1
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Kawaji K, Tsujiwaki M, Kiso A, Kitajo Y, Kitamura M, Nishimura M, Horikawa J, Ikushuma H, Takemoto S, Matsuzaka H. Bimetallic Ru-Ir/Rh complexes for catalytic allyl alcohol reduction to propylene. Chem Commun (Camb) 2024; 60:9424-9427. [PMID: 39136549 DOI: 10.1039/d4cc01711k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Bimetallic Ru-Ir/Rh complexes with the Ru-based metalloligand cis-(bpy)2Ru(PPh2)2 (RuP2) serve as catalysts for the selective reduction of allyl alcohol to propylene, employing H2 gas or an electrochemical setup. Metal-metal bonded key π-allyl intermediates [(RuP2)M(η3-C3H5)]2+ (M = Ir, Rh) are identified, advancing the understanding of the catalytic processes.
Collapse
Affiliation(s)
- Kanade Kawaji
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Mina Tsujiwaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Ayaka Kiso
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Yukina Kitajo
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Manami Kitamura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Minako Nishimura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Junya Horikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Haruto Ikushuma
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Shin Takemoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| | - Hiroyuki Matsuzaka
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan.
| |
Collapse
|
3
|
Guo Z, Yang B, Pang T, Wei X. CO 2-Promoted and Copper-Catalyzed Dehydroxylative Coupling of Benzylic Alcohols by the NaBH 4/I 2 System. J Org Chem 2024; 89:9810-9815. [PMID: 38922624 DOI: 10.1021/acs.joc.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
An efficient and CO2-promoted dehydroxylative coupling of benzylic alcohols catalyzed by ligand-free cuprous chloride has been achieved. The discovered catalytic reductive coupling reaction is a newly C-C bond-forming transformation of alcohols. Mechanistic insight is gained through control reactions.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P.R. China
| | - Boru Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Tengfei Pang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
4
|
Canote CA, Kilyanek SM. Reactivity of metal dioxo complexes. Dalton Trans 2024; 53:4874-4889. [PMID: 38379444 DOI: 10.1039/d3dt04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Metal dioxo chemistry and its diverse reactivity are presented with an emphasis on the mechanisms of reactivity. Work from approximately the last decade is surveyed and organized by metal. In particular, the chemistry of cis-dioxo metal complexes is discussed at length. Reactions are grouped by generic type, including addition across a metal oxo bond, oxygen atom transfer, and radical atom transfer reactions. Attention is given to advances in deoxygenation chemistry, oxidation chemistry, and reductive transformations.
Collapse
Affiliation(s)
- Cody A Canote
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| | - Stefan M Kilyanek
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
5
|
Lam PM, John A. Molybdenum Catalyzed Deoxydehydration of Aliphatic Glycols Under Microwave Irradiation. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Vargas KS, Zaffran J, Araque M, Sadakane M, Katryniok B. Deoxydehydration of glycerol to allyl alcohol catalysed by ceria-supported rhenium oxide. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Bockisch C, Lorance ED, Hartnett HE, Shock EL, Gould IR. Kinetics and Mechanisms of Hydrothermal Dehydration of Cyclic 1,2- and 1,4-Diols. J Org Chem 2022; 87:14299-14307. [PMID: 36227689 DOI: 10.1021/acs.joc.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrothermal dehydration is an attractive method for deoxygenation and upgrading of biofuels because it requires no reagents or catalysts other than superheated water. Although mono-alcohols cleanly deoxygenate via dehydration under many conditions, polyols such as those derived from saccharides and related structures are known to be recalcitrant with respect to dehydration. Here, we describe detailed mechanistic and kinetic studies of hydrothermal dehydration of 1,2- and 1,4-cyclohexanediols as model compounds to investigate how interactions between the hydroxyls can control the reaction. The diols generally dehydrate more slowly and have more complex reaction pathways than simple cyclohexanol. Although hydrogen bonding between hydroxyls is an important feature of the diol reactions, hydrogen bonding on its own does not explain the reduced reactivity. Rather, it is the way that hydrogen bonding influences the balance between the E1 and E2 elimination mechanisms. We also describe the reaction pathways and follow-up secondary reactions for the slower-dehydrating diols.
Collapse
Affiliation(s)
- Christiana Bockisch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Edward D Lorance
- Department of Chemistry, Vanguard University, Costa Mesa, California 92926, United States
| | - Hilairy E Hartnett
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
| | - Ian R Gould
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
8
|
Yamaguchi K, Cao J, Betchaku M, Nakagawa Y, Tamura M, Nakayama A, Yabushita M, Tomishige K. Deoxydehydration of Biomass-Derived Polyols Over Silver-Modified Ceria-Supported Rhenium Catalyst with Molecular Hydrogen. CHEMSUSCHEM 2022; 15:e202102663. [PMID: 35261197 DOI: 10.1002/cssc.202102663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Olefin production from polyols via deoxydehydration (DODH) was carried out over Ag-modified CeO2 -supported heterogeneous Re catalysts with H2 as a reducing agent. Both high DODH activity and low hydrogenation ability for C=C bonds were observed in the reaction of erythritol, giving a 1,3-butadiene yield of up to 90 % under "solvent-free" conditions. This catalyst is applicable to other substrates such as methyl glycosides (methyl α-fucopyranoside: 91 % yield of DODH product; methyl β-ribofuranoside: 88 % yield), which were difficult to be converted to the DODH products over the DODH catalysts reported previously. ReOx -Ag/CeO2 was reused 3 times without a decrease of activity or selectivity after calcination as regeneration. Although the transmission electron microscopy energy-dispersive X-ray spectroscopy and X-ray absorption fine structure analyses showed that Re species were highly dispersed and Ag was present as metal particles with various sizes from well-dispersed species (<1 nm) to around 5 nm particles, the catalysts prepared from size-controlled Ag nanoparticles showed similar performance, indicating that the catalytic performance is insensitive to the Ag particle size.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Ji Cao
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mii Betchaku
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
9
|
Muzyka C, Monbaliu JCM. Perspectives for the Upgrading of Bio-Based Vicinal Diols within the Developing European Bioeconomy. CHEMSUSCHEM 2022; 15:e202102391. [PMID: 34919322 DOI: 10.1002/cssc.202102391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The previous decade has witnessed a drastic increase of European incentives aimed at pushing forward the transition from an exclusively petro-based economy toward a strong and homogeneous bio-based economy. Since 2012, numerous programs have been developed to stimulate and promote research and innovation relying on sustainable and renewable resources. Terrestrial biomass is a virtually infinite reservoir of biomacromolecules, the biorefining of which provides platform molecules of low complexity yet with tremendous industrial potential. Among such bio-based platform molecules, polyols and, more specifically, molecules featuring vicinal diols have gained tremendous interest and have stimulated an increasing research effort from the chemistry and chemical engineering communities. This Review revolves around the most promising process conditions and technologies reported since 2012 that specifically target bio-based vicinal diols and promote their transformation into value-added molecules of wide industrial interest, such as olefins, epoxides, cyclic carbonates, and ketals.
Collapse
Affiliation(s)
- Claire Muzyka
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| |
Collapse
|
10
|
Mouhsine B, Karim A, Dumont C, Saint Pol A, Suisse I, Sauthier M. The selective nickel catalyzed N‐allylation of C3‐unprotected indoles under mild and clean conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bouchaib Mouhsine
- Université de Lille Faculté des Sciences et Technologies: Universite de Lille Faculte des Sciences et Technologies chimie FRANCE
| | - Abdallah Karim
- Universite Cadi Ayyad Faculte des Sciences Semlalia chimie MOROCCO
| | | | - Anthony Saint Pol
- Universite de Lille Faculté des Sciences et Technologies: Universite de Lille Faculte des Sciences et Technologies chimie FRANCE
| | - Isabelle Suisse
- Universite de Lille Faculté des Sciences et Technologies: Universite de Lille Faculte des Sciences et Technologies chimie FRANCE
| | - Mathieu Sauthier
- Universite de Lille Faculte des Sciences et Technologies Campus universitaire de Lille 1 ENSCL - batiment C7 BP 90108 59652 Villeneuve d'Ascq FRANCE
| |
Collapse
|
11
|
Hacatrjan S, Liu L, Gan J, Nakagawa Y, Cao J, Yabushita M, Tamura M, Tomishige K. Titania-supported molybdenum oxide combined with Au nanoparticles as hydrogen-driven deoxydehydration catalyst of diol compounds. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02144c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogenous catalyst for deoxydehydration (DODH) reaction was developed using less expensive Mo than Re as the active center. Combination of Mo with anatase-rich TiO2 and Au as the support...
Collapse
|
12
|
Jentoft FC. Transition metal-catalyzed deoxydehydration: missing pieces of the puzzle. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deoxydehydration (DODH) is a transformation that converts a vicinal diol into an olefin with the help of a sacrificial reductant.
Collapse
Affiliation(s)
- Friederike C. Jentoft
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003-9303, USA
| |
Collapse
|
13
|
Li T, Sun G, Xiong L, Zheng B, Duan Y, Yu R, Jiang J, Wang Y, Yang W. Transition-metal-free decarboxylation of D-glucaric acid to furan catalyzed by SnCl4 in a biphasic system. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Carder HM, Suh CE, Wendlandt AE. A Unified Strategy to Access 2- and 4-Deoxygenated Sugars Enabled by Manganese-Promoted 1,2-Radical Migration. J Am Chem Soc 2021; 143:13798-13805. [PMID: 34406756 DOI: 10.1021/jacs.1c05993] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective manipulation of carbohydrate scaffolds is challenging due to the presence of multiple, nearly chemically indistinguishable O-H and C-H bonds. As a result, protecting-group-based synthetic strategies are typically necessary for carbohydrate modification. Here we report a concise semisynthetic strategy to access diverse 2- and 4-deoxygenated carbohydrates without relying on the exhaustive use of protecting groups to achieve site-selective reaction outcomes. Our approach leverages a Mn2+-promoted redox isomerization step, which proceeds via sugar radical intermediates accessed by neutral hydrogen atom abstraction under visible light-mediated photoredox conditions. The resulting deoxyketopyranosides feature chemically distinguishable functional groups and are readily transformed into diverse carbohydrate structures. To showcase the versatility of this method, we report expedient syntheses of the rare sugars l-ristosamine, l-olivose, l-mycarose, and l-digitoxose from commercial l-rhamnose. The findings presented here validate the potential for radical intermediates to facilitate the selective transformation of carbohydrates and showcase the step and efficiency advantages attendant to synthetic strategies that minimize a reliance upon protecting groups.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carolyn E Suh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Feilner JM, Plangger I, Wurst K, Magauer T. Bifunctional Polyene Cyclizations: Synthetic Studies on Pimarane Natural Products. Chemistry 2021; 27:12410-12421. [PMID: 34213030 PMCID: PMC8457131 DOI: 10.1002/chem.202101926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/10/2022]
Abstract
Polyene cyclizations generate molecular complexity from a linear polyene in a single step. While methods to initiate these cyclizations have been continuously expanded and improved over the years, the majority of polyene substrates are still limited to simple alkyl-substituted alkenes. In this study, we took advantage of the unique reactivity of higher-functionalized bifunctional alkenes. The realization of a polyene tetracyclization of a dual nucleophilic aryl enol ether involving a transannular endo-termination step enabled the total synthesis of the tricyclic diterpenoid pimara-15-en-3α-8α-diol. The highly flexible and modular route allowed for the preparation of a diverse library of cyclization precursors specifically designed for the total synthesis of the tetracyclic nor-diterpenoid norflickinflimiod C. The tetracyclization of three diversely substituted allenes enabled access to complex pentacyclic products and provided a detailed insight into the underlying reaction pathways.
Collapse
Affiliation(s)
- Julian M. Feilner
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Immanuel Plangger
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
16
|
Lu Z, Zheng Q, Yang S, Qian C, Shen Y, Tu T. NHC-Iridium-Catalyzed Deoxygenative Coupling of Primary Alcohols Producing Alkanes Directly: Synergistic Hydrogenation with Sodium Formate Generated in Situ. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zeye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Siqi Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chun Qian
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yajing Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Virgilio EM, Padró CL, Sad ME. Effect of Support Properties on Selective Butanediols Production from Erythritol using Ir/ReO
x
Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emanuel M. Virgilio
- Catalysis Science and Engineering Research Group (GICIC), INCAPE UNL-CONICET Predio CCT Conicet Santa Fe Colectora RN 168 km 0 Paraje El Pozo 3000 Santa Fe Argentina
| | - Cristina L. Padró
- Catalysis Science and Engineering Research Group (GICIC), INCAPE UNL-CONICET Predio CCT Conicet Santa Fe Colectora RN 168 km 0 Paraje El Pozo 3000 Santa Fe Argentina
| | - María E. Sad
- Catalysis Science and Engineering Research Group (GICIC), INCAPE UNL-CONICET Predio CCT Conicet Santa Fe Colectora RN 168 km 0 Paraje El Pozo 3000 Santa Fe Argentina
| |
Collapse
|
18
|
|
19
|
Meiners I, Louven Y, Palkovits R. Zeolite‐Supported Rhenium Catalysts for the Deoxydehydration of 1,2‐Hexanediol to 1‐Hexene. ChemCatChem 2021. [DOI: 10.1002/cctc.202100277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Isabell Meiners
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Yannik Louven
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
20
|
Hui Y, Zhan Y, Hou W, Gao L, Zhang Y, Tang Y. Product Control and Insight into Conversion of C6 Aldose Toward C2, C4 and C6 Alditols in One-Pot Retro-Aldol Condensation and Hydrogenation Processes. ChemistryOpen 2021; 10:560-566. [PMID: 33945238 PMCID: PMC8095293 DOI: 10.1002/open.202100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
Alcohols have a wide range of applicability, and their functions vary with the carbon numbers. C6 and C4 alditols are alternative of sweetener, as well as significant pharmaceutical and chemical intermediates, which are mainly obtained through the fermentation of microorganism currently. Similarly, as a bulk chemical, C2 alditol plays a decisive role in chemical synthesis. However, among them, few works have been focused on the chemical production of C4 alditol yet due to its difficult accumulation. In this paper, under a static and semi-flowing procedure, we have achieved the product control during the conversion of C6 aldose toward C6 alditol, C4 alditol and C2 alditol, respectively. About C4 alditol yield of 20 % and C4 plus C6 alditols yield of 60 % are acquired in the one-pot conversion via a cascade retro-aldol condensation and hydrogenation process. Furthermore, in the semi-flowing condition, the yield of ethylene glycol is up to 73 % thanks to its low instantaneous concentration.
Collapse
Affiliation(s)
- Yingshuang Hui
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Yulu Zhan
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Wenrong Hou
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Lou Gao
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Yahong Zhang
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Yi Tang
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| |
Collapse
|
21
|
Aksanoglu E, Lim YH, Bryce RA. Direct Deoxydehydration of Cyclic trans-Diol Substrates: An Experimental and Computational Study of the Reaction Mechanism of Vanadium(V)-based Catalysis*. CHEMSUSCHEM 2021; 14:1545-1553. [PMID: 33465299 PMCID: PMC8048994 DOI: 10.1002/cssc.202002594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The deoxydehydration of carbohydrates represents a key target to leverage renewable biomass resources chemically. Using a vanadium(V)-based catalyst, it was possible to directly deoxydehydrate cyclic trans-diol substrates. Accompanying mechanistic characterisation of this process by density functional calculations pointed to an energetically tractable route for deoxydehydration of cyclic trans-diol substrates involving stepwise cleavage of the diol C-O bonds via the triplet state; experimentally, this was supported by light dependence of the reaction. Calculations also indicated that cyclic cis-diols and a linear diol substrate could additionally proceed by a concerted singlet DODH mechanism. This work potentially opens a new and cost-effective way to efficiently convert carbohydrates of trans-diol stereochemistry into alkenes.
Collapse
Affiliation(s)
- Ebru Aksanoglu
- Division of Pharmacy and Optometry, School of Health SciencesManchester Academic Health Sciences CentreUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Functional Molecules & PolymersInstitute of Chemical and Engineering Sciences8 Biomedical Grove, #07-01/02Singapore138665Singapore
| | - Yee Hwee Lim
- Functional Molecules & PolymersInstitute of Chemical and Engineering Sciences8 Biomedical Grove, #07-01/02Singapore138665Singapore
| | - Richard A. Bryce
- Division of Pharmacy and Optometry, School of Health SciencesManchester Academic Health Sciences CentreUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
22
|
Mouhsine B, Karim A, Dumont C, Suisse I, Sauthier M. Efficient and Clean Nickel Catalyzed α‐Allylation Reaction of Nitriles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bouchaib Mouhsine
- Univ. Lille CNRS Centrale Lille ENSCL
- Univ. Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide F-59000 Lille France
- Équipe de Chimie de Coordination et de Catalyse Département de Chimie Faculté des Sciences Semlalia Université Cadi Ayyad BP 2390 Marrakech Morocco
| | - Abdallah Karim
- Équipe de Chimie de Coordination et de Catalyse Département de Chimie Faculté des Sciences Semlalia Université Cadi Ayyad BP 2390 Marrakech Morocco
| | | | - Isabelle Suisse
- Univ. Lille CNRS Centrale Lille ENSCL
- Univ. Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Mathieu Sauthier
- Univ. Lille CNRS Centrale Lille ENSCL
- Univ. Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide F-59000 Lille France
| |
Collapse
|
23
|
Deng W, Yan L, Wang B, Zhang Q, Song H, Wang S, Zhang Q, Wang Y. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angew Chem Int Ed Engl 2021; 60:4712-4719. [PMID: 33230943 DOI: 10.1002/anie.202013843] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/05/2022]
Abstract
Green synthesis of adipic acid from renewable biomass is a very attractive goal of sustainable chemistry. Herein, we report efficient catalysts for a two-step transformation of cellulose-derived glucose into adipic acid via glucaric acid. Carbon nanotube-supported platinum nanoparticles are found to work efficiently for the oxidation of glucose to glucaric acid. An activated carbon-supported bifunctional catalyst composed of rhenium oxide and palladium is discovered to be powerful for the removal of four hydroxyl groups in glucaric acid, affording adipic acid with a 99 % yield. Rhenium oxide functions for the deoxygenation but is less efficient for four hydroxyl group removal. The co-presence of palladium not only catalyzes the hydrogenation of olefin intermediates but also synergistically facilitates the deoxygenation. This work presents a green route for adipic acid synthesis and offers a bifunctional-catalysis strategy for efficient deoxygenation.
Collapse
Affiliation(s)
- Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Longfei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qihui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haiyan Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shanshan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
24
|
Wan Y, Lee JM. Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05419] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Wan
- School of Chemical and Biomedical Engineering, Nangyang Technological University, Singapore 637459, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nangyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
25
|
Liu S, Amaro-Estrada JI, Baltrun M, Douair I, Schoch R, Maron L, Hohloch S. Catalytic Deoxygenation of Nitroarenes Mediated by High-Valent Molybdenum(VI)–NHC Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenyu Liu
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | | | - Marc Baltrun
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Gu M, Liu L, Nakagawa Y, Li C, Tamura M, Shen Z, Zhou X, Zhang Y, Tomishige K. Selective Hydrogenolysis of Erythritol over Ir-ReO x /Rutile-TiO 2 Catalyst. CHEMSUSCHEM 2021; 14:642-654. [PMID: 33084243 DOI: 10.1002/cssc.202002357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Partial hydrogenolysis of erythritol, which can be produced at large scale by fermentation, to 1,4-butanediol (1,4-BuD) is investigated with Ir-ReOx /SiO2 and Ir-ReOx /rutile-TiO2 catalysts. In addition to the higher conversion rate over Ir-ReOx /TiO2 than over Ir-ReOx /SiO2 , which has been also reported for glycerol hydrogenolysis, Ir-ReOx /TiO2 showed higher selectivity to 1,4-BuD than Ir-ReOx /SiO2 , especially at low conversion levels, leading to high 1,4-BuD productivity of 20 mmol1,4-BuD gIr -1 h-1 at 373 K (36 % conversion, 33 % selectivity). The productivity based on the noble metal amount is higher than those reported previously, although the maximum yield of 1,4-BuD (23 %) is not higher than the highest reported values. The reactions of various triols, diols and mono-ols are tested and the selectivity and the reaction rates are compared between catalysts and between substrates. The Ir-ReOx /TiO2 catalyst showed about twofold higher activity than Ir-ReOx /SiO2 in hydrogenolysis of the C-OH bond at the 2- or 3-positions in 1,2- and 1,3-diols, respectively, whereas the hydrogenolysis of C-OH at the 1-position is less promoted by the TiO2 support. Lowering the loading amount of Ir on TiO2 (from 4 wt % to 2 or 1 wt %) decreases the Ir-based activity and 1,4-BuD selectivity. Similarly, increasing the loading amount on SiO2 from 4 wt % to 20 wt % increases the Ir-based activity and 1,4-BuD selectivity, although they remain lower than those for TiO2 -supported catalyst with 4 wt % Ir. High metal loadings on the support seem to be important.
Collapse
Affiliation(s)
- Minyan Gu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lujie Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Congcong Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Zheng Shen
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
27
|
Hočevar B, Prašnikar A, Huš M, Grilc M, Likozar B. H
2
‐Free Re‐Based Catalytic Dehydroxylation of Aldaric Acid to Muconic and Adipic Acid Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Brigita Hočevar
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Anže Prašnikar
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Matej Huš
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| |
Collapse
|
28
|
Jiang H, Lu R, Luo X, Si X, Xu J, Lu F. Molybdenum-Catalyzed Deoxygenation Coupling of Lignin-Derived Alcohols for Functionalized Bibenzyl Chemicals. Chemistry 2021; 27:1292-1296. [PMID: 32929787 DOI: 10.1002/chem.202003776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 01/05/2023]
Abstract
With the growing demand for sustainability and reducing CO2 footprint, lignocellulosic biomass has attracted much attention as a renewable, carbon-neutral and low-cost feedstock for the production of chemicals and fuels. To realize efficient utilization of biomass resource, it is essential to selectively alter the high degree of oxygen functionality of biomass-derivates. Herein, we introduced a novel procedure to transform renewable lignin-derived alcohols to various functionalized bibenzyl chemicals. This strategy relied on a short deoxygenation coupling pathway with economical molybdenum catalyst. A well-designed H-donor experiment was performed to investigate the mechanism of this Mo-catalyzed process. It was proven that benzyl carbon-radical was the most possible intermediate to form the bibenzyl products. It was also discovered that the para methoxy and phenolic hydroxyl groups could stabilize the corresponding radical intermediates and then facilitate to selectively obtain bibenzyl products. Our research provides a promising application to produce functionalized aromatics from biomass-derived materials.
Collapse
Affiliation(s)
- Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Xiaolin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqin Si
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
29
|
Hočevar B, Prašnikar A, Huš M, Grilc M, Likozar B. H 2 -Free Re-Based Catalytic Dehydroxylation of Aldaric Acid to Muconic and Adipic Acid Esters. Angew Chem Int Ed Engl 2021; 60:1244-1253. [PMID: 32985782 PMCID: PMC7839713 DOI: 10.1002/anie.202010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Indexed: 11/23/2022]
Abstract
As one of the most demanded dicarboxylic acids, adipic acid can be directly produced from renewable sources. Hexoses from (hemi)cellulose are oxidized to aldaric acids and subsequently catalytically dehydroxylated. Hitherto performed homogeneously, we present the first heterogeneous catalytic process for converting an aldaric acid into muconic and adipic acid. The contribution of leached Re from the solid pre-reduced catalyst was also investigated with hot-filtration test and found to be inactive for dehydroxylation. Corrosive or hazardous (HBr/H2 ) reagents are avoided and simple alcohols and solid Re/C catalysts in an inert atmosphere are used. At 120 °C, the carboxylic groups are protected by esterification, which prevents lactonization in the absence of water or acidic sites. Dehydroxylation and partial hydrogenation yield monohexenoates (93 %). For complete hydrogenation to adipate, a 16 % higher activation barrier necessitates higher temperatures.
Collapse
Affiliation(s)
- Brigita Hočevar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| | - Anže Prašnikar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| | - Matej Huš
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| |
Collapse
|
30
|
Deng W, Yan L, Wang B, Zhang Q, Song H, Wang S, Zhang Q, Wang Y. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Longfei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qihui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiyan Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shanshan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
31
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Jang JH, Ro I, Christopher P, Abu-Omar MM. A Heterogeneous Pt-ReOx/C Catalyst for Making Renewable Adipates in One Step from Sugar Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Insoo Ro
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | | |
Collapse
|
33
|
Lan H, Yao Q, Zhou Y, Zhang B, Jiang Y. Direct conversion of gas-glycerol to Allyl alcohol over V, Ti or Nb modified MoFe/KIT-6 oxide catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Lohrey TD, Cortes EA, Fostvedt JI, Oanta AK, Jain A, Bergman RG, Arnold J. Diverse Reactivity of a Rhenium(V) Oxo Imido Complex: [2 + 2] Cycloadditions, Chalcogen Metathesis, Oxygen Atom Transfer, and Protic and Hydridic 1,2-Additions. Inorg Chem 2020; 59:11096-11107. [DOI: 10.1021/acs.inorgchem.0c01589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emmanuel A. Cortes
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jade I. Fostvedt
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alexander K. Oanta
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anukta Jain
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
35
|
N-Donor Ligand Supported “ReO2+”: A Pre-Catalyst for the Deoxydehydration of Diols and Polyols. Catalysts 2020. [DOI: 10.3390/catal10070754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A selected number of tetradentate N2Py2 ligand-supported ReO2+ complexes and a monodentate pyridine-supported ReO2+ complex have been investigated as catalysts for the deoxydehydration (DODH) of diols and polyols. In situ 1H NMR experiments showed that these N-donor ligand-supported ReO2+ complexes are only the pre-catalyst of the DODH reaction. Treatment of (N2Py2) ReO2+ with an excess amount of water generates an active species for DODH catalysis; use of the Re-product of this reaction shows a much shorter induction period compared to the pristine complex. No ligand is coordinated to the “water-treated” complex indicating that the real catalyst is formed after ligand dissociation. IR analysis suggested this catalyst to be a rhenium-oxide/hydroxide oligomer. The monodentate pyridine ligand is much easier to dissociate from the metal center than a tetradentate N2Py2 ligand, which makes the Py4ReO2+-initiated DODH reaction more efficient. For the Py4ReO2+-initiated DODH of diols and biomass-based polyols, both PPh3 and 3-pentanol could be used as a reductant. Excellent olefin yields are achieved.
Collapse
|
36
|
Stalpaert M, Janssens K, Marquez C, Henrion M, Bugaev AL, Soldatov AV, De Vos D. Olefins from Biobased Sugar Alcohols via Selective, Ru-Mediated Reaction in Catalytic Phosphonium Ionic Liquids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime Stalpaert
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Kwinten Janssens
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Carlos Marquez
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Mickaël Henrion
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| | - Aram L. Bugaev
- The Smart Materials Research Center, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Alexander V. Soldatov
- The Smart Materials Research Center, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Dirk De Vos
- Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, post box 2454, 3001 Leuven, Belgium
| |
Collapse
|
37
|
Tomishige K, Nakagawa Y, Tamura M. Taming heterogeneous rhenium catalysis for the production of biomass-derived chemicals. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Nakagawa Y, Kasumi T, Ogihara J, Tamura M, Arai T, Tomishige K. Erythritol: Another C4 Platform Chemical in Biomass Refinery. ACS OMEGA 2020; 5:2520-2530. [PMID: 32095676 PMCID: PMC7033684 DOI: 10.1021/acsomega.9b04046] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 05/08/2023]
Abstract
The potential of erythritol as a platform chemical in biomass refinery is discussed in terms of erythritol production and utilization. Regarding erythritol production, fermentation of sugar or starch has been already commercialized. The shift of the carbon source from glucose to inexpensive inedible waste glycerol is being investigated, which will decrease the price of erythritol. The carbon-based yield of erythritol from glycerol is comparable to or even higher than that from glucose. The metabolic pathway of erythritol biosynthesis has become clarified: erythrose-4-phosphate, which is one of the intermediates in the pentose phosphate pathway, is dephosphorylated and reduced to erythritol. The information about the metabolic pathway may give insights to improve the productivity by bleeding. Regarding erythritol utilization, chemical conversions of erythritol, especially deoxygenation, have been investigated in these days. Erythritol is easily dehydrated to 1,4-anhydroerythritol, which can be also used as the substrate for production of useful C4 chemicals. C-O hydrogenolysis and deoxydehydration using heterogeneous catalysts are effective reactions for erythritol/1,4-anhydroerythritol conversion.
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Takafumi Kasumi
- Applied
Microbiology and Biotechnology Laboratory, College of Bioresource
Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Jun Ogihara
- Applied
Microbiology and Biotechnology Laboratory, College of Bioresource
Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Masazumi Tamura
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Takashi Arai
- Daicel
Corporation, 1-8-23,
Konan, Minato-ku, Tokyo 108-8230, Japan
- Industry-Academia
Collaborative Research Laboratory, Kanazawa
University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Keiichi Tomishige
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
39
|
Zheng A, Huang Z, Wei G, Zhao K, Jiang L, Zhao Z, Tian Y, Li H. Controlling Deoxygenation Pathways in Catalytic Fast Pyrolysis of Biomass and Its Components by Using Metal-Oxide Nanocomposites. iScience 2020; 23:100814. [PMID: 31954322 PMCID: PMC6962703 DOI: 10.1016/j.isci.2019.100814] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Selectively breaking the C-O bonds within biomass during catalytic fast pyrolysis (CFP) is desired, but extremely challenging. Herein, we develop a series of metal-oxide nanocomposites composed of W, Mo, Zr, Ti, or Al. It is demonstrated that the nanocomposites of WO3-TiO2-Al2O3 exhibit the highest deoxygenation ability during CFP of lignin, which can compete with the commercial HZSM-5 catalyst. The nanocomposites can selectively cleave the C-O bonds within lignin-derived phenols to form aromatics by direct demethoxylation and subsequent dehydration. Moreover, the nanocomposites can also achieve the selective breaking of the C-O bonds within xylan and cellulose to form furans by dehydration. The Brønsted and Lewis acid sites on the nanocomposites can be responsible for the deoxygenation of lignin and polysaccharides, respectively. This study provides new insights for the rational design of multifunctional catalysts that are capable of simultaneously breaking the C-O bonds within lignin and polysaccharides.
Collapse
Affiliation(s)
- Anqing Zheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 523000, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhen Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Guoqiang Wei
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Kun Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Liqun Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zengli Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Yuanyu Tian
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Haibin Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
40
|
Nikahd M, Mikusek J, Banwell MG, Yu LJ, Coote ML, Gardiner MG. Further, Small-Molecule Pyrolysis Products Derived from Chitin. Aust J Chem 2020. [DOI: 10.1071/ch20172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In an ongoing study of the products formed on pyrolysis of chitin (4) under a range of conditions, we now detail the isolation and characterisation of the crystalline and hitherto undetected pyridine N-oxide 18 and enamide 19. Pathways for the formation of these products have been proposed and subjected to both experimental and computational assessment.
Collapse
|
41
|
Tamura M, Nakagawa Y, Tomishige K. Reduction of sugar derivatives to valuable chemicals: utilization of asymmetric carbons. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00654h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent progress on non-furfural routes from sugar derivatives to valuable chemicals including chiral chemicals was reviewed.
Collapse
Affiliation(s)
- Masazumi Tamura
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
42
|
Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation. ADVANCES IN CATALYSIS 2020. [DOI: 10.1016/bs.acat.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Siu TC, Silva I, Lunn MJ, John A. Influence of the pendant arm in deoxydehydration catalyzed by dioxomolybdenum complexes supported by amine bisphenolate ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj02151b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum complexes devoid of a strongly coordinating pendant arm result in enhanced catalytic activity.
Collapse
Affiliation(s)
- Timothy C. Siu
- Chemistry and Biochemistry Department
- California State Polytechnic University
- Pomona
- USA
| | - Israel Silva
- Chemistry and Biochemistry Department
- California State Polytechnic University
- Pomona
- USA
| | - Maiko J. Lunn
- Chemistry and Biochemistry Department
- California State Polytechnic University
- Pomona
- USA
| | - Alex John
- Chemistry and Biochemistry Department
- California State Polytechnic University
- Pomona
- USA
| |
Collapse
|
44
|
Tran R, Kilyanek SM. Deoxydehydration of polyols catalyzed by a molybdenum dioxo-complex supported by a dianionic ONO pincer ligand. Dalton Trans 2019; 48:16304-16311. [PMID: 31621730 DOI: 10.1039/c9dt03759d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deoxydehydration (DODH) is the net reduction of diols and polyols to alkenes or dienes and water. Molybdenum cis-dioxo bis-phenolate ONO complexes were synthesized and have been shown to be active for DODH. Catalysts were screened for activity at 150-190 °C, and appreciable yields of up to 59% were obtained. PPh3, Na2SO3, Zn, C, 3-octanol and 2-propanol were screened as reductants. Additionally, the reactivities of a variety of diols were screened. With (R,R)-(+)-hydrobenzoin as substrate, DODH occurs via a mechanism where reduction of the Mo catalyst is a result of diol oxidation to form two equivalents of aldehyde. These reactions result in complete conversion and near quantitative yields of trans-stilbene and benzaldehyde.
Collapse
Affiliation(s)
- Randy Tran
- University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
45
|
DeNike KA, Kilyanek SM. Deoxydehydration of vicinal diols by homogeneous catalysts: a mechanistic overview. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191165. [PMID: 31827851 PMCID: PMC6894556 DOI: 10.1098/rsos.191165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Deoxydehydration (DODH) is an important reaction for the upconversion of biomass-derived polyols to commodity chemicals such as alkenes and dienes. DODH can be performed by a variety of early metal-oxo catalysts incorporating Re, Mo and V. The varying reduction methods used in the DODH catalytic cycle impact the product distribution, reaction mechanism and the overall yield of the reaction. This review surveys the reduction methods commonly used in homogeneous DODH catalyst systems and their impacts on yield and reaction conditions.
Collapse
Affiliation(s)
| | - Stefan M. Kilyanek
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR 727001, USA
| |
Collapse
|
46
|
Wang T, Tamura M, Nakagawa Y, Tomishige K. Preparation of Highly Active Monometallic Rhenium Catalysts for Selective Synthesis of 1,4-Butanediol from 1,4-Anhydroerythritol. CHEMSUSCHEM 2019; 12:3615-3626. [PMID: 31134740 DOI: 10.1002/cssc.201900900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Indexed: 05/23/2023]
Abstract
1,4-Butanediol can be produced from 1,4-anhydroerythritol through the co-catalysis of monometallic mixed catalysts (ReOx /CeO2 +ReOx /C) in the one-pot reduction with H2 . The highest yield of 1,4-butanediol was over 80 %, which is similar to the value obtained over ReOx -Au/CeO2 +ReOx /C catalysts. Mixed catalysts of CeO2 +ReOx /C showed almost the same performance, giving 89 % yield of 1,4-butanediol. The reactivity trends of possible intermediates suggest that the reaction mechanism over ReOx /CeO2 +ReOx /C is similar to that over ReOx -Au/CeO2 +ReOx /C: deoxydehydration (DODH) of 1,4-anhydroerythritol to 2,5-dihydrofuran over ReOx species on the CeO2 support with the promotion of H2 activation by ReOx /C, isomerization of 2,5-dihydrofuran to 2,3-dihydrofuran catalyzed by ReOx on the C support, hydration of 2,3-dihydrofuran catalyzed by C, and hydrogenation to 1,4-butanediol catalyzed by ReOx /C. The reaction order of conversion of 1,4-anhydroerythritol with respect to H2 pressure is almost zero and this indicates that the rate-determining step is the formation of 2,5-dihydrofuran from the coordinated substrate with reduced Re in the DODH step. The activity of ReOx /CeO2 +ReOx /C is higher than that of ReOx -Au/CeO2 +ReOx /C, which is probably related to the reducibility of ReOx /C and the mobility of the Re species between the supports. High-valent Re species such as Re7+ on the CeO2 and C supports are mobile in the solvent; however, low-valent Re species, including metallic Re species, have much lower mobility. Metallic Re and cationic low-valent Re species with high reducibility and low mobility can be present on the carbon support as a trigger for H2 activation and promoter of the reduction of Re species on CeO2 . The presence of noble metals such as Au can enhance the reducibility through the activation of H2 molecules on the noble metal and the formation of spilt-over hydrogen over noble metal/CeO2 , as indicated by H2 temperature-programmed reduction. The higher reducibility of ReOx -Au/CeO2 lowers the DODH activity of ReOx -Au/CeO2 +ReOx /C in comparison with ReOx /CeO2 +ReOx /C by restricting the movement of Re species from C to CeO2 .
Collapse
Affiliation(s)
- Tianmiao Wang
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| |
Collapse
|
47
|
Jiang H, Lu R, Si X, Luo X, Xu J, Lu F. Single‐Site Molybdenum Catalyst for the Synthesis of Fumarate. ChemCatChem 2019. [DOI: 10.1002/cctc.201900332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huifang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Rui Lu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
| | - Xiaoqin Si
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Xiaolin Luo
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jie Xu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
| | - Fang Lu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
| |
Collapse
|
48
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
49
|
Shakeri J, Hadadzadeh H, Farrokhpour H, Weil M. A comparative study of the counterion effect on the perrhenate-catalyzed deoxydehydration reaction. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Cao J, Tamura M, Nakagawa Y, Tomishige K. Direct Synthesis of Unsaturated Sugars from Methyl Glycosides. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00589] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji Cao
- Department of Applied Chemistry, School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi 980−8579, Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi 980−8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi 980−8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi 980−8579, Japan
| |
Collapse
|