1
|
Gerstberger T, Berger H, Büttner FH, Gmachl M, Kessler D, Koegl M, Lucas S, Martin LJ, Mayer M, McConnell DB, Mitzner S, Scholz G, Treu M, Wolkerstorfer B, Zahn S, Zak KM, Jaeger PA, Ettmayer P. Chasing Red Herrings: Palladium Metal Salt Impurities Feigning KRAS Activity in Biochemical Assays. J Med Chem 2024; 67:11701-11711. [PMID: 39009041 DOI: 10.1021/acs.jmedchem.3c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Identifying promising chemical starting points for small molecule inhibitors of active, GTP-loaded KRAS "on" remains of great importance to clinical oncology and represents a significant challenge in medicinal chemistry. Here, we describe broadly applicable learnings from a KRAS hit finding campaign: While we initially identified KRAS inhibitors in a biochemical high-throughput screen, we later discovered that compound potencies were all but assay artifacts linked to metal salts interfering with KRAS AlphaScreen assay technology. The source of the apparent biochemical KRAS inhibition was ultimately traced to unavoidable palladium impurities from chemical synthesis. This discovery led to the development of a Metal Ion Interference Set (MIIS) for up-front assay development and testing. Profiling of the MIIS across 74 assays revealed a reduced interference liability of label-free biophysical assays and, as a result, provided general estimates for luminescence- and fluorescence-based assay susceptibility to metal salt interference.
Collapse
Affiliation(s)
- Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Helmut Berger
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Frank H Büttner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach, Germany
| | - Michael Gmachl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Simon Lucas
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Laetitia J Martin
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Sophie Mitzner
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Guido Scholz
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Matthias Treu
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Bernhard Wolkerstorfer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Stephan Zahn
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Krzysztof M Zak
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Philipp A Jaeger
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| |
Collapse
|
2
|
Girard E, Lopes P, Spoerner M, Dhaussy AC, Prangé T, Kalbitzer HR, Colloc'h N. High Pressure Promotes Binding of the Allosteric Inhibitor Zn 2+-Cyclen in Crystals of Activated H-Ras. Chemistry 2024; 30:e202400304. [PMID: 38647362 DOI: 10.1002/chem.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
In this work, we experimentally investigate the potency of high pressure to drive a protein toward an excited state where an inhibitor targeted for this state can bind. Ras proteins are small GTPases cycling between active GTP-bound and inactive GDP-bound states. Various states of GTP-bound Ras in active conformation coexist in solution, amongst them, state 2 which binds to effectors, and state 1, weakly populated at ambient conditions, which has a low affinity for effectors. Zn2+-cyclen is an allosteric inhibitor of Ras protein, designed to bind specifically to the state 1. In H-Ras(wt).Mg2+.GppNHp crystals soaked with Zn2+-cyclen, no binding could be observed, as expected in the state 2 conformation which is the dominant state at ambient pressure. Interestingly, Zn2+-cyclen binding is observed at 500 MPa pressure, close to the nucleotide, in Ras protein that is driven by pressure to a state 1 conformer. The unknown binding mode of Zn2+-cyclen to H-Ras can thus be fully characterized in atomic details. As a more general conjunction from our study, high pressure x-ray crystallography turns out to be a powerful method to induce transitions allowing drug binding in proteins that are in low-populated conformations at ambient conditions, enabling the design of specific inhibitors.
Collapse
Affiliation(s)
- Eric Girard
- CEA, CNRS, IBS, Univ. Grenoble Alpes, Grenoble, France
| | - Pedro Lopes
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Spoerner
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | | | - Thierry Prangé
- CiTCoM, CNRS, Faculté de Pharmacie, Université de Paris-Cité, Paris, France
| | - Hans Robert Kalbitzer
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Nathalie Colloc'h
- ISTCT UMR6030, Centre Cyceron, CNRS - Université de Caen Normandie - Normandie Université, Caen, France
| |
Collapse
|
3
|
Sharma AK, Pei J, Yang Y, Dyba M, Smith B, Rabara D, Larsen EK, Lightstone FC, Esposito D, Stephen AG, Wang B, Beltran PJ, Wallace E, Nissley DV, McCormick F, Maciag AE. Revealing the mechanism of action of a first-in-class covalent inhibitor of KRASG12C (ON) and other functional properties of oncogenic KRAS by 31P NMR. J Biol Chem 2024; 300:105650. [PMID: 38237681 PMCID: PMC10877953 DOI: 10.1016/j.jbc.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(β,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.
Collapse
Affiliation(s)
- Alok K Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA.
| | - Jun Pei
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Yue Yang
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Marcin Dyba
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Brian Smith
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Erik K Larsen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Felice C Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Bin Wang
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Pedro J Beltran
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Eli Wallace
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA; BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Anna E Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA.
| |
Collapse
|
4
|
Chakrabarti M, Tan YS, Balius TE. Considerations Around Structure-Based Drug Discovery for KRAS Using DOCK. Methods Mol Biol 2024; 2797:67-90. [PMID: 38570453 DOI: 10.1007/978-1-0716-3822-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Molecular docking is a popular computational tool in drug discovery. Leveraging structural information, docking software predicts binding poses of small molecules to cavities on the surfaces of proteins. Virtual screening for ligand discovery is a useful application of docking software. In this chapter, using the enigmatic KRAS protein as an example system, we endeavor to teach the reader about best practices for performing molecular docking with UCSF DOCK. We discuss methods for virtual screening and docking molecules on KRAS. We present the following six points to optimize our docking setup for prosecuting a virtual screen: protein structure choice, pocket selection, optimization of the scoring function, modification of sampling spheres and sampling procedures, choosing an appropriate portion of chemical space to dock, and the choice of which top scoring molecules to pick for purchase.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Y Stanley Tan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
5
|
Pagba CV, Gupta AK, Gorfe AA. Small-Molecule Inhibition of KRAS through Conformational Selection. ACS OMEGA 2023; 8:31419-31426. [PMID: 37663463 PMCID: PMC10468774 DOI: 10.1021/acsomega.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Mutations in KRAS account for about 20% of human cancers. Despite the major progress in recent years toward the development of KRAS inhibitors, including the discovery of covalent inhibitors of the G12C KRAS variant for the treatment of non-small-cell lung cancer, much work remains to be done to discover broad-acting inhibitors to treat many other KRAS-driven cancers. In a previous report, we showed that a 308.4 Da small-molecule ligand [(2R)-2-(N'-(1H-indole-3-carbonyl)hydrazino)-2-phenyl-acetamide] binds to KRAS with low micro-molar affinity [Chem. Biol. Drug Des.2019; 94(2):1441-1456]. Binding of this ligand, which we call ACA22, to the p1 pocket of KRAS and its interactions with residues at beta-strand 1 and the switch loops have been supported by data from nuclear magnetic resonance spectroscopy and microscale thermophoresis experiments. However, the inhibitory potential of the compound was not demonstrated. Here, we show that ACA22 inhibits KRAS-mediated signal transduction in cells expressing wild type (WT) and G12D mutant KRAS and reduces levels of guanosine triphosphate-loaded WT KRAS more effectively than G12D KRAS. We ruled out the direct effect on nucleotide exchange or effector binding as possible mechanisms of inhibition using a variety of biophysical assays. Combining these observations with binding data that show comparable affinities of the compound for the active and inactive forms of the mutant but not the WT, we propose conformational selection as a possible mechanism of action of ACA22.
Collapse
Affiliation(s)
- Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
6
|
Chao FA, Dharmaiah S, Taylor T, Messing S, Gillette W, Esposito D, Nissley DV, McCormick F, Byrd RA, Simanshu DK, Cornilescu G. Insights into the Cross Talk between Effector and Allosteric Lobes of KRAS from Methyl Conformational Dynamics. J Am Chem Soc 2022; 144:4196-4205. [PMID: 35213144 PMCID: PMC10430694 DOI: 10.1021/jacs.2c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-μs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.
Collapse
Affiliation(s)
- Fa-An Chao
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, United States
| | - R Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| |
Collapse
|
7
|
Gorfe AA, Cho KJ. Approaches to inhibiting oncogenic K-Ras. Small GTPases 2021; 12:96-105. [PMID: 31438765 PMCID: PMC7849769 DOI: 10.1080/21541248.2019.1655883] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Activating somatic K-Ras mutations are associated with >15% all human tumors and up to 90% of specific tumor types such as pancreatic cancer. Successfully inhibiting abnormal K-Ras signaling would therefore be a game changer in cancer therapy. However, K-Ras has long been considered an undruggable target for various reasons. This view is now changing by the discovery of allosteric inhibitors that directly target K-Ras and inhibit its functions, and by the identification of new mechanisms to dislodge it from the plasma membrane and thereby abrogate its cellular activities. In this review, we will discuss recent progresses and challenges to inhibiting aberrant K-Ras functions by these two approaches. We will also provide a broad overview of other approaches such as inhibition of K-Ras effectors, and offer a brief perspective on the way forward.
Collapse
Affiliation(s)
- Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Programs of Biochemistry & Cell and Therapeutics & Pharmacology, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
8
|
Pálfy G, Menyhárd DK, Perczel A. Dynamically encoded reactivity of Ras enzymes: opening new frontiers for drug discovery. Cancer Metastasis Rev 2020; 39:1075-1089. [PMID: 32815102 PMCID: PMC7680338 DOI: 10.1007/s10555-020-09917-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Decoding molecular flexibility in order to understand and predict biological processes-applying the principles of dynamic-structure-activity relationships (DSAR)-becomes a necessity when attempting to design selective and specific inhibitors of a protein that has overlapping interaction surfaces with its upstream and downstream partners along its signaling cascade. Ras proteins are molecular switches that meet this definition perfectly. The close-lying P-loop and the highly flexible switch I and switch II regions are the site of nucleotide-, assisting-, and effector-protein binding. Oncogenic mutations that also appear in this region do not cause easily characterized overall structural changes, due partly to the inherent conformational heterogeneity and pliability of these segments. In this review, we present an overview of the results obtained using approaches targeting Ras dynamics, such as nuclear magnetic resonance (NMR) measurements and experiment-based modeling calculations (mostly molecular dynamics (MD) simulations). These methodologies were successfully used to decipher the mutant- and isoform-specific nature of certain transient states, far-lying allosteric sites, and the internal interaction networks, as well as the interconnectivity of the catalytic and membrane-binding regions. This opens new therapeutic potential: the discovered interaction hotspots present hitherto not targeted, selective sites for drug design efforts in diverse locations of the protein matrix.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| |
Collapse
|
9
|
Chen X, Gao H, Long D. Millisecond Allosteric Dynamics of Activated Ras Reproduced with a Slowly Hydrolyzable GTP Analogue. Chembiochem 2020; 22:1079-1083. [PMID: 33140496 DOI: 10.1002/cbic.202000698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Indexed: 12/29/2022]
Abstract
The millisecond timescale dynamics of activated Ras transiently sample a low-populated conformational state that has distinct surface property from the major state and represents a promising target for binding of small-molecule compounds. To avoid the complications of hydrolysis, dynamics and other properties of active Ras have so far been routinely investigated by using non-hydrolyzable GTP analogues, which, however, were previously reported to alter both the kinetics and distribution of the conformational exchange. In this study, we quantitatively measured and validated the internal dynamics of Ras complexed with a slowly hydrolyzable GTP analogue, GTPγS, which increases the lifetime of active Ras by 23 times relative to that of native GTP. It was found that GTPγS, in addition to its better mimicking of the exchange kinetics than the commonly used non-hydrolyzable analogues GppNHp and GppCH2 p, can rigorously reproduce the natural dynamics network in active Ras, thus indicating its fitness for use in the development of allosteric inhibitors.
Collapse
Affiliation(s)
- Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China
| | - Hexuan Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China.,Department of Chemistry, University of Science and Technology of China Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Marshall CB, KleinJan F, Gebregiworgis T, Lee KY, Fang Z, Eves BJ, Liu NF, Gasmi-Seabrook GMC, Enomoto M, Ikura M. NMR in integrated biophysical drug discovery for RAS: past, present, and future. JOURNAL OF BIOMOLECULAR NMR 2020; 74:531-554. [PMID: 32804298 DOI: 10.1007/s10858-020-00338-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ben J Eves
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ningdi F Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
11
|
How to make an undruggable enzyme druggable: lessons from ras proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020. [PMID: 32951811 DOI: 10.1016/bs.apcsb.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Significant advances have been made toward discovering allosteric inhibitors for challenging drug targets such as the Ras family of membrane-associated signaling proteins. Malfunction of Ras proteins due to somatic mutations is associated with up to a quarter of all human cancers. Computational techniques have played critical roles in identifying and characterizing allosteric ligand-binding sites on these proteins, and to screen ligand libraries against those sites. These efforts, combined with a wide range of biophysical, structural, biochemical and cell biological experiments, are beginning to yield promising inhibitors to treat malignancies associated with mutated Ras proteins. In this chapter, we discuss some of these developments and how the lessons learned from Ras might be applied to similar other challenging drug targets.
Collapse
|
12
|
In silico and saturation transfer difference NMR approaches to unravel the binding mode of an andrographolide derivative to K-Ras oncoprotein. Future Med Chem 2020; 12:1611-1631. [PMID: 32892640 DOI: 10.4155/fmc-2020-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Andrographolide and its benzylidene derivatives, SRJ09 and SRJ23, potentially bind oncogenic K-Ras to exert anticancer activity. Their molecular interactions with K-Ras oncoproteins that lead to effective biological activity are of major interest. Methods & results: In silico docking and molecular dynamics simulation were performed using Glide and Desmond, respectively; while saturation transfer difference NMR was performed using GDP-bound K-RasG12V. SRJ23 was found to bind strongly and selectively to K-RasG12V, by anchoring to a binding pocket (namely p2) principally via hydrogen bond and hydrophobic interactions. The saturation transfer difference NMR analysis revealed the proximity of protons of functional moieties in SRJ23 to K-RasG12V, suggesting positive binding. Conclusion: SRJ23 binds strongly and interacts stably with K-RasG12V to exhibit its inhibitory activity.
Collapse
|
13
|
Beck Erlach M, Koehler J, Munte CE, Kremer W, Crusca E, Kainosho M, Kalbitzer HR. Pressure dependence of side chain 1H and 15N-chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH 2. JOURNAL OF BIOMOLECULAR NMR 2020; 74:381-399. [PMID: 32572797 PMCID: PMC7508751 DOI: 10.1007/s10858-020-00326-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
For interpreting the pressure induced shifts of resonance lines of folded as well as unfolded proteins the availability of data from well-defined model systems is indispensable. Here, we report the pressure dependence of 1H and 15N chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx is one of the 20 canonical amino acids) measured at 800 MHz proton frequency. As observed earlier for other nuclei the chemical shifts of the side chain nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The pressure response is described by a second degree polynomial with the pressure coefficients B1 and B2 that are dependent on the atom type and type of amino acid studied. A number of resonances could be assigned stereospecifically including the 1H and 15N resonances of the guanidine group of arginine. In addition, stereoselectively isotope labeled SAIL amino acids were used to support the stereochemical assignments. The random-coil pressure coefficients are also dependent on the neighbor in the sequence as an analysis of the data shows. For Hα and HN correction factors for different amino acids were derived. In addition, a simple correction of compression effects in thermodynamic analysis of structural transitions in proteins was derived on the basis of random-coil pressure coefficients.
Collapse
Affiliation(s)
- Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Joerg Koehler
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Claudia E Munte
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Edson Crusca
- Physics Institute of São Carlos, University of São Paulo, São Carlos, 13566-590, Brazil
| | - Masatsune Kainosho
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
14
|
Liu D, Chen X, Long D. NMR-Derived Conformational Ensemble of State 1 of Activated Ras Reveals Insights into a Druggable Pocket. J Phys Chem Lett 2020; 11:3642-3646. [PMID: 32302142 DOI: 10.1021/acs.jpclett.0c00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The lack of apparent pockets in the ground conformation of Ras has long challenged the rational design of inhibitors against this oncogenic protein. The sparsely populated, transiently formed state 1 of activated Ras, on the other hand, shows appreciable surface roughness and is increasingly recognized as a potential target for drug discovery. State 1, however, is extremely flexible, and a static structure cannot fully unveil its conformational space that can be exploited for drug design. Here, we present a conformational ensemble of state 1 that was derived using chemical shift-based modeling. The ensemble reveals the intrinsic plasticity of a druggable pocket in state 1 and demonstrates the mechanism of conformational selection for inhibitor recognition. The large set of structural templates in the ensemble, providing a comprehensive description of thermally accessible pocket conformations, is expected to significantly aid the rational design of anti-Ras drugs.
Collapse
Affiliation(s)
- Dan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
15
|
Li FY, Zhang ZF, Voss S, Wu YW, Zhao YF, Li YM, Chen YX. Inhibition of K-Ras4B-plasma membrane association with a membrane microdomain-targeting peptide. Chem Sci 2019; 11:826-832. [PMID: 34123058 PMCID: PMC8145430 DOI: 10.1039/c9sc04726c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The association of K-Ras4B protein with plasma membrane (PM) is required for its signaling activity. Thus, direct inhibition of K-Ras4B–PM interaction could be a potential anti-Ras therapeutic strategy. However, it remains challenging to modulate such protein–PM interaction. Based on Ras isoform-specific PM microdomain localization patterns, we have developed a potent and isoform-selective peptide inhibitor, Memrasin, for detachment of K-Ras4B from the PM. Memrasin is one of the first direct inhibitors of K-Ras4B–PM interaction, and consists of a membrane ld region-binding sequence derived from the C-terminal region of K-Ras4B and an endosome-escape enhancing motif that can aggregate on membrane. It forms peptide-enriched domains in the ld region, abrogates the tethering of K-Ras4B to the PM and accordingly impairs Ras signaling activity, thereby efficiently decreasing the viability of several human lung cancer cells in a dose-responsive and K-Ras dependent manner. Memrasin provides a useful tool for exploring the biological function of K-Ras4B on or off the PM and a potential starting point for further development into anti-Ras therapeutics. A membrane ld microdomain-targeting hybrid peptide displays potent inhibition effect toward K-Ras4B-plasma membrane interaction and impairs Ras signaling output.![]()
Collapse
Affiliation(s)
- Fang-Yi Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zhen-Feng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences No. 1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Stephanie Voss
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany.,Department of Chemistry, Umeå University 90187 Umeå Sweden
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
16
|
Gupta AK, Wang X, Pagba CV, Prakash P, Sarkar-Banerjee S, Putkey J, Gorfe AA. Multi-target, ensemble-based virtual screening yields novel allosteric KRAS inhibitors at high success rate. Chem Biol Drug Des 2019; 94:1441-1456. [PMID: 30903639 DOI: 10.1111/cbdd.13519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Abstract
RAS mutations account for >15% of all human tumors, and of these ~85% are due to mutations in a particular RAS gene: KRAS. Recent studies revealed that KRAS harbors four druggable allosteric sites. Here, we have (a) used molecular simulations to generate ensembles of wild type and four major oncogenic KRAS mutants (G12V, G12D, G13D, and Q61H); (b) characterized the druggability of each allosteric pocket in each protein; (c) conducted extensive ensemble-based virtual screening using pocket-tailored ligand libraries; (d) prioritized hits through hierarchical postdocking analysis; and (e) validated predicted hits with NMR. Of the 785 diverse potential hits identified by our in silico analysis, we tested 90 for their ability to bind KRAS using NMR and found that nine cause backbone amide chemical shift perturbations of residues near the functionally responsive switch loops, suggesting potential binding. We conducted detailed biophysical analyses on a novel indole-based compound to demonstrate the potential of our workflow to yield lead compounds. We believe the detailed information documented in this work regarding the druggability profile of each allosteric site and the chemical fingerprints of compounds that target them will serve as vital resources for future structure-based drug design efforts against KRAS, a high-value target for cancer therapy.
Collapse
Affiliation(s)
- Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Suparna Sarkar-Banerjee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - John Putkey
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
17
|
Chen X, Yao H, Wang H, Mao Y, Liu D, Long D. Extending the Lifetime of Native GTP‐Bound Ras for Site‐Resolved NMR Measurements: Quantifying the Allosteric Dynamics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Haijie Yao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Yunyun Mao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Dan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life SciencesUniversity of Science and Technology of China 443 Huangshan Street Hefei Anhui 230027 China
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui China
| |
Collapse
|
18
|
Chen X, Yao H, Wang H, Mao Y, Liu D, Long D. Extending the Lifetime of Native GTP-Bound Ras for Site-Resolved NMR Measurements: Quantifying the Allosteric Dynamics. Angew Chem Int Ed Engl 2019; 58:2730-2733. [PMID: 30681242 DOI: 10.1002/anie.201812902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 12/18/2022]
Abstract
Characterization of native GTP-bound Ras is important for an appreciation of its cellular signaling and for the design of inhibitors, which however has been depressed by its intrinsic instability. Herein, an effective approach for extending the lifetime of Ras⋅GTP samples by exploiting the active role of Son of Sevenless (Sos) is demonstrated that sustains the activated state of Ras. This approach, combined with a postprocessing method that suppresses residual Ras⋅GDP signals, is applied to the site-resolved NMR measurement of the allosteric dynamics of Ras⋅GTP. The observed network of concerted motions well covers the recently identified allosteric inhibitor-binding pockets, but the motions are more confined than those of Ras⋅GppNHp, advocating the use of native GTP for development of allosteric inhibitors. The Sos-based approach is anticipated to generally facilitate experiments on active Ras when native GTP is preferred.
Collapse
Affiliation(s)
- Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Haijie Yao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Yunyun Mao
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Dan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale & School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
19
|
Li Y, Zhang Y, Großerüschkamp F, Stephan S, Cui Q, Kötting C, Xia F, Gerwert K. Specific Substates of Ras To Interact with GAPs and Effectors: Revealed by Theoretical Simulations and FTIR Experiments. J Phys Chem Lett 2018; 9:1312-1317. [PMID: 29488771 PMCID: PMC6692134 DOI: 10.1021/acs.jpclett.8b00342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oncogenic Ras protein adopts various specific conformational states to execute its function in signal transduction. The large number of Ras structures obtained from X-ray and NMR experiments illustrates the diverse conformations that Ras adopts. It is difficult, however, to connect specific structural features with Ras functions. We report the free-energy landscape of Ras·GTP based on extensive explicit solvent simulations. The free-energy map clearly shows that the functional state 2 of Ras·GTP in fact has two distinct substates, denoted here as "Tyr32in" and "Tyr32out". Unbiased MD simulations show that the two substrates interconvert on the submicrosecond scale in solution, pointing to a novel mechanism for Ras·GTP to selectively interact with GAPs and effectors. This proposal is further supported by time-resolved FTIR experiments, which demonstrate that Tyr32 destabilizes the Ras·GAP complex and facilitates an efficient termination of Ras signaling.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
- School of Information Science and Engineering , Shandong Agricultural University , Taian 271018 , China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | | | - Sara Stephan
- Department of Biophysics , Ruhr-University Bochum , ND 04 North , 44780 Bochum , Germany
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Carsten Kötting
- Department of Biophysics , Ruhr-University Bochum , ND 04 North , 44780 Bochum , Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China
| | - Klaus Gerwert
- Department of Biophysics , Ruhr-University Bochum , ND 04 North , 44780 Bochum , Germany
| |
Collapse
|
20
|
Beck Erlach M, Koehler J, Crusca E, Munte CE, Kainosho M, Kremer W, Kalbitzer HR. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH 2. JOURNAL OF BIOMOLECULAR NMR 2017; 69:53-67. [PMID: 28913741 DOI: 10.1007/s10858-017-0134-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For HN, N and Cα the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.
Collapse
Affiliation(s)
- Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Joerg Koehler
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Edson Crusca
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060, Brazil
| | - Claudia E Munte
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
- Physics Institute of São Carlos, University of São Paulo, São Carlos, 13566-590, Brazil
| | - Masatsune Kainosho
- Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
21
|
Zhang Y, Cao Z, Xia F. Construction of ultra-coarse-grained model of protein with a Gō-like potential. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW, Song KH, Kim YS. Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat Commun 2017; 8:15090. [PMID: 28489072 PMCID: PMC5436137 DOI: 10.1038/ncomms15090] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/28/2017] [Indexed: 12/24/2022] Open
Abstract
Oncogenic Ras mutants, frequently detected in human cancers, are high-priority anticancer drug targets. However, direct inhibition of oncogenic Ras mutants with small molecules has been extremely challenging. Here we report the development of a human IgG1 format antibody, RT11, which internalizes into the cytosol of living cells and selectively binds to the activated GTP-bound form of various oncogenic Ras mutants to block the interactions with effector proteins, thereby suppressing downstream signalling and exerting anti-proliferative effects in a variety of tumour cells harbouring oncogenic Ras mutants. When systemically administered, an RT11 variant with an additional tumour-associated integrin binding moiety for tumour tissue targeting significantly inhibits the in vivo growth of oncogenic Ras-mutated tumour xenografts in mice, but not wild-type Ras-harbouring tumours. Our results demonstrate the feasibility of developing therapeutic antibodies for direct targeting of cytosolic proteins that are inaccessible using current antibody technology.
Collapse
Affiliation(s)
- Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dong-Ki Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Keunok Jung
- Priority Research Center for Molecular Science &Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jeomil Bae
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ki-Hoon Song
- Department of Allergy and Clinical Immunology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
23
|
Jansen JM, Wartchow C, Jahnke W, Fong S, Tsang T, Pfister K, Zavorotinskaya T, Bussiere D, Cheng JM, Crawford K, Dai Y, Dove J, Fang E, Feng Y, Florent JM, Fuller J, Gossert AD, Hekmat-Nejad M, Henry C, Klopp J, Lenahan WP, Lingel A, Ma S, Meyer A, Mishina Y, Narberes J, Pardee G, Ramurthy S, Rieffel S, Stuart D, Subramanian S, Tandeske L, Widger S, Widmer A, Winterhalter A, Zaror I, Hardy S. Inhibition of prenylated KRAS in a lipid environment. PLoS One 2017; 12:e0174706. [PMID: 28384226 PMCID: PMC5383040 DOI: 10.1371/journal.pone.0174706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.
Collapse
Affiliation(s)
- Johanna M. Jansen
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
- * E-mail:
| | - Charles Wartchow
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Wolfgang Jahnke
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Susan Fong
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Tiffany Tsang
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Keith Pfister
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Tatiana Zavorotinskaya
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Dirksen Bussiere
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Jan Marie Cheng
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Kenneth Crawford
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yumin Dai
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Jeffrey Dove
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Eric Fang
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yun Feng
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jean-Michel Florent
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - John Fuller
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Alvar D. Gossert
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mohammad Hekmat-Nejad
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Chrystèle Henry
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Julia Klopp
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - William P. Lenahan
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Andreas Lingel
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Sylvia Ma
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Arndt Meyer
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Yuji Mishina
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jamie Narberes
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Gwynn Pardee
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Savithri Ramurthy
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Sebastien Rieffel
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Darrin Stuart
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Sharadha Subramanian
- Department of Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Laura Tandeske
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Stephania Widger
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Armin Widmer
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Aurelie Winterhalter
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabel Zaror
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Stephen Hardy
- Department of Oncology, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| |
Collapse
|
24
|
Zhang Y, Cao Z, Zhang JZ, Xia F. Performance Comparison of Systematic Methods for Rigorous Definition of Coarse-Grained Sites of Large Biomolecules. J Chem Inf Model 2017; 57:214-222. [PMID: 28128949 DOI: 10.1021/acs.jcim.6b00683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Construction of coarse-grained (CG) models for large biomolecules used for multiscale simulations demands a rigorous definition of CG sites for them. Several coarse-graining methods such as the simulated annealing and steepest descent (SASD) based on the essential dynamics coarse-graining (ED-CG) or the stepwise local iterative optimization (SLIO) based on the fluctuation maximization coarse-graining (FM-CG), were developed to do it. However, the practical applications of these methods such as SASD based on ED-CG are subject to limitations because they are too expensive. In this work, we extend the applicability of ED-CG by combining it with the SLIO algorithm. A comprehensive comparison of optimized results and accuracy of various algorithms based on ED-CG show that SLIO is the fastest as well as the most accurate algorithm among them. ED-CG combined with SLIO could give converged results as the number of CG sites increases, which demonstrates that it is another efficient method for coarse-graining large biomolecules. The construction of CG sites for Ras protein by using MD fluctuations demonstrates that the CG sites derived from FM-CG can reflect the fluctuation properties of secondary structures in Ras accurately.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University , Xiamen 361005, China.,School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University , Xiamen 361005, China
| | - John Zenghui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai , Shanghai 200062, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry, NYU Shanghai , Shanghai 200062, China
| |
Collapse
|
25
|
Keeton AB, Salter EA, Piazza GA. The RAS-Effector Interaction as a Drug Target. Cancer Res 2017; 77:221-226. [PMID: 28062402 DOI: 10.1158/0008-5472.can-16-0938] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/22/2016] [Accepted: 10/08/2016] [Indexed: 12/21/2022]
Abstract
About a third of all human cancers harbor mutations in one of the K-, N-, or HRAS genes that encode an abnormal RAS protein locked in a constitutively activated state to drive malignant transformation and tumor growth. Despite more than three decades of intensive research aimed at the discovery of RAS-directed therapeutics, there are no FDA-approved drugs that are broadly effective against RAS-driven cancers. Although RAS proteins are often said to be "undruggable," there is mounting evidence suggesting it may be feasible to develop direct inhibitors of RAS proteins. Here, we review this evidence with a focus on compounds capable of inhibiting the interaction of RAS proteins with their effectors that transduce the signals of RAS and that drive and sustain malignant transformation and tumor growth. These reports of direct-acting RAS inhibitors provide valuable insight for further discovery and development of clinical candidates for RAS-driven cancers involving mutations in RAS genes or otherwise activated RAS proteins. Cancer Res; 77(2); 221-6. ©2017 AACR.
Collapse
Affiliation(s)
- Adam B Keeton
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama. .,ADT Pharmaceuticals Inc., Orange Beach, Alabama
| | - E Alan Salter
- Department of Chemistry, University of South Alabama, Mobile, Alabama
| | - Gary A Piazza
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,ADT Pharmaceuticals Inc., Orange Beach, Alabama
| |
Collapse
|
26
|
Spoerner M, Karl M, Lopes P, Hoering M, Loeffel K, Nuehs A, Adelsberger J, Kremer W, Kalbitzer HR. High pressure 31P NMR spectroscopy on guanine nucleotides. JOURNAL OF BIOMOLECULAR NMR 2017; 67:1-13. [PMID: 28012125 DOI: 10.1007/s10858-016-0079-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
The 31P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the 31P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH2p and GTPγS was measured in the absence and presence of Mg2+-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B 1 was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg2+·GMP and Mg2+·GppNHp the second order pressure coefficients are positive. To describe the data of Mg2+·GppCH2p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg2+ ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure 31P NMR data on free Mg2+-GDP and Mg2+-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.
Collapse
Affiliation(s)
- Michael Spoerner
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Matthias Karl
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Pedro Lopes
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Marcus Hoering
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Karoline Loeffel
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Andrea Nuehs
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Joseph Adelsberger
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Werner Kremer
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Hans Robert Kalbitzer
- Centre of Magnetic Resonance in Chemistry and Biomedicine, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
27
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Erlach MB, Koehler J, Crusca E, Kremer W, Munte CE, Kalbitzer HR. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2. JOURNAL OF BIOMOLECULAR NMR 2016; 65:65-77. [PMID: 27335085 DOI: 10.1007/s10858-016-0030-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.
Collapse
Affiliation(s)
- Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Joerg Koehler
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Edson Crusca
- Physics Institute of São Carlos, University of São Paulo, São Carlos, 13566-590, Brazil
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Claudia E Munte
- Physics Institute of São Carlos, University of São Paulo, São Carlos, 13566-590, Brazil
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
29
|
Molecular Mechanism for Conformational Dynamics of Ras·GTP Elucidated from In-Situ Structural Transition in Crystal. Sci Rep 2016; 6:25931. [PMID: 27180801 PMCID: PMC4867591 DOI: 10.1038/srep25931] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
Ras•GTP adopts two interconverting conformational states, state 1 and state 2, corresponding to inactive and active forms, respectively. However, analysis of the mechanism for state transition was hampered by the lack of the structural information on wild-type Ras state 1 despite its fundamental nature conserved in the Ras superfamily. Here we solve two new crystal structures of wild-type H-Ras, corresponding to state 1 and state 2. The state 2 structure seems to represent an intermediate of state transition and, intriguingly, the state 1 crystal is successfully derived from this state 2 crystal by regulating the surrounding humidity. Structural comparison enables us to infer the molecular mechanism for state transition, during which a wide range of hydrogen-bonding networks across Switch I, Switch II and the α3-helix interdependently undergo gross rearrangements, where fluctuation of Tyr32, translocation of Gln61, loss of the functional water molecules and positional shift of GTP play major roles. The NMR-based hydrogen/deuterium exchange experiments also support this transition mechanism. Moreover, the unveiled structural features together with the results of the biochemical study provide a new insight into the physiological role of state 1 as a stable pool of Ras•GTP in the GDP/GTP cycle of Ras.
Collapse
|
30
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
31
|
McCarthy M, Prakash P, Gorfe AA. Computational allosteric ligand binding site identification on Ras proteins. Acta Biochim Biophys Sin (Shanghai) 2016; 48:3-10. [PMID: 26487442 DOI: 10.1093/abbs/gmv100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/16/2015] [Indexed: 12/19/2022] Open
Abstract
A number of computational techniques have been proposed to expedite the process of allosteric ligand binding site identification in inherently flexible and hence challenging drug targets. Some of these techniques have been instrumental in the discovery of allosteric ligand binding sites on Ras proteins, a group of elusive anticancer drug targets. This review provides an overview of these techniques and their application to Ras proteins. A summary of molecular docking and binding site identification is provided first, followed by a more detailed discussion of two specific techniques for binding site identification in ensembles of Ras conformations generated by molecular simulations.
Collapse
Affiliation(s)
- Michael McCarthy
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
32
|
Geng QX, Cong H, Tao Z, Lindoy LF, Wei G. Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1117614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qing-Xia Geng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, P.R. China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, P.R. China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, P.R. China
| | | | - Gang Wei
- CSIRO Manufacturing Flagship, Lindfield, Australia
| |
Collapse
|
33
|
Lu S, Banerjee A, Jang H, Zhang J, Gaponenko V, Nussinov R. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site. J Biol Chem 2015; 290:28887-900. [PMID: 26453300 PMCID: PMC4661403 DOI: 10.1074/jbc.m115.664755] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.
Collapse
Affiliation(s)
- Shaoyong Lu
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China, Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | | | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jian Zhang
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China,
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, and
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Prakash P, Sayyed-Ahmad A, Gorfe AA. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins. PLoS Comput Biol 2015; 11:e1004469. [PMID: 26506102 PMCID: PMC4623977 DOI: 10.1371/journal.pcbi.1004469] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, Houston, Texas, United States of America
| | - Abdallah Sayyed-Ahmad
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, Houston, Texas, United States of America
| | - Alemayehu A. Gorfe
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Cromm PM, Spiegel J, Grossmann TN, Waldmann H. Direkte Modulation von Aktivität und Funktion kleiner GTPasen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Cromm PM, Spiegel J, Grossmann TN, Waldmann H. Direct Modulation of Small GTPase Activity and Function. Angew Chem Int Ed Engl 2015; 54:13516-37. [DOI: 10.1002/anie.201504357] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 12/19/2022]
|
37
|
Hong L, Guo Y, BasuRay S, Agola JO, Romero E, Simpson DS, Schroeder CE, Simons P, Waller A, Garcia M, Carter M, Ursu O, Gouveia K, Golden JE, Aubé J, Wandinger-Ness A, Sklar LA. A Pan-GTPase Inhibitor as a Molecular Probe. PLoS One 2015; 10:e0134317. [PMID: 26247207 PMCID: PMC4527730 DOI: 10.1371/journal.pone.0134317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/09/2015] [Indexed: 12/30/2022] Open
Abstract
Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.
Collapse
Affiliation(s)
- Lin Hong
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Yuna Guo
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Soumik BasuRay
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jacob O. Agola
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Elsa Romero
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Denise S. Simpson
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Chad E. Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Peter Simons
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Anna Waller
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Matthew Garcia
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Mark Carter
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Oleg Ursu
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Kristine Gouveia
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
| | - Jennifer E. Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas, United States of America
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Larry A. Sklar
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico Center for Molecular Discovery, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
38
|
Shima F, Matsumoto S, Yoshikawa Y, Kawamura T, Isa M, Kataoka T. Current status of the development of Ras inhibitors. J Biochem 2015; 158:91-9. [DOI: 10.1093/jb/mvv060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
|
39
|
Prakash P, Hancock JF, Gorfe AA. Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 2015; 83:898-909. [PMID: 25740554 PMCID: PMC4400267 DOI: 10.1002/prot.24786] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 01/21/2023]
Abstract
We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in nonpocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - John F. Hancock
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - Alemayehu A. Gorfe
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| |
Collapse
|
40
|
Abstract
Proteins usually exist in multiple conformational states in solution. High pressure NMR spectroscopy is a well-suited method to identify these states. In addition, these states can be characterized by their thermodynamic parameters, the free enthalpies at ambient pressure, the partial molar volumes, and the partial molar compressibility that can be obtained from the analysis of the high pressure NMR data. Two main types of states of proteins exist, functional states and folding states. There is a strong link between these two types, the functional states represent essential folding states (intermediates), other folding states may have no functional meaning (optional folding states). In this chapter, this concept is tested on the Ras protein, an important proto-oncogen in humans where all substates required by theory can be identified experimentally by high pressure NMR spectroscopy. Finally, we show how these data can be used to develop allosteric inhibitors of proteins.
Collapse
|
41
|
Abstract
Increased signaling by the small G protein Ras is found in many human cancers and is often caused by direct mutation of this protein. Hence, small-molecule attenuation of pathological Ras activity is of utmost interest in oncology. However, despite nearly three decades of intense drug discovery efforts, no clinically viable option for Ras inhibition has been developed. Very recently, reports of a number of new approaches of addressing Ras activity have led to the revival of this molecular target with the prospect of finally fulfilling the therapy promises associated with this important protein.
Collapse
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory of Chemical Biology
and Institute of Complex Molecular Systems, Department of Biomedical
Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology
and Institute of Complex Molecular Systems, Department of Biomedical
Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
42
|
Rosnizeck IC, Filchtinski D, Lopes RP, Kieninger B, Herrmann C, Kalbitzer HR, Spoerner M. Elucidating the mode of action of a typical Ras state 1(T) inhibitor. Biochemistry 2014; 53:3867-78. [PMID: 24866928 DOI: 10.1021/bi401689w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The small GTPase Ras is an essential component of signal transduction pathways within the cell, controlling proliferation, differentiation, and apoptosis. Only in the GTP-bound form does Ras interact strongly with effector molecules such as Raf-kinase, thus acting as a molecular switch. In the GTP-bound form, Ras exists in a dynamic equilibrium between at least two distinct conformational states, 1(T) and 2(T), offering different functional properties of the protein. Zn2+-cyclen is a typical state 1(T) inhibitor; i.e., it interacts selectively with Ras in conformational state 1(T), a weak effector binding state. Here we report that active K-Ras4B, which is prominently found to be mutated in human tumors, exhibits a dynamic equilibrium like H-Ras, which can be modulated by Zn2+-cyclen. The titration experiments of Ras with Zn2+-cyclen indicate a cooperatively coupled binding of the ligands to the two interaction sites on Ras that could be identified for H-Ras previously. Our data further indicate that as in state 2(T) where induced fit produces the substate 2(T)* after effector binding, a corresponding substate 1(T)* can be detected at the state 1(T) mutant Ras(T35A). The interaction of Zn2+-cyclen with Ras not only shifts the equilibrium toward the weak effector binding state 1(T) but also perturbs the formation of substate 1(T)*, thus enhancing the inhibitory effect. Although Zn2+-cyclen shows an affinity for Ras in only the millimolar range, its potency of inhibition corresponds to a competitive state 2 inhibitor with micromolar binding affinity. Thus, the results demonstrate the mode of action and potency of this class of allosteric Ras inhibitors.
Collapse
|
43
|
Düppe PM, Tran Thi Phuong T, Autzen J, Schöpel M, Yip KT, Stoll R, Scherkenbeck J. Sequence-selective molecular recognition of the C-terminal CaaX-boxes of Rheb and related Ras-proteins by synthetic receptors. ACS Chem Biol 2014; 9:1755-63. [PMID: 24856002 DOI: 10.1021/cb5002075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Constitutive activation of Ras-proteins plays an important role in the development of aggressive colorectal carcinomas and several other types of cancer. Despite some progress in recent years in the case of K-Ras4B, until now not a single small molecule inhibitor has been identified that binds efficiently to Rheb and interrupts the protein-protein interactions with mTOR. We describe here a complementary approach that aims at inhibiting membrane insertion of Rheb and related Ras proteins by masking the crucial C-terminal CaaX-box with peptidomimetic receptors identified in combinatorial solid-phase libraries.
Collapse
Affiliation(s)
- Peter M. Düppe
- University of Wuppertal, Gaußstraße
20, D-42119 Wuppertal, Germany
| | | | - Jasmin Autzen
- University of Wuppertal, Gaußstraße
20, D-42119 Wuppertal, Germany
| | - Miriam Schöpel
- Ruhr-University of Bochum, Universitätsstraße
150, D-44780 Bochum, Germany
| | - King Tuo Yip
- Ruhr-University of Bochum, Universitätsstraße
150, D-44780 Bochum, Germany
| | - Raphael Stoll
- Ruhr-University of Bochum, Universitätsstraße
150, D-44780 Bochum, Germany
| | | |
Collapse
|
44
|
Small-molecule modulation of Ras signaling. Nat Chem Biol 2014; 10:613-22. [PMID: 24929527 DOI: 10.1038/nchembio.1560] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/21/2014] [Indexed: 12/19/2022]
Abstract
Despite intense efforts in pharmaceutical industry and academia, a therapeutic grip on oncogenic Ras proteins has remained elusive. Mutated Ras is associated with ~20-30% of all human cancers often not responsive to established therapies. In particular, K-Ras, the most frequently mutated Ras isoform, is considered one of the most important but 'undruggable' targets in cancer research. Recently, new cavities on Ras for small-molecule ligands were identified, and selective direct targeting of mutated K-Ras(G12C) has become possible for what is to our knowledge the first time. In addition, impairment of Ras spatial organization, in particular via targeting the prenyl-binding Ras chaperone PDEδ, has opened a fresh perspective in anticancer research. These recent advances fuel hopes for the development of new drugs targeting Ras.
Collapse
|
45
|
Fernandes C, Horn A, Vieira-da-Motta O, Kanashiro MM, Rocha MR, Moreira RO, Morcelli SR, Lopes BF, Mathias LDS, Borges FV, Borges LJ, Freitas WR, Visentin LC, Almeida JCDA, Schenk G. Synthesis, characterization, antibacterial and antitumoral activities of mononuclear zinc complexes containing tridentate amine based ligands with N3 or N2O donor groups. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Prakash P, Gorfe AA. Overview of simulation studies on the enzymatic activity and conformational dynamics of the GTPase Ras. MOLECULAR SIMULATION 2014; 40:839-847. [PMID: 26491216 DOI: 10.1080/08927022.2014.895000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last 40 years, we have learnt a great deal about the Ras onco-proteins. These intracellular molecular switches are essential for the function of a variety of physiological processes, including signal transduction cascades responsible for cell growth and proliferation. Molecular simulations and free energy calculations have played an essential role in elucidating the conformational dynamics and energetics underlying the GTP hydrolysis reaction catalysed by Ras. Here we present an overview of the main lessons from molecular simulations on the GTPase reaction and conformational dynamics of this important anti-cancer drug target. In the first part, we summarise insights from quantum mechanical and combined quantum mechanical/molecular mechanical simulations as well as other free energy methods and highlight consensus viewpoints as well as remaining controversies. The second part provides a very brief overview of new insights emerging from large-scale molecular dynamics simulations. We conclude with a perspective regarding future studies of Ras where computational approaches will likely play an active role.
Collapse
Affiliation(s)
- Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
47
|
Spiegel J, Cromm PM, Itzen A, Goody RS, Grossmann TN, Waldmann H. Direkte Modulation von Rab-GTPase-Effektor-Wechselwirkungen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Spiegel J, Cromm PM, Itzen A, Goody RS, Grossmann TN, Waldmann H. Direct targeting of Rab-GTPase-effector interactions. Angew Chem Int Ed Engl 2014; 53:2498-503. [PMID: 24481744 DOI: 10.1002/anie.201308568] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/26/2013] [Indexed: 11/06/2022]
Abstract
Small GTPases are molecular switches using GDP/GTP alternation to control numerous vital cellular processes. Although aberrant function and regulation of GTPases are implicated in various human diseases, direct targeting of this class of proteins has proven difficult, as GTPase signaling and regulation is mediated by extensive and shallow protein interfaces. Here we report the development of inhibitors of protein-protein interactions involving Rab proteins, a subfamily of GTPases, which are key regulators of vesicular transport. Hydrocarbon-stapled peptides were designed based on crystal structures of Rab proteins bound to their interaction partners. These modified peptides exhibit significantly increased affinities and include a stapled peptide (StRIP3) that selectively binds to activated Rab8a and inhibits a Rab8a-effector interaction in vitro.
Collapse
Affiliation(s)
- Jochen Spiegel
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany); Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | | | | | | | | | | |
Collapse
|
49
|
Kalbitzer HR, Rosnizeck IC, Munte CE, Narayanan SP, Kropf V, Spoerner M. Intrinsische allosterische Hemmung von Signalproteinen durch Stabilisierung gering besetzter, durch Hochdruck-NMR-Spektroskopie nachweisbarer Interaktionszustände. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Kalbitzer HR, Rosnizeck IC, Munte CE, Narayanan SP, Kropf V, Spoerner M. Intrinsic Allosteric Inhibition of Signaling Proteins by Targeting Rare Interaction States Detected by High-Pressure NMR Spectroscopy. Angew Chem Int Ed Engl 2013; 52:14242-6. [DOI: 10.1002/anie.201305741] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/20/2013] [Indexed: 11/10/2022]
|