN, Fürstner A. An Efficient and Scalable "Second Generation" Total Synthesis of the Marine Polyketide Limaol Endowed with Antiparasitic Activity. Chemistry 2024; 30:e202401429. [PMID: 38716817 DOI: 10.1002/chem.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/20/2024]
Abstract
The cluster of four skipped exo-methylene substituents on the "northern" wing of limaol renders this dinoflagellate-derived marine natural product unique in structural terms. This arguably non-thermodynamic array gains kinetic stability by virtue of populating local conformations which impede isomerization to a partly or fully conjugated polyene. This analysis suggested that the difficulties encountered during the late stages of our first total synthesis of this polyketide had not been caused by an overly fragile character of this unusual substructure; rather, an unfavorable steric microenvironment about the spirotricyclic core was identified as the likely cause. To remedy the issue, the protecting groups on this central fragment were changed; in effect, this amendment allowed all strategic and practical problems to be addressed. As a result, the overall yield over the longest linear sequence was multiplied by a factor of almost five and the material throughput increased more than eighty-fold per run. Key-to-success was a gold-catalyzed spirocyclization reaction; the reasons why a Brønsted acid cocatalyst is needed and the origin of the excellent levels of selectivity were delineated. The change of the protecting groups also allowed for much improved fragment coupling processes; most notably, the sequence of a substrate-controlled carbonyl addition reaction followed by Mitsunobu inversion that had originally been necessary to affix the southern tail to the core could be replaced by a reagent controlled asymmetric allylation. Finally, a much-improved route to the "northern" sector was established by leveraging the power of asymmetric hydrogenation of a 2-pyrone derivative. Limaol was found to combine appreciable antiparasitic activity with very modest cytotoxicity.
Collapse
Affiliation(s)
- Stephan N Hess
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
2
|
Wan J, Zeng G, Huang S, Yuan Y, Xu Z, Wen Y, Huang C. Base-Catalyzed Cascade Cyclization of 2-Nitrochalcones and Isocyanides to Access Pyrano[3,4- b]indol-1(9 H)-one Frameworks. J Org Chem 2024; 89:4549-4559. [PMID: 38517745 DOI: 10.1021/acs.joc.3c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
An unexpected cascade reaction of 2-nitrochalcones with isocyanoacetates has been reported for the efficient synthesis of indole carboxylic esters and pyranoindoles. The conversion was achieved by KOH-catalyzed cyclization and elimination of the nitro group with final decarbonylation-aromatization. The method was used to synthesize a series of potentially biologically active indole derivatives (49 examples) in 67-85% yields under transition-metal-free catalytic conditions.
Collapse
Affiliation(s)
- Juan Wan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Guiyun Zeng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Shuntao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yilong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhuoting Xu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yuanmin Wen
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Sutro JL, Fürstner A. Total Synthesis of the Allenic Macrolide (+)-Archangiumide. J Am Chem Soc 2024; 146:2345-2350. [PMID: 38241031 PMCID: PMC10835656 DOI: 10.1021/jacs.3c13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Archangiumide is the first known macrolide natural product comprising an endocyclic allene. For the ring strain that this linear substructure might entail, it was planned to unveil the allene at a very late stage of the projected total synthesis; in actual fact, this was achieved as the last step of the longest linear sequence by using an otherwise globally deprotected substrate. This unconventional timing was made possible by a gold catalyzed rearrangement of a macrocyclic propargyl benzyl ether derivative that uses a -PMB group as latent hydride source to unveil the signature cycloallene; the protecting group therefore gains a strategic role beyond its mere safeguarding function. Although the gold catalyzed reaction per se is stereoablative, the macrocyclic frame of the target was found to impose high selectivity and a stereoconvergent character on the transformation. The required substrate was formed by ring closing alkyne metathesis (RCAM) with the aid of a new air-stable molybdenum alkylidyne catalyst.
Collapse
Affiliation(s)
- Jack L. Sutro
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
4
|
Yuan C, Wang Q, Feng T, Liu J, Cheung W, Wang G, Sun S, Xing Y. Transition‐metal free synthesis of
2‐pyrones
by [3 + 3] annulation of cyclopropenones and sulfur ylides. J Heterocycl Chem 2023. [DOI: 10.1002/jhet.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Cheng Yuan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
| | - Qingqing Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
| | - Tao Feng
- School of Pharmaceutical Sciences South‐Central University for Nationalities Wuhan China
| | - Jikai Liu
- School of Pharmaceutical Sciences South‐Central University for Nationalities Wuhan China
| | - William Cheung
- Department of Chemistry Hofstra University Hempstead New York USA
| | - Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
- School of Pharmaceutical Sciences South‐Central University for Nationalities Wuhan China
| | - Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology; School of Pharmacy Hubei University of Science and Technology Xianning China
| | - Yalan Xing
- Department of Chemistry Hofstra University Hempstead New York USA
| |
Collapse
|
5
|
DMAP‐Catalyzed [3 + 3] Annulation of Cyclopropenones with α‐Bromoketones for Synthesis of 2‐Pyrones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Ding Y, Si M, Huang H. Palladium-catalyzed tandem hydrocarbonylative cycloaddition for expedient construction of bridged lactones. Org Chem Front 2022. [DOI: 10.1039/d1qo01568k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A palladium-catalyzed intermolecular and intramolecular hydrocarbonylative cycloaddition to access bridged lactones was reported.
Collapse
Affiliation(s)
- Yongzheng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Min Si
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
7
|
Dardić D, Böhringer N, Plaza A, Zubeil F, Pohl J, Sommer S, Padva L, Becker J, Patras MA, Bill MK, Kurz M, Toti L, Görgens SW, Schuler SMM, Billion A, Schwengers O, Wohlfart P, Goesmann A, Tennagels N, Vilcinskas A, Hammann PE, Schäberle TF, Bauer A. Antidiabetic profiling of veramycins, polyketides accessible by biosynthesis, chemical synthesis and precursor-directed modification. Org Chem Front 2022. [DOI: 10.1039/d1qo01652k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New polyketides, termed veramycins, were isolated along with their known congeners NFAT-133 and TM-123. Total synthesis from a central building block was accomplished, the BGC identified and a biosynthetic pathway for this molecule class proposed.
Collapse
Affiliation(s)
- Denis Dardić
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Nils Böhringer
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
- German Center of Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35392 Gießen, Germany
| | - Alberto Plaza
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Florian Zubeil
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Juliane Pohl
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Svenja Sommer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Leo Padva
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | | | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Mona-Katharina Bill
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt am Main, Germany
| | - Luigi Toti
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | - Sven W. Görgens
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt am Main, Germany
| | - Sören M. M. Schuler
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - André Billion
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | | | - Paulus Wohlfart
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | | | - Norbert Tennagels
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Peter E. Hammann
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
- German Center of Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35392 Gießen, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Dobler D, Leitner M, Moor N, Reiser O. 2‐Pyrone – A Privileged Heterocycle and Widespread Motif in Nature. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daniel Dobler
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Michael Leitner
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Natalija Moor
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| |
Collapse
|
9
|
Tao L, Wei Y, Shi M. Gold‐Catalyzed Intramolecular Tandem Cyclization of Alkynol‐Tethered Alkylidenecyclopropanes to Construct Naphthalene‐Fused Eight‐ to Eleven‐Membered Cyclic Ethers. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Leyi Tao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
10
|
Hillenbrand J, Korber JN, Leutzsch M, Nöthling N, Fürstner A. Canopy Catalysts for Alkyne Metathesis: Investigations into a Bimolecular Decomposition Pathway and the Stability of the Podand Cap. Chemistry 2021; 27:14025-14033. [PMID: 34293239 PMCID: PMC8518412 DOI: 10.1002/chem.202102080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Molybdenum alkylidyne complexes with a trisilanolate podand ligand framework ("canopy catalysts") are the arguably most selective catalysts for alkyne metathesis known to date. Among them, complex 1 a endowed with a fence of lateral methyl substituents on the silicon linkers is the most reactive, although fairly high loadings are required in certain applications. It is now shown that this catalyst decomposes readily via a bimolecular pathway that engages the Mo≡CR entities in a stoichiometric triple-bond metathesis event to furnish RC≡CR and the corresponding dinuclear complex, 8, with a Mo≡Mo core. In addition to the regular analytical techniques, 95 Mo NMR was used to confirm this unusual outcome. This rapid degradation mechanism is largely avoided by increasing the size of the peripheral substituents on silicon, without unduly compromising the activity of the resulting complexes. When chemically challenged, however, canopy catalysts can open the apparently somewhat strained tripodal ligand cages; this reorganization leads to the formation of cyclo-tetrameric arrays composed of four metal alkylidyne units linked together via one silanol arm of the ligand backbone. The analogous tungsten alkylidyne complex 6, endowed with a tripodal tris-alkoxide (rather than siloxide) ligand framework, is even more susceptible to such a controlled and reversible cyclo-oligomerization. The structures of the resulting giant macrocyclic ensembles were established by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Julius Hillenbrand
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - J. Nepomuk Korber
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| |
Collapse
|
11
|
Abstract
![]()
For numerous enabling features and strategic virtues, contemporary
alkyne metathesis is increasingly recognized as a formidable synthetic
tool. Central to this development was the remarkable evolution of
the catalysts during the past decades. Molybdenum alkylidynes carrying
(tripodal) silanolate ligands currently set the standards; their functional
group compatibility is exceptional, even though they comprise an early
transition metal in its highest oxidation state. Their performance
is manifested in case studies in the realm of dynamic covalent chemistry,
advanced applications to solid-phase synthesis, a revival of transannular
reactions, and the assembly of complex target molecules at sites,
which one may not intuitively trace back to an acetylenic ancestor.
In parallel with these innovations in material science and organic
synthesis, new insights into the mode of action of the most advanced
catalysts were gained by computational means and the use of unconventional
analytical tools such as 95Mo and 183W NMR spectroscopy.
The remaining shortcomings, gaps, and desiderata in the field are
also critically assessed.
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
12
|
Meng Z, Spohr SM, Tobegen S, Farès C, Fürstner A. A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate: Total Syntheses of Keramaphidin B, Ingenamine, and Nominal Njaoamine I. J Am Chem Soc 2021; 143:14402-14414. [PMID: 34448391 PMCID: PMC8431342 DOI: 10.1021/jacs.1c07955] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Many
polycyclic marine
alkaloids are thought to derive from partly
reduced macrocyclic alkylpyridine derivatives via a transannular Diels–Alder
reaction that forms their common etheno-bridged diaza-decaline core
(“Baldwin–Whitehead hypothesis”). Rather than
trying to emulate this biosynthesis pathway, a route to these natural
products following purely chemical logic was pursued. Specifically,
a Michael/Michael addition cascade provided rapid access to this conspicuous
tricyclic scaffold and allowed different handles to be introduced
at the bridgehead quarternary center. This flexibility opened opportunities
for the formation of the enveloping medium-sized and macrocyclic rings.
Ring closing alkyne metathesis (RCAM) proved most reliable and became
a recurrent theme en route to keramaphidin B, ingenamine, xestocyclamine
A, and nominal njaoamine I (the structure of which had to be corrected
in the aftermath of the synthesis). Best results were obtained with
molybdenum alkylidyne catalysts endowed with (tripodal) silanolate
ligands, which proved fully operative in the presence of tertiary
amines, quinoline, and other Lewis basic sites. RCAM was successfully
interlinked with macrolactamization, an intricate hydroboration/protonation/alkyl-Suzuki
coupling sequence, or ring closing olefin metathesis (RCM) for the
closure of the second lateral ring; the use of RCM for the formation
of an 11-membered cycle is particularly noteworthy. Equally rare are
RCM reactions that leave a pre-existing triple bond untouched, as
the standard ruthenium catalysts are usually indiscriminative vis-à-vis
the different π-bonds. Of arguably highest significance, however,
is the use of two consecutive or even concurrent RCAM reactions en
route to nominal njaoamine I as the arguably most complex of the chosen
targets.
Collapse
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Simon M Spohr
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Sandra Tobegen
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
13
|
Synthesis of C2-Symmetrical Bis-(β-Enamino-Pyran-2,4-dione) Derivative Linked via 1,6-Hexylene Spacer: X-ray Crystal Structures, Hishfeld Studies and DFT Calculations of Mono- and Bis-(Pyran-2,4-diones) Derivatives. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of C2-symmetrical bis(β-enamino-pyran-2,4-dione) derivative 3 connected via 1,6-hexylene linker was reported for the first time. X-ray structures and Hirshfeld studies of the new bis- β-enamino-pyran-2,4-dione derivative 3 along with two structurally related pyran-2,4-dione derivatives 2a,b were discussed. A comparative analysis of the different intermolecular contacts affecting the crystal stability was presented. Generally, the H…H, O…H, and H…C interactions are common in all compounds and are considered the most abundant contacts. In addition, DFT calculations were used to compute the electronic properties as well as the 1H and 13C NMR spectra of the studied systems. All compounds (except 3) are polar where 2a (3.540 Debye) has a higher dipole moment than 2b (2.110 Debye). The NMR chemical shifts were calculated and excellent correlations between the calculated and experimental data were obtained (R2 = 0.93–0.94).
Collapse
|
14
|
Xavier T, Pichon C, Presset M, Le Gall E, Condon S. Efficient Preparation of Methyl 2‐Oxo‐3‐aryl (heteroaryl)‐2
H
‐pyran‐5‐carboxylate via Pd‐Catalyzed Negishi Coupling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tania Xavier
- Université Paris-Est Créteil, CNRS Institut de Chimie et des Matériaux Paris-Est, UMR 7182 2-8 rue Henri Dunant 94320 Thiais France
| | - Christophe Pichon
- Université Paris-Est Créteil, CNRS Institut de Chimie et des Matériaux Paris-Est, UMR 7182 2-8 rue Henri Dunant 94320 Thiais France
| | - Marc Presset
- Université Paris-Est Créteil, CNRS Institut de Chimie et des Matériaux Paris-Est, UMR 7182 2-8 rue Henri Dunant 94320 Thiais France
| | - Erwan Le Gall
- Université Paris-Est Créteil, CNRS Institut de Chimie et des Matériaux Paris-Est, UMR 7182 2-8 rue Henri Dunant 94320 Thiais France
| | - Sylvie Condon
- Université Paris-Est Créteil, CNRS Institut de Chimie et des Matériaux Paris-Est, UMR 7182 2-8 rue Henri Dunant 94320 Thiais France
| |
Collapse
|
15
|
Reddy CR, Patil AD. Iodo- and Chalcogenoannulation of Morita-Baylis-Hillman Alcohols of Propiolaldehydes: Entry to Functionalized 2-Pyrones. Org Lett 2021; 23:4749-4753. [PMID: 34085835 DOI: 10.1021/acs.orglett.1c01466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient intramolecular annulation of Morita-Baylis-Hillman (MBH) alcohols of propiolaldehydes is developed in the presence of ICl or PhSeSePh/PhSSPh-CuCl2. This cyclization offers access to a wide variety of iodinated or chalcogenated 3-(chloromethyl)-2-pyrones in good yields. The chloromethyl group of the obtained 2-pyrones has been easily converted to introduce other handy functionalities, which allowed for further transformations to synthesize diverse 2-pyrone containing molecules.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amol D Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Praveen C. Cycloisomerization of π-Coupled Heteroatom Nucleophiles by Gold Catalysis: En Route to Regiochemically Defined Heterocycles. CHEM REC 2021; 21:1697-1737. [PMID: 34061426 DOI: 10.1002/tcr.202100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
Since the dawn of millennium, catalytic gold chemistry is at the forefront to set off diverse organic reactions via unique activation of π-bonded molecules. Within this purview, cycloisomerization of heteroatom nucleophiles linked to a π-system is one of the well recognized chemistry for the construction of numerous heterocyclic cores. Though the rudimentary aspects of this transformation are reviewed by several groups in different timeline, a holistic view on regiochemistry of such reactions went largely overlooked. Hence, this account emphasizes the gold catalyzed regioselective cycloisomerization of structurally distinctive π-connected hetero-nucleophiles leading to different heterocycles documented in the last two decades. From an application perspective, this account also highlights those methodologies which find a role in the total synthesis of natural products. Wherever appropriate, mechanistic details and contributing factors for selectivity are also discussed.
Collapse
Affiliation(s)
- Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Alagappapuram, Karaikudi, 630003, Sivagangai District, Tamil Nadu, India
| |
Collapse
|
17
|
Wang S, Zhou Y, Huang H. Palladium-Catalyzed Tandem Carbonylative Diels-Alder Reaction for Construction of Bridged Polycyclic Skeletons. Org Lett 2021; 23:2125-2129. [PMID: 33650874 DOI: 10.1021/acs.orglett.1c00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A palladium-catalyzed tandem carbonylative lactonization and Diels-Alder cycloaddition reaction between aldehyde-tethered benzylhalides and alkenes has been developed. A range of alkenes and aldehyde-tethered benzylhalides bearing different substituents can be successfully transformed into the corresponding bridged polycyclic compounds in good yields. This strategy provides a unique approach to complex lactone-containing bridged polycyclic compounds.
Collapse
Affiliation(s)
- Siyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yangkun Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei 230026, P. R. China
| |
Collapse
|
18
|
Fürstner A. Iron Catalyzed C–C-Bond Formation: From Canonical Cross Coupling to a Quest for New Reactivity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
19
|
Abstract
![]()
A nonthermodynamic array of four skipped methylene substituents on the hydrophobic tail
renders limaol, a C40-polyketide of marine origin, unique in structural terms. This
conspicuous segment was assembled by a two-directional approach and finally coupled to
the polyether domain by an allyl/alkenyl Stille reaction under neutral conditions. The
core region itself was prepared via a 3,3′-dibromo-BINOL-catalyzed asymmetric
propargylation, a gold-catalyzed spirocyclization, and introduction of the southern
sector via substrate-controlled allylation as the key steps.
Collapse
Affiliation(s)
- Stephan N Hess
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Xiaobin Mo
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
20
|
V. Singh F, B. Kole P. Recent Development on the Ring Transformation Reactions: Synthesis of Functionalized Benzenes, N-Heterocycles and Fused Ring Systems. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Hussain H, Ali I, Elizbit, Hussain W, Mamadalieva NZ, Hussain A, Ali M, Ahmed I, Ullah I, Green IR. Synthetic Studies towards Fungal glycosides: An Overview. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201105160034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fungi have provided intriguing chemical diversity and have additionally proven to
be a tremendous source for a great variety of therapeutic molecules. Various fungal glycosides
have been reported from fungi and the majority of these metabolites possess cytotoxic and
antimicrobial effects. Although natural products are obtained in most cases in small amounts
from the specific natural source, total syntheses of these valuable commodities remain one of
the most important ways of obtaining them on a large scale for more detailed and comprehensive
biological studies. In addition, the total synthesis of secondary metabolites is a useful
tool, not only for the disclosure of novel complex pharmacologically active molecules but also
for the establishment of cutting-edge methodologies in synthetic chemistry. Numerous fungal
glycosides have been synthesized in the last four decades regarding the following natural
product classes viz., tetramic acid glycosides (epicoccamides A and D), polyketide glycosides (TMC-151C), 2-pyrone
glycosides (epipyrone A), diterpene glycosides (sordarin), depside glycosides (CRM646-A and –B, KS-501 and KS-
502), caloporosides (caloporoside A), glycolipids (emmyguyacins A and B, acremomannolipin A), and cerebrosides
(cerebroside B, Asperamide B, phalluside-1, Sch II). The current literature review about fungal glycoside synthetic
studies is, therefore, of interest for a wide range of scientists and researchers in the field of organic, natural product,
and medicinal chemists as it outlines key strategies of fungal glycosides and, in particular, glycosylation, the known
biological and pharmacological effects of these natural compounds have afforded a new dimension of exposure.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Iftikhar Ali
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Jinan, Shandong Province (250014), China
| | - Elizbit
- Department Materials Engineering, National University of Sciences and Technology (NUST) H12, Islamabad, Pakistan
| | - Wahid Hussain
- Department of Botany, Government Post Graduate College Parachinar, District Kurram, Pakistan
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Amjad Hussain
- Department of Chemistry University of Okara, Okara, Pakistan
| | - Maroof Ali
- College of life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, England, United Kingdom
| | - Izhar Ullah
- Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| |
Collapse
|
22
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
23
|
Hillenbrand J, Leutzsch M, Gordon CP, Copéret C, Fürstner A. 183 W NMR Spectroscopy Guides the Search for Tungsten Alkylidyne Catalysts for Alkyne Metathesis. Angew Chem Int Ed Engl 2020; 59:21758-21768. [PMID: 32820864 PMCID: PMC7756321 DOI: 10.1002/anie.202009975] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Triarylsilanolates are privileged ancillary ligands for molybdenum alkylidyne catalysts for alkyne metathesis but lead to disappointing results and poor stability in the tungsten series. 1 H,183 W heteronuclear multiple bond correlation spectroscopy, exploiting a favorable 5 J-coupling between the 183 W center and the peripheral protons on the alkylidyne cap, revealed that these ligands upregulate the Lewis acidity to an extent that the tungstenacyclobutadiene formed in the initial [2+2] cycloaddition step is over-stabilized and the catalytic turnover brought to a halt. Guided by the 183 W NMR shifts as a proxy for the Lewis acidity of the central atom and by an accompanying chemical shift tensor analysis of the alkylidyne unit, the ligand design was revisited and a more strongly π-donating all-alkoxide ligand prepared. The new expanded chelate complex has a tempered Lewis acidity and outperforms the classical Schrock catalyst, carrying monodentate tert-butoxy ligands, in terms of rate and functional-group compatibility.
Collapse
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Christopher P. Gordon
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
24
|
Gayyur, Choudhary S, Saxena A, Ghosh N. Gold-catalyzed homo- and cross-annulation of alkynyl carboxylic acids: a facile access to substituted 4-hydroxy 2 H-pyrones and total synthesis of pseudopyronine A. Org Biomol Chem 2020; 18:8716-8723. [PMID: 33089263 DOI: 10.1039/d0ob01700k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Au(i)-catalyzed homo- and cross-annulation reaction of alkynyl carboxylic acids offering 3,6-disubstituted 4-hydroxy 2H-pyrones has been demonstrated. The reaction tolerates various substituted alkynyl carboxylic acids and moderate to good yields of α-pyrone scaffolds have been observed. Later, a gram-scale reaction of the acid and the total synthesis of the natural product pseudopyronine A have been carried out successfully.
Collapse
Affiliation(s)
- Gayyur
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India.
| | - Shivani Choudhary
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India.
| | - Anchal Saxena
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India.
| | - Nayan Ghosh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India. and Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, U. P., India
| |
Collapse
|
25
|
Arimitsu S, Iwasa S, Arakaki R. Enantioselective Fluorination of α-Branched β-Ynone Esters Using a Cinchona-Based Phase-Transfer Catalyst. J Org Chem 2020; 85:12804-12812. [PMID: 32955893 DOI: 10.1021/acs.joc.0c01997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the fluorination of α-branched β-ynone esters to afford their corresponding quaternary fluorinated products with good enantioselectivity (ee = 73-90%) using a cinchona-based phase-transfer catalyst. α-Branched β-ynone esters possess a highly acidic α-proton and form their corresponding enolate as a single isomer, which allows the enantioselective fluorination reaction to occur under standard cinchona-based phase-transfer catalyst conditions. Moreover, the obtained α-fluorinated product can be treated with [(SPhos)AuNTf2] (1 mol %) to afford a fluorinated 3,5-diketo carboxylic acid.
Collapse
Affiliation(s)
- Satoru Arimitsu
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| | - Satsuki Iwasa
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| | - Ryunosuke Arakaki
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
26
|
Liniger M, Neuhaus CM, Altmann KH. Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins. Molecules 2020; 25:E4527. [PMID: 33023218 PMCID: PMC7582377 DOI: 10.3390/molecules25194527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
Efforts are described towards the total synthesis of the bacterial macrolide rhizoxin F, which is a potent tubulin assembly and cancer cell growth inhibitor. A significant amount of work was expanded on the construction of the rhizoxin core macrocycle by ring-closing olefin metathesis (RCM) between C(9) and C(10), either directly or by using relay substrates, but in no case was ring-closure achieved. Macrocycle formation was possible by ring-closing alkyne metathesis (RCAM) at the C(9)/C(10) site. The requisite diyne was obtained from advanced intermediates that had been prepared as part of the synthesis of the RCM substrates. While the direct conversion of the triple bond formed in the ring-closing step into the C(9)-C(10) E double bond of the rhizoxin macrocycle proved to be elusive, the corresponding Z isomer was accessible with high selectivity by reductive decomplexation of the biscobalt hexacarbonyl complex of the triple bond with ethylpiperidinium hypophosphite. Radical-induced double bond isomerization, full elaboration of the C(15) side chain, and directed epoxidation of the C(11)-C(12) double bond completed the total synthesis of rhizoxin F.
Collapse
Affiliation(s)
| | | | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zürich, Switzerland; (M.L.); (C.M.N.)
| |
Collapse
|
27
|
Hillenbrand J, Leutzsch M, Gordon CP, Copéret C, Fürstner A. 183
W NMR Spectroscopy Guides the Search for Tungsten Alkylidyne Catalysts for Alkyne Metathesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
28
|
Hillenbrand J, Leutzsch M, Yiannakas E, Gordon CP, Wille C, Nöthling N, Copéret C, Fürstner A. "Canopy Catalysts" for Alkyne Metathesis: Molybdenum Alkylidyne Complexes with a Tripodal Ligand Framework. J Am Chem Soc 2020; 142:11279-11294. [PMID: 32463684 PMCID: PMC7322728 DOI: 10.1021/jacs.0c04742] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
A new family of structurally well-defined
molybdenum alkylidyne
catalysts for alkyne metathesis, which is distinguished by a tripodal
trisilanolate ligand architecture, is presented. Complexes of type 1 combine the virtues of previous generations of silanolate-based
catalysts with a significantly improved functional group tolerance.
They are easy to prepare on scale; the modularity of the ligand synthesis
allows the steric and electronic properties to be fine-tuned and hence
the application profile of the catalysts to be optimized. This opportunity
is manifested in the development of catalyst 1f, which
is as reactive as the best ancestors but exhibits an unrivaled scope.
The new catalysts work well in the presence of unprotected alcohols
and various other protic groups. The chelate effect entails even a
certain stability toward water, which marks a big leap forward in
metal alkylidyne chemistry in general. At the same time, they tolerate
many donor sites, including basic nitrogen and numerous heterocycles.
This aspect is substantiated by applications to polyfunctional (natural)
products. A combined spectroscopic, crystallographic, and computational
study provides insights into structure and electronic character of
complexes of type 1. Particularly informative are a density
functional theory (DFT)-based chemical shift tensor analysis of the
alkylidyne carbon atom and 95Mo NMR spectroscopy; this
analytical tool had been rarely used in organometallic chemistry before
but turns out to be a sensitive probe that deserves more attention.
The data show that the podand ligands render a Mo-alkylidyne a priori
more electrophilic than analogous monodentate triarylsilanols; proper
ligand tuning, however, allows the Lewis acidity as well as the steric
demand about the central atom to be adjusted to the point that excellent
performance of the catalyst is ensured.
Collapse
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Ektoras Yiannakas
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christopher P Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Christian Wille
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
29
|
Douchi T, Akitake M, Sonoda M, Sugiyama Y, Tanimori S. Enantio and diastereoselective total synthesis of all four stereoisomers of germicidin N. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1745240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tsuyoshi Douchi
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Masahiro Akitake
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Motohiro Sonoda
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yasumasa Sugiyama
- Department of Food and Health Sciences, Jissen Women’s University, Osakaue, Japan
| | - Shinji Tanimori
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
30
|
Masuda M, Sakurai N, Ogura Y, Murase T, Kawasaki T, Aiba S, Mori N, Watanabe H, Takikawa H. Studies toward the enantioselective synthesis of neurymenolide A: Construction of the macrocyclic core via Claisen rearrangement. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Ohmukai H, Sugiyama Y, Hirota A, Kirihata M, Tanimori S. Total synthesis of (
S
)‐(+)‐
ent
‐phomapyrones B and surugapyrone B. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroaki Ohmukai
- Department of Applied Biological Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture University Osaka Japan
| | - Yasumasa Sugiyama
- Department of Food and Health SciencesJissen Women's University Hino Tokyo Japan
| | - Akira Hirota
- School of Food and Nutritional SciencesUniversity of Shizuoka Shizuoka Japan
| | - Mitsunori Kirihata
- Department of Applied Biological Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture University Osaka Japan
| | - Shinji Tanimori
- Department of Applied Biological Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture University Osaka Japan
| |
Collapse
|
32
|
Wan Y, Peng H, Yang Q, Liu W, Deng G. Selective Synthesis of 2-(4-Aminoaryl)-2-(4-pyranonyl)acetates and 2,2-Bis(4-aminoaryl)-2-(4-pyranonyl)acetates from 2-Diazo-3,5-dioxo-6-ynoates (ynones) and Aromatic Amines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yinbo Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Qin Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Weishun Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| |
Collapse
|
33
|
Liu R, Li X, Li X, Wang J, Yang Y. Gold(I)-Catalyzed Intermolecular Rearrangement Reaction of Glycosyl Alkynoic β-Ketoesters for the Synthesis of 4-O-Glycosylated 2-Pyrones. J Org Chem 2019; 84:14141-14150. [DOI: 10.1021/acs.joc.9b01582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoqian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
34
|
Purgett TJ, Dyer MW, Bickel B, McNeely J, Porco JA. Gold(I)-Mediated Cycloisomerization/Cycloaddition Enables Bioinspired Syntheses of Neonectrolides B-E and Analogues. J Am Chem Soc 2019; 141:15135-15144. [PMID: 31469554 DOI: 10.1021/jacs.9b06355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of a synthetic route to the oxaphenalenone (OP) natural products neonectrolides B-E is described. The synthesis relies on gold-catalyzed 6-endo-dig hydroarylation of an unusual enynol substrate as well as a one-pot Rieche formylation/cyclization/deprotection sequence to efficiently construct the tricyclic oxaphenalenone framework in the form of a masked ortho-quinone methide (o-QM). A tandem cycloisomerization/[4 + 2] cycloaddition strategy was employed to quickly construct molecules resembling the neonectrolides. The tricyclic OP natural product SF226 could be converted to corymbiferan lactone E and a related masked o-QM. Our study culminates with the application of the tandem reaction sequence to syntheses of neonectrolides B-E as well as previously unreported exo-diastereomers.
Collapse
Affiliation(s)
- Thomas J Purgett
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Matthew W Dyer
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Bryce Bickel
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - James McNeely
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
35
|
Li Y, Yu J, Bi Y, Yan G, Huang D. Tandem Reactions of Ynones:viaConjugate Addition of Nitrogen‐, Carbon‐, Oxygen‐, Boron‐, Silicon‐, Phosphorus‐, and Sulfur‐Containing Nucleophiles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900611] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Li
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Jian Yu
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Yicheng Bi
- Department of ChemistryQingdao University of Science & Technology Qingdao Shandong People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| |
Collapse
|
36
|
Zhang S, Cheng H, Mo S, Yin S, Zhang Z, Wang T. Gold(I)‐Catalyzed Synthesis of Six‐Membered P,O‐Heterocycles
via
Hydration/Intramolecular Cyclization Cascade Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Haiyang Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Sheng Mo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Shiwei Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal University No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| |
Collapse
|
37
|
Huang L, Gu Y, Fürstner A. Iron-Catalyzed Reactions of 2-Pyridone Derivatives: 1,6-Addition and Formal Ring Opening/Cross Coupling. Chem Asian J 2019; 14:4017-4023. [PMID: 31274217 PMCID: PMC7687238 DOI: 10.1002/asia.201900865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 11/15/2022]
Abstract
In the presence of simple iron salts, 2‐pyridone derivatives react with Grignard reagents under mild conditions to give the corresponding 1,6‐addition products; if the reaction medium is supplemented with an aprotic dipolar cosolvent after the actual addition step, the intermediates primarily formed succumb to ring opening, giving rise to non‐thermodynamic Z,E‐configured dienoic acid amide derivatives which are difficult to make otherwise. Control experiments as well as the isolation and crystallographic characterization of a (tricarbonyl)iron pyridone complex suggest that the active iron catalyst generated in situ exhibits high affinity to the polarized diene system embedded into the heterocyclic ring system of the substrates, which likely serves as the actual recognition element.
Collapse
Affiliation(s)
- Lin Huang
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Yiting Gu
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
38
|
Motuhi SE, Feizbakhsh O, Foll-Josselin B, Baratte B, Delehouzé C, Cousseau A, Fant X, Bulinski JC, Payri CE, Ruchaud S, Mehiri M, Bach S. Neurymenolide A, a Novel Mitotic Spindle Poison from the New Caledonian Rhodophyta Phacelocarpus neurymenioides. Mar Drugs 2019; 17:md17020093. [PMID: 30717235 PMCID: PMC6410418 DOI: 10.3390/md17020093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022] Open
Abstract
The marine α-pyrone macrolide neurymenolide A was previously isolated from the Fijian red macroalga, Neurymenia fraxinifolia, and characterized as an antibacterial agent against antibiotic-resistant strains that also exhibited moderate cytotoxicity in vitro against cancer cell lines. This compound was also shown to exhibit allelopathic effects on Scleractinian corals. However, to date no mechanism of action has been described in the literature. The present study showed, for the first time, the isolation of neurymenolide A from the New Caledonian Rhodophyta, Phacelocarpus neurymenioides. We confirmed the compound’s moderate cytotoxicity in vitro against several human cell lines, including solid and hematological malignancies. Furthermore, we combined fluorescence microscopy and flow cytometry to demonstrate that treatment of U-2 OS osteosarcoma human cells with neurymenolide A could block cell division in prometaphase by inhibiting the correct formation of the mitotic spindle, which induced a mitotic catastrophe that led to necrosis and apoptosis. Absolute configuration of the stereogenic center C-17 of neurymenolide A was deduced by comparison of the experimental and theoretical circular dichroism spectra. Since the total synthesis of this compound has already been described, our findings open new avenues in cancer treatment for this class of marine molecules, including a new source for the natural product.
Collapse
Affiliation(s)
- Sofia-Eléna Motuhi
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS), Laboratoire d'Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), BP A5, 98848 Nouméa CEDEX, New Caledonia, France.
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
- UMR 7272 CNRS, Marine Natural Products Team, Nice Institute of Chemistry (ICN), University Nice Sophia Antipolis, Parc Valrose, 02 F-06108 Nice CEDEX, France.
| | - Omid Feizbakhsh
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
| | - Béatrice Foll-Josselin
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
| | - Blandine Baratte
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
| | - Claire Delehouzé
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
| | - Arnaud Cousseau
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
- UMR 7272 CNRS, Marine Natural Products Team, Nice Institute of Chemistry (ICN), University Nice Sophia Antipolis, Parc Valrose, 02 F-06108 Nice CEDEX, France.
| | - Xavier Fant
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
| | - Jeannette Chloë Bulinski
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Claude Elisabeth Payri
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS), Laboratoire d'Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), BP A5, 98848 Nouméa CEDEX, New Caledonia, France.
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
| | - Mohamed Mehiri
- UMR 7272 CNRS, Marine Natural Products Team, Nice Institute of Chemistry (ICN), University Nice Sophia Antipolis, Parc Valrose, 02 F-06108 Nice CEDEX, France.
| | - Stéphane Bach
- Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France.
| |
Collapse
|
39
|
Ehrhorn H, Tamm M. Well-Defined Alkyne Metathesis Catalysts: Developments and Recent Applications. Chemistry 2018; 25:3190-3208. [PMID: 30346054 DOI: 10.1002/chem.201804511] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/31/2022]
Abstract
Although alkyne metathesis has been known for 50 years, rapid progress in this field has mostly occurred during the last two decades. In this article, the development of several highly efficient and thoroughly studied alkyne metathesis catalysts is reviewed, which includes novel well-defined, in situ formed and heterogeneous systems. Various alkyne metathesis methodologies, including alkyne cross-metathesis (ACM), ring-closing alkyne metathesis (RCAM), cyclooligomerization, acyclic diyne metathesis polymerization (ADIMET), and ring-opening alkyne metathesis polymerization (ROAMP), are presented, and their application in natural product synthesis, materials science as well as supramolecular and polymer chemistry is discussed. Recent progress in the metathesis of diynes is also summarized, which gave rise to new methods such as ring-closing diyne metathesis (RCDM) and diyne cross-metathesis (DYCM).
Collapse
Affiliation(s)
- Henrike Ehrhorn
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
40
|
Fürstner A. trans-Hydrogenation, gem-Hydrogenation, and trans-Hydrometalation of Alkynes: An Interim Report on an Unorthodox Reactivity Paradigm. J Am Chem Soc 2018; 141:11-24. [DOI: 10.1021/jacs.8b09782] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
41
|
Park GE, Maezono SMB, Ha JH, Shim JJ, Kim SH, Lee YR. Transition-Metal-Free Regioselective Construction of Diverse 3-Carbonyl Functionalized 4-PyronesviaThermal Wolff-Rearrangement of Diazodicarbonyls. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ga Eul Park
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| | | | - Ji Hyeon Ha
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division; Daegu Center; Korea Basic Science Institute; Daegu 41566 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Republic of Korea
| |
Collapse
|
42
|
Zhuo CX, Fürstner A. Catalysis-Based Total Syntheses of Pateamine A and DMDA-Pat A. J Am Chem Soc 2018; 140:10514-10523. [PMID: 30056701 DOI: 10.1021/jacs.8b05094] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The marine natural product pateamine A (1) and its somewhat simplified designer analogue DMDA-Pat A (2) (DMDA = desmethyl-desamino) are potently cytotoxic compounds; most notably, 2 had previously been found to exhibit a promising differential in vivo activity in xenograft melanoma models, even though the ubiquitous eukaryotic initiation factor 4A (eIF4A) constitutes its primary biological target. In addition, 1 had also been identified as a possible lead in the quest for medication against cachexia, an often lethal muscle wasting syndrome affecting many immunocompromised or cancer patients. The short supply of these macrodiolides, however, rendered a more detailed biological assessment difficult. Therefore, a new synthetic approach to 1 and 2 has been devised, which centers on an unorthodox strategy for the formation of the highly isomerization-prone but essential Z, E-configured dienoate substructure embedded into the macrocyclic core. This motif was encoded in the form of a 2-pyrone ring and unveiled only immediately before macrocyclization by an unconventional iron-catalyzed ring opening/cross-coupling reaction, in which the enol ester entity of the pyrone gains the role of a leaving group. Since the required precursor was readily available by gold catalysis, this strategy rendered the overall sequence short, robust, and scalable. A surprisingly easy protecting group management together with a much improved end game for the formation of the trienyl side chain via a modern Stille coupling protocol also helped to make the chosen route practical. Change of a single building block allowed the synthesis to be redirected from the natural lead compound 1 toward its almost equipotent analogue 2. Isolation and reactivity profiling of pyrone tricarbonyliron complexes provide mechanistic information as well as insights into the likely origins of the observed chemoselectivity.
Collapse
Affiliation(s)
- Chun-Xiang Zhuo
- Max-Planck-Institut für Kohlenforschung , D-45470 Mülheim/Ruhr , Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung , D-45470 Mülheim/Ruhr , Germany
| |
Collapse
|
43
|
Scherpf T, Schwarz C, Scharf LT, Zur JA, Helbig A, Gessner VH. Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805372] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thorsten Scherpf
- Lehrstuhl für Anorganische Chemie II; Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstrasse 150 44801 Bochum Germany
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Christopher Schwarz
- Lehrstuhl für Anorganische Chemie II; Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstrasse 150 44801 Bochum Germany
| | - Lennart T. Scharf
- Lehrstuhl für Anorganische Chemie II; Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstrasse 150 44801 Bochum Germany
| | - Jana-Alina Zur
- Lehrstuhl für Anorganische Chemie II; Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstrasse 150 44801 Bochum Germany
| | - Andreas Helbig
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Viktoria H. Gessner
- Lehrstuhl für Anorganische Chemie II; Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstrasse 150 44801 Bochum Germany
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
44
|
Scherpf T, Schwarz C, Scharf LT, Zur JA, Helbig A, Gessner VH. Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis. Angew Chem Int Ed Engl 2018; 57:12859-12864. [PMID: 29862622 PMCID: PMC6174943 DOI: 10.1002/anie.201805372] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/25/2022]
Abstract
Phosphines are important ligands in homogenous catalysis and have been crucial for many advances, such as in cross‐coupling, hydrofunctionalization, or hydrogenation reactions. Herein we report the synthesis and application of a novel class of phosphines bearing ylide substituents. These phosphines are easily accessible via different synthetic routes from commercially available starting materials. Owing to the extra donation from the ylide group to the phosphorus center the ligands are unusually electron‐rich and can thus function as strong electron donors. The donor capacity surpasses that of commonly used phosphines and carbenes and can easily be tuned by changing the substitution pattern at the ylidic carbon atom. The huge potential of ylide‐functionalized phosphines in catalysis is demonstrated by their use in gold catalysis. Excellent performance at low catalyst loadings under mild reaction conditions is thus seen in different types of transformations.
Collapse
Affiliation(s)
- Thorsten Scherpf
- Lehrstuhl für Anorganische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.,Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christopher Schwarz
- Lehrstuhl für Anorganische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Lennart T Scharf
- Lehrstuhl für Anorganische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jana-Alina Zur
- Lehrstuhl für Anorganische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Andreas Helbig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Viktoria H Gessner
- Lehrstuhl für Anorganische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.,Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
45
|
Burkhardt I, Dickschat JS. Synthesis and Absolute Configuration of Natural 2-Pyrones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Immo Burkhardt
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
46
|
Ahuja M, Biswas S, Sharma P, Samanta S. Synthesis and Photophysical Properties of α-Pyrone-fused-pyrido[3, 2,1-jk
]carbazolone Derivatives : DFT/TD-DFT Insights. ChemistrySelect 2018. [DOI: 10.1002/slct.201800369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Monika Ahuja
- School of Chemical Sciences; Devi Ahilya University; Takshashila Campus, Indore; 452001 Madhya Pradesh India
| | - Soumen Biswas
- Discipline of Chemistry; Indian Institute of Technology Indore, Simrol, Indore; 453552 Madhya Pradesh India
| | - Pratibha Sharma
- School of Chemical Sciences; Devi Ahilya University; Takshashila Campus, Indore; 452001 Madhya Pradesh India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore, Simrol, Indore; 453552 Madhya Pradesh India
| |
Collapse
|
47
|
Efficient synthesis of 6-aryl-4-trifluoromethyl/ethoxycarbonyl-2H-pyran-2-ones through self-condensation of penta-2,4-dienenitriles. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Shi Q, Zhang W, Wang Y, Qu L, Wei D. Insights into the isothiourea-catalyzed asymmetric [4 + 2] annulation of phenylacetic acid with alkylidene pyrazolone. Org Biomol Chem 2018. [DOI: 10.1039/c7ob03142d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational study on the isothiourea-catalyzed asymmetric [4 + 2] annulation of phenylacetic acid with alkylidene pyrazolone was performed using the DFT method.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Wei Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P.R. China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
49
|
Meng Z, Souillart L, Monks B, Huwyler N, Herrmann J, Müller R, Fürstner A. A “Motif-Oriented” Total Synthesis of Nannocystin Ax. Preparation and Biological Assessment of Analogues. J Org Chem 2017; 83:6977-6994. [DOI: 10.1021/acs.joc.7b02871] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | | | - Brendan Monks
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Nikolas Huwyler
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbrücken, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
50
|
McGee P, Brousseau J, Barriault L. Development of New Gold (I)-Catalyzed Carbocyclizations and their Applications in the Synthesis of Natural Products. Isr J Chem 2017. [DOI: 10.1002/ijch.201700054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philippe McGee
- Center for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Canada K1N 6N5
| | - Julie Brousseau
- Center for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Canada K1N 6N5
| | - Louis Barriault
- Center for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Canada K1N 6N5
| |
Collapse
|