1
|
Cormier M, Hernvann F, De Paolis M. Synthetic study toward tridachiapyrone B. Beilstein J Org Chem 2022; 18:1741-1748. [PMID: 36628263 PMCID: PMC9795862 DOI: 10.3762/bjoc.18.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
A convergent approach to the skeleton of tridachiapyrone B is described taking advantage of the desymmetrization of α,α'-dimethoxy-γ-pyrone leading to α-crotyl-α'-methoxy-γ-pyrone in one step. To construct the quaternary carbon of the 2,5-cyclohexadienone of the target, a strategy based on the Robinson-type annulation of an aldehyde derived from α-crotyl-α'-methoxy-γ-pyrone was applied. The grafting of the simplified target's side chain was demonstrated through an oxidative anionic oxy-Cope rearrangement of the tertiary alcohol arising from the 1,2-addition of a 1,3-dimethylallyl reagent to 2,5-cyclohexadienone connected to the α'-methoxy-γ-pyrone motif.
Collapse
|
2
|
Yang Y, Cheng L, Wang M, Yin L, Feng Y, Wang C, Li Y. Difunctionalization of Alkynones by Base-Mediated Reaction with α,α-Dithioketones. Org Lett 2021; 23:5339-5343. [PMID: 34228461 DOI: 10.1021/acs.orglett.1c01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel 1,2-difunctionalization of alkynones via an umpolung strategy for the synthesis of tetrasubstituted olefins has been developed. This procedure is realized by a formal C-C σ-bond cleavage reaction of cyclic α,α-dithioketones and subsequent deprotection. Notable features of this approach include excellent yields, mild reaction conditions, a broad substrate scope, and operational simplicity.
Collapse
Affiliation(s)
- Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengdan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Feng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
3
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
4
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
5
|
Donabauer K, Murugesan K, Rozman U, Crespi S, König B. Photocatalytic Reductive Radical-Polar Crossover for a Base-Free Corey-Seebach Reaction. Chemistry 2020; 26:12945-12950. [PMID: 32686166 PMCID: PMC7589390 DOI: 10.1002/chem.202003000] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Indexed: 01/07/2023]
Abstract
A metal-free generation of carbanion nucleophiles is of prime importance in organic synthesis. Herein we report a photocatalytic approach to the Corey-Seebach reaction. The presented method operates under mild redox-neutral and base-free conditions giving the desired product with high functional group tolerance. The reaction is enabled by the combination of photo- and hydrogen atom transfer (HAT) catalysis. This catalytic merger allows a C-H to carbanion activation by the abstraction of a hydrogen atom followed by radical reduction. The generated nucleophilic intermediate is then capable of adding to carbonyl electrophiles. The obtained dithiane can be easily converted to the valuable α-hydroxy carbonyl in a subsequent step. The proposed reaction mechanism is supported by emission quenching, radical-radical homocoupling and deuterium labeling studies as well as by calculated redox-potentials and bond strengths.
Collapse
Affiliation(s)
- Karsten Donabauer
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Kathiravan Murugesan
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Urša Rozman
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Stefano Crespi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Burkhard König
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
6
|
Hollmann T, Berkhan G, Wagner L, Sung KH, Kolb S, Geise H, Hahn F. Biocatalysts from Biosynthetic Pathways: Enabling Stereoselective, Enzymatic Cycloether Formation on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Protein Facility, ILAb Co., Ltd. NP513, The Catholic University of Korea, 420-743 Bucheon, Republic of Korea
| | - Simon Kolb
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hendrik Geise
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
7
|
Feng Y, Yu X, Huang JW, Liu W, Li Q, Hu Y, Yang Y, Chen Y, Jin J, Li H, Chen CC, Guo RT. Crystal structure and proposed mechanism of an enantioselective hydroalkoxylation enzyme from Penicillium herquei. Biochem Biophys Res Commun 2019; 516:801-805. [PMID: 31256936 DOI: 10.1016/j.bbrc.2019.06.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Hydroalkoxylation is a useful and efficient reaction which generates C-O bond and produces cyclic ethers, the common structural elements of natural products. The dedicative enzyme which can catalyze enantioselective hydroalkoxylation named PhnH was recently identified in the herqueinone biosynthetic gene from Penicillium herquei. It catalyzes addition of a phenol to the terminal olefin on substrate to produce a dihydrobenzofuran. Here, the crystal structure of PhnH is reported and the putative substrate-binding pocket is illustrated. Through docking experiment, possible substrate-binding poses are displayed and the catalytic mechanism is therefore proposed. Our findings form the basis for further studies of enantioselective hydroalkoxylation enzymes.
Collapse
Affiliation(s)
- Yong Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qian Li
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Huazhong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
A biocatalytic hydroxylation-enabled unified approach to C19-hydroxylated steroids. Nat Commun 2019; 10:3378. [PMID: 31358750 PMCID: PMC6662754 DOI: 10.1038/s41467-019-11344-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/10/2019] [Indexed: 11/11/2022] Open
Abstract
Steroidal C19-hydroxylation is pivotal to the synthesis of naturally occurring bioactive C19-OH steroids and 19-norsteroidal pharmaceuticals. However, realizing this transformation is proved to be challenging through either chemical or biological synthesis. Herein, we report a highly efficient method to synthesize 19-OH-cortexolone in 80% efficiency at the multi-gram scale. The obtained C19-OH-cortexolone can be readily transformed to various synthetically useful intermediates including the industrially valuable 19-OH-androstenedione, which can serve as a basis for synthesis of C19-functionalized steroids as well as 19-nor steroidal drugs. Using this biocatalytic C19-hydroxylation method, the unified synthesis of six C19-hydroxylated pregnanes is achieved in just 4 to 9 steps. In addition, the structure of sclerosteroid B is revised on the basis of our synthesis. C19 hydroxylation is a unique feature of some bioactive steroids. Here, the authors developed a direct C19 hydroxylation approach to scalably access 19-OH-cortexolone in the host T. cucumeris and then converted the product into various pharmaceutically useful products via chemical synthesis.
Collapse
|
9
|
Fessner ND. P450 Monooxygenases Enable Rapid Late-Stage Diversification of Natural Products via C-H Bond Activation. ChemCatChem 2019; 11:2226-2242. [PMID: 31423290 PMCID: PMC6686969 DOI: 10.1002/cctc.201801829] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/07/2019] [Indexed: 01/07/2023]
Abstract
The biological potency of natural products has been exploited for decades. Their inherent structural complexity and natural diversity might hold the key to efficiently address the urgent need for the development of novel pharmaceuticals. At the same time, it is that very complexity, which impedes necessary chemical modifications such as structural diversification, to improve the effectiveness of the drug. For this purpose, Cytochrome P450 enzymes, which possess unique abilities to activate inert sp3-hybridised C-H bonds in a late-stage fashion, offer an attractive synthetic tool. In this review the potential of cytochrome P450 enzymes in chemoenzymatic lead diversification is illustrated discussing studies reporting late-stage functionalisations of natural products and other high-value compounds. These enzymes were proven to extend the synthetic toolbox significantly by adding to the flexibility and efficacy of synthetic strategies of natural product chemists, and scientists of other related disciplines.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI GrazPetersgasse 148010GrazAustria
| |
Collapse
|
10
|
Kagoshima H, Muraishi K, Tsuchida S, Shiraishi T, Takimoto R. Conjugate Addition of 2-Tributylstannyl-1,3-dithiane to α, β-Unsaturated Ketones by the Combined Use of Cu(OTf) 2 and Et 3SiOTf. CHEM LETT 2019. [DOI: 10.1246/cl.180957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hirotaka Kagoshima
- Center for Instrumental Analysis, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Kazuya Muraishi
- Center for Instrumental Analysis, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Shusei Tsuchida
- Center for Instrumental Analysis, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Tatsuki Shiraishi
- Center for Instrumental Analysis, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Ryuta Takimoto
- Center for Instrumental Analysis, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
11
|
Tanifuji R, Koketsu K, Takakura M, Asano R, Minami A, Oikawa H, Oguri H. Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N-Fmoc Saframycin Y3. J Am Chem Soc 2018; 140:10705-10709. [DOI: 10.1021/jacs.8b07161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ryo Tanifuji
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Kento Koketsu
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Michiko Takakura
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Hiroki Oguri
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Li Q, Ding W, Yao Z, Tu J, Wang L, Huang H, Li S, Ju J. AbmV Catalyzes Tandem Ether Installation and Hydroxylation during Neoabyssomicin/Abyssomicin Biosynthesis. Org Lett 2018; 20:4854-4857. [PMID: 30070849 DOI: 10.1021/acs.orglett.8b01997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ziwei Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liyan Wang
- College of Bio and Marine Sciences, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060, China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266000 China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
13
|
Davis FA. Recent applications of N-sulfonyloxaziridines (Davis oxaziridines) in organic synthesis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Vale JR, Rimpiläinen T, Sievänen E, Rissanen K, Afonso CAM, Candeias NR. Pot-Economy Autooxidative Condensation of 2-Aryl-2-lithio-1,3-dithianes. J Org Chem 2018; 83:1948-1958. [PMID: 29334462 PMCID: PMC6150673 DOI: 10.1021/acs.joc.7b02896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The autoxidative condensation of 2-aryl-2-lithio-1,3-dithianes is here reported. Treatment of 2-aryl-1,3-dithianes with n-BuLi in the absence of any electrophile leads to condensation of three molecules of 1,3-dithianes and formation of highly functionalized α-thioether ketones orthothioesters in 51-89% yields upon air exposure. The method was further expanded to benzaldehyde dithioacetals, affording corresponding orthothioesters and α-thioether ketones in 48-97% yields. The experimental results combined with density functional theory studies support a mechanism triggered by the autoxidation of 2-aryl-2-lithio-1,3-dithianes to yield a highly reactive thioester that undergoes condensation with two other molecules of 2-aryl-2-lithio-1,3-dithiane.
Collapse
Affiliation(s)
- João R Vale
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology , Korkeakoulunkatu 8, 33101 Tampere, Finland.,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Tatu Rimpiläinen
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology , Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - Elina Sievänen
- University of Jyvaskyla , Department of Chemistry, Nanoscience Center, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla , Department of Chemistry, Nanoscience Center, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Carlos A M Afonso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno R Candeias
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology , Korkeakoulunkatu 8, 33101 Tampere, Finland
| |
Collapse
|
15
|
King-Smith E, Zwick CR, Renata H. Applications of Oxygenases in the Chemoenzymatic Total Synthesis of Complex Natural Products. Biochemistry 2017; 57:403-412. [DOI: 10.1021/acs.biochem.7b00998] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emma King-Smith
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christian R. Zwick
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
16
|
Liu T, Tian L, Lai J, Min D, Qu M, Tang S. Alcohol-mediated direct dithioacetalization of alkynes with 2-chloro-1,3-dithiane for the synthesis of Markovnikov dithianes. Org Biomol Chem 2017; 15:4068-4071. [PMID: 28443876 DOI: 10.1039/c7ob00795g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alcohol-mediated dithioacetalization process that gains direct access to the corresponding Markovnikov-selective 1,3-dithianes using unactivated alkynes and nonthiolic/odorless 2-chloro-1,3-dithiane in a highly efficient manner has been developed. This methodology has the advantage of having mild reaction conditions, and the dithioacetalization process gives good to excellent yields with high Markovnikov-selectivity.
Collapse
Affiliation(s)
- Teng Liu
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Li S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat Prod Rep 2017; 34:1061-1089. [DOI: 10.1039/c7np00028f] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on unusual P450 reactions related to new chemistry, skeleton construction, structure re-shaping, and protein–protein interactions in natural product biosynthesis, which play significant roles in chemical space expansion for natural products.
Collapse
Affiliation(s)
- Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology
- CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology
- CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
18
|
Hemmerling F, Hahn F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J Org Chem 2016; 12:1512-50. [PMID: 27559404 PMCID: PMC4979870 DOI: 10.3762/bjoc.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Hahn
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Henrot M, Jean A, Peixoto PA, Maddaluno J, De Paolis M. Flexible Total Synthesis of (±)-Aureothin, a Potent Antiproliferative Agent. J Org Chem 2016; 81:5190-201. [DOI: 10.1021/acs.joc.6b00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthias Henrot
- COBRA-IRCOF, CNRS, Université & INSA de Rouen, Mont Saint Aignan, France
| | - Alexandre Jean
- COBRA-IRCOF, CNRS, Université & INSA de Rouen, Mont Saint Aignan, France
| | | | - Jacques Maddaluno
- COBRA-IRCOF, CNRS, Université & INSA de Rouen, Mont Saint Aignan, France
| | - Michaël De Paolis
- COBRA-IRCOF, CNRS, Université & INSA de Rouen, Mont Saint Aignan, France
| |
Collapse
|
20
|
Lai J, Liang Y, Liu T, Tang S. Dithiane Induced Cycloaddition/Aromatization Tactic for the Synthesis of Multisubstituted Furans. Org Lett 2016; 18:2066-9. [DOI: 10.1021/acs.orglett.6b00699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junshan Lai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yongping Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Teng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shouchu Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Lai J, Tian L, Liang Y, Zhang Y, Xie X, Fang B, Tang S. Di-tert-Butyl Peroxide-Mediated Atom-Transfer Radical Addition of 2-Chlorodithiane to Aryl Alkynes under Mild Conditions. Chemistry 2015; 21:14328-31. [PMID: 26296151 DOI: 10.1002/chem.201502581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Junshan Lai
- School of Pharmacy, Lanzhou University, Lanzhou 730000 (P. R. China)
| | - Lixia Tian
- School of Pharmacy, Lanzhou University, Lanzhou 730000 (P. R. China)
| | - Yongping Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000 (P. R. China)
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (P. R. China)
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (P. R. China)
| | - Bowen Fang
- Chemical Engineering Institute, Northwest University for Nationalities, Lanzhou, 730030 (P. R. China)
| | - Shouchu Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000 (P. R. China).
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (P. R. China).
| |
Collapse
|
22
|
Lai J, Tian L, Huo X, Zhang Y, Xie X, Tang S. Metal-Free Difunctionalization of Alkynes with 2-Chlorodithiane for Synthesis of β-Ketodithianes. J Org Chem 2015; 80:5894-9. [DOI: 10.1021/acs.joc.5b00187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Junshan Lai
- School of Pharmacy and ‡State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Lixia Tian
- School of Pharmacy and ‡State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xing Huo
- School of Pharmacy and ‡State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yuan Zhang
- School of Pharmacy and ‡State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xingang Xie
- School of Pharmacy and ‡State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shouchu Tang
- School of Pharmacy and ‡State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
23
|
Hertweck C. Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology. Trends Biochem Sci 2015; 40:189-99. [PMID: 25757401 DOI: 10.1016/j.tibs.2015.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Bacterial modular type I polyketide synthases (PKSs) represent giant megasynthases that produce a vast number of complex polyketides, many of which are pharmaceutically relevant. This review highlights recent advances in elucidating the mechanism of bacterial type I PKSs and associated enzymes, and outlines the ramifications of this knowledge for synthetic biology approaches to expand structural diversity. New insights into biosynthetic codes and structures of thiotemplate systems pave the way to rational bioengineering strategies. Through advances in genome mining, DNA recombination technologies, and biochemical analyses, the toolbox of non-canonical polyketide-modifying enzymes has been greatly enlarged. In addition to various chain-branching and chain-fusing enzymes, an increasing set of scaffold modifying biocatalysts is now available for synthetically hard-to-emulate reactions.
Collapse
Affiliation(s)
- Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Chair of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
24
|
|
25
|
Unoh Y, Hirano K, Satoh T, Miura M. Rhodium(III)-Catalyzed Oxidative Alkenylation of 1,3-Dithiane-Protected Arenecarbaldehydes via Regioselective C–H Bond Cleavage. Org Lett 2015; 17:704-7. [DOI: 10.1021/ol503722r] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuto Unoh
- Department
of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department
of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Satoh
- Department
of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Miura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Lai J, Du W, Tian L, Zhao C, She X, Tang S. Fe-Catalyzed Direct Dithioacetalization of Aldehydes with 2-Chloro-1,3-dithiane. Org Lett 2014; 16:4396-9. [DOI: 10.1021/ol502276r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Junshan Lai
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbin Du
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lixia Tian
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Changgui Zhao
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xuegong She
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shouchu Tang
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
27
|
Xu S, Gu J, Li H, Ma D, Xie X, She X. Enantioselective Total Synthesis of (−)-Walsucochin B. Org Lett 2014; 16:1996-9. [DOI: 10.1021/ol500553x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shiyan Xu
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University Lanzhou 730000, P. R. China
| | - Jixiang Gu
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University Lanzhou 730000, P. R. China
| | - Huilin Li
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University Lanzhou 730000, P. R. China
| | - Donghui Ma
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University Lanzhou 730000, P. R. China
| | - Xingang Xie
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University Lanzhou 730000, P. R. China
| | - Xuegong She
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University Lanzhou 730000, P. R. China
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
28
|
McIntosh JA, Farwell CC, Arnold FH. Expanding P450 catalytic reaction space through evolution and engineering. Curr Opin Chem Biol 2014; 19:126-34. [PMID: 24658056 DOI: 10.1016/j.cbpa.2014.02.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/30/2013] [Accepted: 02/03/2014] [Indexed: 11/27/2022]
Abstract
Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology's reaction space.
Collapse
Affiliation(s)
- John A McIntosh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Christopher C Farwell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
29
|
Sugimoto Y, Ding L, Ishida K, Hertweck C. Rational Design of Modular Polyketide Synthases: Morphing the Aureothin Pathway into a Luteoreticulin Assembly Line. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Sugimoto Y, Ding L, Ishida K, Hertweck C. Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line. Angew Chem Int Ed Engl 2014; 53:1560-4. [PMID: 24402879 DOI: 10.1002/anie.201308176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/30/2013] [Indexed: 11/06/2022]
Abstract
The unusual nitro-substituted polyketides aureothin, neoaureothin (spectinabilin), and luteoreticulin, which are produced by diverse Streptomyces species, point to a joint evolution. Through rational genetic recombination and domain exchanges we have successfully reprogrammed the modular (type I) aur polyketide synthase (PKS) into a synthase that generates luteoreticulin. This is the first rational transformation of a modular PKS to produce a complex polyketide that was initially isolated from a different bacterium. A unique aspect of this synthetic biology approach is that we exclusively used genes from a single biosynthesis gene cluster to design the artificial pathway, an avenue that likely emulates natural evolutionary processes. Furthermore, an unexpected, context-dependent switch in the regiospecificity of a pyrone methyl transferase was observed. We also describe an unprecedented scenario where an AT domain iteratively loads an extender unit onto the cognate ACP and the downstream ACP. This aberrant function is a novel case of non-colinear behavior of PKS domains.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena (Germany)
| | | | | | | |
Collapse
|
31
|
Busch B, Ueberschaar N, Behnken S, Sugimoto Y, Werneburg M, Traitcheva N, He J, Hertweck C. Multifactorial Control of Iteration Events in a Modular Polyketide Assembly Line. Angew Chem Int Ed Engl 2013; 52:5285-9. [DOI: 10.1002/anie.201301322] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 11/06/2022]
|
32
|
Busch B, Ueberschaar N, Behnken S, Sugimoto Y, Werneburg M, Traitcheva N, He J, Hertweck C. Multifactorial Control of Iteration Events in a Modular Polyketide Assembly Line. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
|
34
|
Französische Chemiepreise 2012. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201208345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
|
36
|
Richter M, Busch B, Ishida K, Moore BS, Hertweck C. Pyran formation by an atypical CYP-mediated four-electron oxygenation-cyclization cascade in an engineered aureothin pathway. Chembiochem 2012; 13:2196-9. [PMID: 22961965 DOI: 10.1002/cbic.201200406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 01/17/2023]
Abstract
Small changes, big effect: A new aureothin derivative, aureopyran, which features an unusual pyran backbone, was generated by simply altering the enzymatic methylation topology. The α-pyrone ring hampers the correct placement of the polyketide backbone in the multifunctional cytochrome P450 monooxygenase AurH. Instead of a tetrahydrofuran ring, an oxo intermediate is formed that readily undergoes a rare electrocyclization reaction.
Collapse
Affiliation(s)
- Martin Richter
- Dept. Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|