1
|
Peris-Díaz MD, Krężel A, Barran P. Deciphering the safeguarding role of cysteine residues in p53 against H 2O 2-induced oxidation using high-resolution native mass spectrometry. Commun Chem 2025; 8:13. [PMID: 39814824 PMCID: PMC11736120 DOI: 10.1038/s42004-024-01395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by H2O2 are still unknown. Here, we employed native mass spectrometry (MS) and ion mobility (IM)-MS coupled to chemical labelling and H2O2-induced oxidation to examine the mechanism of redox regulation of the p53-p21 complex. Our approach has found that two reactive cysteines in p53 protect against H2O2-induced oxidation by forming reversible sulfenates.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland.
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
| |
Collapse
|
2
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Grinkevich VV, Vema A, Fawkner K, Issaeva N, Andreotti V, Dickinson ER, Hedström E, Spinnler C, Inga A, Larsson LG, Karlén A, Wilhelm M, Barran PE, Okorokov AL, Selivanova G, Zawacka-Pankau JE. Novel Allosteric Mechanism of Dual p53/MDM2 and p53/MDM4 Inhibition by a Small Molecule. Front Mol Biosci 2022; 9:823195. [PMID: 35720128 PMCID: PMC9198586 DOI: 10.3389/fmolb.2022.823195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 01/26/2023] Open
Abstract
Restoration of the p53 tumor suppressor for personalised cancer therapy is a promising treatment strategy. However, several high-affinity MDM2 inhibitors have shown substantial side effects in clinical trials. Thus, elucidation of the molecular mechanisms of action of p53 reactivating molecules with alternative functional principle is of the utmost importance. Here, we report a discovery of a novel allosteric mechanism of p53 reactivation through targeting the p53 N-terminus which promotes inhibition of both p53/MDM2 (murine double minute 2) and p53/MDM4 interactions. Using biochemical assays and molecular docking, we identified the binding site of two p53 reactivating molecules, RITA (reactivation of p53 and induction of tumor cell apoptosis) and protoporphyrin IX (PpIX). Ion mobility-mass spectrometry revealed that the binding of RITA to serine 33 and serine 37 is responsible for inducing the allosteric shift in p53, which shields the MDM2 binding residues of p53 and prevents its interactions with MDM2 and MDM4. Our results point to an alternative mechanism of blocking p53 interaction with MDM2 and MDM4 and may pave the way for the development of novel allosteric inhibitors of p53/MDM2 and p53/MDM4 interactions.
Collapse
Affiliation(s)
- Vera V. Grinkevich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Aparna Vema
- Division of Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Karin Fawkner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, UNC-Chapel Hill, Chapel Hill, NC, United States
| | - Virginia Andreotti
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - Eleanor R. Dickinson
- Manchester Institute of Biotechnology, The School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Elisabeth Hedström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Clemens Spinnler
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alberto Inga
- Department CIBIO, University of Trento, Trento, Italy
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Anders Karlén
- Division of Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Perdita E. Barran
- Manchester Institute of Biotechnology, The School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Andrei L. Okorokov
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden,*Correspondence: Galina Selivanova, ; Joanna E. Zawacka-Pankau,
| | - Joanna E. Zawacka-Pankau
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden,*Correspondence: Galina Selivanova, ; Joanna E. Zawacka-Pankau,
| |
Collapse
|
4
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
5
|
Peris-Díaz M, Guran R, Domene C, de los Rios V, Zitka O, Adam V, Krężel A. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species. J Am Chem Soc 2021; 143:16486-16501. [PMID: 34477370 PMCID: PMC8517974 DOI: 10.1021/jacs.1c05495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/16/2022]
Abstract
Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and β-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 μs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Vivian de los Rios
- Functional
Proteomics, Department of Cellular and Molecular Medicine and Proteomic
Facility, Centro de Investigaciones Biológicas
(CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
6
|
Association between Predicted Effects of TP53 Missense Variants on Protein Conformation and Their Phenotypic Presentation as Li-Fraumeni Syndrome or Hereditary Breast Cancer. Int J Mol Sci 2021; 22:ijms22126345. [PMID: 34198491 PMCID: PMC8231809 DOI: 10.3390/ijms22126345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Rare germline pathogenic TP53 missense variants often predispose to a wide spectrum of tumors characterized by Li-Fraumeni syndrome (LFS) but a subset of variants is also seen in families with exclusively hereditary breast cancer (HBC) outcomes. We have developed a logistic regression model with the aim of predicting LFS and HBC outcomes, based on the predicted effects of individual TP53 variants on aspects of protein conformation. A total of 48 missense variants either unique for LFS (n = 24) or exclusively reported in HBC (n = 24) were included. LFS-variants were over-represented in residues tending to be buried in the core of the tertiary structure of TP53 (p = 0.0014). The favored logistic regression model describes disease outcome in terms of explanatory variables related to the surface or buried status of residues as well as their propensity to contribute to protein compactness or protein-protein interactions. Reduced, internally validated models discriminated well between LFS and HBC (C-statistic = 0.78−0.84; equivalent to the area under the ROC (receiver operating characteristic) curve), had a low risk for over-fitting and were well calibrated in relation to the known outcome risk. In conclusion, this study presents a phenotypic prediction model of LFS and HBC risk for germline TP53 missense variants, in an attempt to provide a complementary tool for future decision making and clinical handling.
Collapse
|
7
|
Lau AM, Politis A. Integrative Mass Spectrometry-Based Approaches for Modeling Macromolecular Assemblies. Methods Mol Biol 2021; 2247:221-241. [PMID: 33301120 DOI: 10.1007/978-1-0716-1126-5_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mass spectrometry (MS)-based strategies have emerged as key elements for structural modeling of proteins and their assemblies. In particular, merging together complementary MS tools, through the so-called hybrid approaches, has enabled structural characterization of proteins in their near-native states. Here, we describe how different MS techniques, such as native MS, chemical cross-linking MS, and ion mobility MS, are brought together using sophisticated computational algorithms and modeling restraints. We demonstrate the applicability of the strategy by building accurate models of multimeric protein assemblies. These strategies can practically be applied to any protein complex of interest and be readily integrated with other structural approaches such as electron density maps from cryo-electron microscopy.
Collapse
Affiliation(s)
- Andy M Lau
- Department of Chemistry, King's College London, London, UK
| | | |
Collapse
|
8
|
Peris-Díaz M, Guran R, Zitka O, Adam V, Krężel A. Metal- and Affinity-Specific Dual Labeling of Cysteine-Rich Proteins for Identification of Metal-Binding Sites. Anal Chem 2020; 92:12950-12958. [PMID: 32786475 PMCID: PMC7547867 DOI: 10.1021/acs.analchem.0c01604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Here, using human metallothionein (MT2) as an example, we describe an improved strategy based on differential alkylation coupled to MS, assisted by zinc probe monitoring, for identification of cysteine-rich binding sites with nanomolar and picomolar metal affinity utilizing iodoacetamide (IAM) and N-ethylmaleimide reagents. We concluded that an SN2 reaction provided by IAM is more suitable to label free Cys residues, avoiding nonspecific metal dissociation. Afterward, metal-bound Cys can be easily labeled in a nucleophilic addition reaction after separation by reverse-phase C18 at acidic pH. Finally, we evaluated the efficiency of the method by mapping metal-binding sites of Zn7-xMT species using a bottom-up MS approach with respect to metal-to-protein affinity and element(al) resolution. The methodology presented might be applied not only for MT2 but to identify metal-binding sites in other Cys-containing proteins.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Peris-Díaz MD, Guran R, Zitka O, Adam V, Krężel A. Mass Spectrometry-Based Structural Analysis of Cysteine-Rich Metal-Binding Sites in Proteins with MetaOdysseus R Software. J Proteome Res 2020; 20:776-785. [PMID: 32924499 PMCID: PMC7786378 DOI: 10.1021/acs.jproteome.0c00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Identification
of metal-binding sites in proteins and understanding
metal-coupled protein folding mechanisms are aspects of high importance
for the structure-to-function relationship. Mass spectrometry (MS)
has brought a powerful adjunct perspective to structural biology,
obtaining from metal-to-protein stoichiometry to quaternary structure
information. Currently, the different experimental and/or instrumental
setups usually require the use of multiple data analysis software,
and in some cases, they lack some of the main data analysis steps
(MS processing, scoring, identification). Here, we present a comprehensive
data analysis pipeline that addresses charge-state deconvolution,
statistical scoring, and mass assignment for native MS, bottom-up,
and native top-down with emphasis on metal–protein complexes.
We have evaluated all of the approaches using assemblies of increasing
complexity, including free and chemically labeled proteins, from low-
to high-resolution MS. In all cases, the results have been compared
with common software and proved how MetaOdysseus outperformed them.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Structural predictions of the functions of membrane proteins from HDX-MS. Biochem Soc Trans 2020; 48:971-979. [PMID: 32597490 PMCID: PMC7329338 DOI: 10.1042/bst20190880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
HDX-MS has emerged as a powerful tool to interrogate the structure and dynamics of proteins and their complexes. Recent advances in the methodology and instrumentation have enabled the application of HDX-MS to membrane proteins. Such targets are challenging to investigate with conventional strategies. Developing new tools are therefore pertinent for improving our fundamental knowledge of how membrane proteins function in the cell. Importantly, investigating this central class of biomolecules within their native lipid environment remains a challenge but also a key goal ahead. In this short review, we outline recent progresses in dissecting the conformational mechanisms of membrane proteins using HDX-MS. We further describe how the use of computational strategies can aid the interpretation of experimental data and enable visualisation of otherwise intractable membrane protein states. This unique integration of experiments with computations holds significant potential for future applications.
Collapse
|
11
|
Ion Mobility in Structural Biology. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Abstract
A sizeable proportion of active protein sequences lack structural motifs making them irresolvable by NMR and crystallography. Such intrinsically disordered proteins (IDPs) or regions (IDRs) play a major role in biological mechanisms. They are often involved in cell regulation processes, and by extension can be the perpetrator or signifier of disease. In light of their importance and the shortcomings of conventional methods of biophysical analysis to identify them and to describe their conformational variance, IDPs and IDRs have been termed "the dark proteome." In this chapter we describe the use of ion mobility-mass spectrometry (IM-MS) coupled with electrospray ionization to analyze the conformational diversity of IDPs. Using the LEA protein COR15A as an exemplar system and contrasting it with the behavior of myoglobin, we outline the methods for analyzing an IDP using nanoelectrospray ionization coupled with IM-MS, covering sample preparation, purification; optimization of mass spectrometry conditions and tuning parameters; data collection and analysis. Following this, we detail the use of a "toy" model that provides a predictive framework for the study of all proteins with ESI-IM-MS.
Collapse
|
13
|
Khanal N, Gaye MM, Clemmer DE. Multiple solution structures of the disordered peptide indolicidin from IMS-MS analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:52-58. [PMID: 30906201 PMCID: PMC6426319 DOI: 10.1016/j.ijms.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The solution-favored conformations of the 13-residue disordered peptide, indolicidin (Ile1-Leu2-Pro3-Trp4-Lys5-Trp6-Pro7-Trp8-Trp9-Pro10-Trp11-Arg12-Arg13), are evaluated using electrospray ionization (ESI) coupled to ion mobility spectrometry-mass spectrometry (IMS-MS). The ESI-IMS-MS distributions for the dominant [M+4H]4+ ions indicate that three populations of structures coexist in a range of aqueous to non-aqueous solutions (water:dioxane, water:trifluoroethanol, and water:hexafluoroisopropanol). Conformer types and their relative abundances change in response to different solution environments suggesting that the gas phase conformers reflect on the solution populations present in different solvent environments. Collisional activation of isolated gas phase conformations with IMS-IMS-MS experiments provides additional insight about the relative stabilities of different structural types in the absence of solvent. Simulated annealing studies suggest that proline configuration may be important for the presence of multiple conformations.
Collapse
|
14
|
Stuchfield D, Barran P. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Curr Opin Chem Biol 2018; 42:177-185. [DOI: 10.1016/j.cbpa.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 02/05/2023]
|
15
|
Ben-Nissan G, Sharon M. The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr Opin Chem Biol 2018; 42:25-33. [PMID: 29128665 PMCID: PMC5796646 DOI: 10.1016/j.cbpa.2017.10.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
Ion-mobility mass spectrometry (IM-MS) is an approach that can provide information on the stoichiometry, composition, protein contacts and topology of protein complexes. The power of this approach lies not only in its sensitivity and speed of analysis, but also in the fact that it is a technique that can capture the repertoire of conformational states adopted by protein assemblies. Here, we describe the array of available IM-MS based tools, and demonstrate their application to the structural characterization of various protein complexes, including challenging systems as amyloid aggregates and membrane proteins. We also discuss recent studies in which IM-MS was applied towards investigations of conformational transitions and stabilization effects induced by protein interactions.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Jacobs A, Hoover H, Smith E, Clemmer DE, Kim CH, Kao CC. The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication. Nucleic Acids Res 2018; 46:324-335. [PMID: 29140480 PMCID: PMC5758871 DOI: 10.1093/nar/gkx1087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA of the CP were found to preferentially bind to an RNA hairpin motif that directs the initiation of BMV RNA synthesis. RNA binding causes the peptide to change from heterogeneous structures to a single family of structures. Fluorescence anisotropy, fluorescence quenching and size exclusion chromatography experiments all confirm that the NTA can specific recognize the RNA motif. The peptide introduced into plants along with BMV virion increased accumulation of the BMV CP and accelerated the rate of minus-strand RNA synthesis. The intrinsically disordered BMV NTA could thus specifically recognize BMV RNAs to affect viral infection.
Collapse
Affiliation(s)
- Alexander Jacobs
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haley Hoover
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Edward Smith
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Chul-Hyun Kim
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Allen SJ, Eaton RM, Bush MF. Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c. Anal Chem 2017. [PMID: 28636328 DOI: 10.1021/acs.analchem.7b01234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility (IM) is a gas-phase separation technique that is used to determine the collision cross sections of native-like ions of proteins and protein complexes, which are in turn used as restraints for modeling the structures of those analytes in solution. Here, we evaluate the stability of native-like ions using tandem IM experiments implemented using structures for lossless ion manipulations (SLIM). In this implementation of tandem IM, ions undergo a first dimension of IM up to a switch that is used to selectively transmit ions of a desired mobility. Selected ions are accumulated in a trap and then released after a delay to initiate the second dimension of IM. For delays ranging from 16 to 33 231 ms, the collision cross sections of native-like, 7+ cytochrome c ions increase monotonically from 15.1 to 17.1 nm2. The largest products formed in these experiments at near-ambient temperature are still far smaller than those formed in energy-dependent experiments (∼21 nm2). However, the collision cross section increases by ∼2% between delay times of 16 and 211 ms, which may have implications for other IM experiments on these time scales. Finally, two subpopulations from the full population were each mobility selected and analyzed as a function of delay time, showing that the three populations can be differentiated for at least 1 s. Together, these results suggest that elements of native-like structure can have long lifetimes at near-ambient temperature in the gas phase but that gas-phase dynamics should be considered when interpreting results from IM.
Collapse
Affiliation(s)
- Samuel J Allen
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M Eaton
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
18
|
Jhingree JR, Bellina B, Pacholarz KJ, Barran PE. Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1450-1461. [PMID: 28585116 PMCID: PMC5486678 DOI: 10.1007/s13361-017-1692-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jacquelyn R Jhingree
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kamila J Pacholarz
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
19
|
Diversity in Gold Finger Structure Elucidated by Traveling‐Wave Ion Mobility Mass Spectrometry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Du Z, de Paiva REF, Nelson K, Farrell NP. Diversity in Gold Finger Structure Elucidated by Traveling‐Wave Ion Mobility Mass Spectrometry. Angew Chem Int Ed Engl 2017; 56:4464-4467. [DOI: 10.1002/anie.201612494] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/13/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Zhifeng Du
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | | | - Kristina Nelson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| |
Collapse
|
21
|
Beveridge R, Migas LG, Payne KAP, Scrutton NS, Leys D, Barran PE. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding. Nat Commun 2016; 7:12163. [PMID: 27418477 PMCID: PMC4947166 DOI: 10.1038/ncomms12163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/08/2016] [Indexed: 11/09/2022] Open
Abstract
Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1(Ubix), the cofactor confers structural stability to the enzyme. IM-MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM-MS data.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Lukasz G Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Karl A P Payne
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - David Leys
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, School of Chemistry, Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
22
|
Schennach M, Schneeberger EM, Breuker K. Unfolding and Folding of the Three-Helix Bundle Protein KIX in the Absence of Solvent. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1079-88. [PMID: 26936183 PMCID: PMC4863917 DOI: 10.1007/s13361-016-1363-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 05/11/2023]
Abstract
Electron capture dissociation was used to probe the structure, unfolding, and folding of KIX ions in the gas phase. At energies for vibrational activation that were sufficiently high to cause loss of small molecules such as NH3 and H2O by breaking of covalent bonds in about 5% of the KIX (M + nH)(n+) ions with n = 7-9, only partial unfolding was observed, consistent with our previous hypothesis that salt bridges play an important role in stabilizing the native solution fold after transfer into the gas phase. Folding of the partially unfolded ions on a timescale of up to 10 s was observed only for (M + nH)(n+) ions with n = 9, but not n = 7 and n = 8, which we attribute to differences in the distribution of charges within the (M + nH)(n+) ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
23
|
Liu FC, Kirk SR, Bleiholder C. On the structural denaturation of biological analytes in trapped ion mobility spectrometry – mass spectrometry. Analyst 2016; 141:3722-30. [DOI: 10.1039/c5an02399h] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trapped ion mobility spectra recorded for ubiquitin are consistent with structures reported for the native state by NMR.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Samuel R. Kirk
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
- Institute of Molecular Biophysics
| |
Collapse
|
24
|
Borysik AJ, Kovacs D, Guharoy M, Tompa P. Ensemble Methods Enable a New Definition for the Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins. J Am Chem Soc 2015; 137:13807-17. [DOI: 10.1021/jacs.5b06027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antoni J. Borysik
- King’s College London, Department of Chemistry,
Britannia House, 7 Trinity
Street, London SE1 1DB, U.K
| | - Denes Kovacs
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Mainak Guharoy
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Peter Tompa
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences of
the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
25
|
Chen SH, Russell DH. How Closely Related Are Conformations of Protein Ions Sampled by IM-MS to Native Solution Structures? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1433-43. [PMID: 26115967 DOI: 10.1007/s13361-015-1191-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/25/2023]
Abstract
Here, we critically evaluate the effects of changes in the ion internal energy (E(int)) on ion-neutral collision cross sections (CCS) of ions of two structurally diverse proteins, specifically the [M + 6H](6+) ion of ubiquitin (ubq(6+)), the [M + 5H](5+) ion of the intrinsically disordered protein (IDP) apo-metallothionein-2A (MT), and its partially- and fully-metalated isoform, the [CdiMT](5+) ion. The ion-neutral CCS for ions formed by "native-state" ESI show a strong dependence on E(int). Collisional activation is used to increase E(int) prior to the ions entering and within the traveling wave (TW) ion mobility analyzer. Comparisons of experimental CCSs with those generated by molecular dynamics (MD) simulation for solution-phase ions and solvent-free ions as a function of temperature provide new insights about conformational preferences and retention of solution conformations. The E(int)-dependent CCSs, which reveal increased conformational diversity of the ion population, are discussed in terms of folding/unfolding of solvent-free ions. For example, ubiquitin ions that have low internal energies retain native-like conformations, whereas ions that are heated by collisional activation possess higher internal energies and yield a broader range of CCS owing to increased conformational diversity due to losses of secondary and tertiary structures. In contrast, the CCS profile for the IDP apoMT is consistent with kinetic trapping of an ion population composed of a wide range of conformers, and as the E(int) is increased, these structurally labile conformers unfold to an elongated conformation.
Collapse
Affiliation(s)
- Shu-Hua Chen
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
26
|
Bleiholder C, Johnson NR, Contreras S, Wyttenbach T, Bowers MT. Molecular Structures and Ion Mobility Cross Sections: Analysis of the Effects of He and N2 Buffer Gas. Anal Chem 2015; 87:7196-203. [DOI: 10.1021/acs.analchem.5b01429] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christian Bleiholder
- Department of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Nicholas R. Johnson
- Department of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephanie Contreras
- Department of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Thomas Wyttenbach
- Department of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael T. Bowers
- Department of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Politis A, Borysik AJ. Assembling the pieces of macromolecular complexes: Hybrid structural biology approaches. Proteomics 2015; 15:2792-803. [DOI: 10.1002/pmic.201400507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/26/2015] [Accepted: 02/24/2015] [Indexed: 01/14/2023]
|
28
|
Arlt C, Ihling CH, Sinz A. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics 2015; 15:2746-55. [PMID: 25728495 DOI: 10.1002/pmic.201400549] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/15/2015] [Accepted: 02/24/2015] [Indexed: 11/12/2022]
Abstract
The tumor suppressor p53 presents a great challenge for 3D structural analysis due to its inherent flexibility. In this work, we gained insight into the structure of full-length wild-type human p53 in solution by chemical cross-linking/MS. This approach allowed us obtaining structural information of free wild-type p53 in solution without making use of the ultrastable quadruple p53 variant. The cross-links within one p53 monomer are in good agreement with the small-angle X-ray scattering based model of full-length p53. Our cross-linking data between different p53 molecules in the tetramer however indicate a large degree of flexibility in the C-terminal regulatory domain of full-length p53 in the absence of DNA. The cross-links suggest that the C-terminal regulatory domains are much closer to each other, resulting in a more compact arrangement of the p53 tetramer than perceived by the small-angle X-ray scattering model.
Collapse
Affiliation(s)
- Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
29
|
Scott D, Layfield R, Oldham NJ. Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5. Proteomics 2015; 15:2835-41. [PMID: 25641936 DOI: 10.1002/pmic.201400457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/23/2014] [Accepted: 01/14/2015] [Indexed: 11/05/2022]
Abstract
Many proteins exhibit conformation flexibility as part of their biological function, whether through the presence of a series of well-defined states or by the existence of intrinsic disorder. Ion mobility spectrometry, in combination with MS (IM-MS), offers a rapid and sensitive means of probing ensembles of protein structures through measurement of gas-phase collisional cross sections. We have applied IM-MS analysis to the multidomain deubiquitinating enzyme ubiquitin specific protease 5 (USP5), which is believed to exhibit significant conformational flexibility. Native ESI-MS measurement of the 94-kDa USP5 revealed two distinct charge-state distributions: [M + 17H](+) to [M + 21H](+) and [M + 24H](+) to [M + 29H](+). The collisional cross sections of these ions revealed clear groupings of 52 ± 4 nm(2) for the lower charges and 66 ± 6 nm(2) for the higher charges. Molecular dynamics simulation of a compact form of USP5, based on a crystal structure, produced structures of 53-54 nm(2) following 2 ns in the gas phase, while simulation of an extended form (based on small-angle X-ray scattering data) led to structures of 64 nm(2). These data demonstrate that IM-MS is a valuable tool in studying proteins with different discrete conformational states.
Collapse
Affiliation(s)
- Daniel Scott
- School of Chemistry, University of Nottingham, Nottingham, UK.,School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Robert Layfield
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
Dickinson ER, Jurneczko E, Pacholarz KJ, Clarke DJ, Reeves M, Ball KL, Hupp T, Campopiano D, Nikolova PV, Barran PE. Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry. Anal Chem 2015; 87:3231-8. [PMID: 25629302 DOI: 10.1021/ac503720v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermally induced conformational transitions of three proteins of increasing intrinsic disorder-cytochrome c, the tumor suppressor protein p53 DNA binding domain (p53 DBD), and the N-terminus of the oncoprotein murine double minute 2 (NT-MDM2)-have been studied by native mass spectrometry and variable-temperature drift time ion mobility mass spectrometry (VT-DT-IM-MS). Ion mobility measurements were carried out at temperatures ranging from 200 to 571 K. Multiple conformations are observable over several charge states for all three monomeric proteins, and for cytochrome c, dimers of significant intensity are also observed. Cytochrome c [M + 5H](5+) ions present in one conformer of CCS ∼1200 Å(2), undergoing compaction in line with the reported Tmelt = 360.15 K before slight unfolding at 571 K. The more extended [M + 7H](7+) cytochrome c monomer presents as two conformers undergoing similar compaction and structural rearrangements, prior to thermally induced unfolding. The [D + 11H](11+) dimer presents as two conformers, which undergo slight structural compaction or annealing before dissociation. p53 DBD follows a trend of structural collapse before an increase in the observed collision cross section (CCS), akin to that observed for cytochrome c but proceeding more smoothly. At 300 K, the monomeric charge states present in two conformational families, which compact to one conformer of CCS ∼1750 Å(2) at 365 K, in line with the low solution Tmelt = 315-317 K. The protein then extends to produce either a broad unresolved CCS distribution or, for z > 9, two conformers. NT-MDM2 exhibits a greater number of structural rearrangements, displaying charge-state-dependent unfolding pathways. DT-IM-MS experiments at 200 K resolve multiple conformers. Low charge state species of NT-MDM2 present as a single compact conformational family centered on CCS ∼1250 Å(2) at 300 K. This undergoes conformational tightening in line with the solution Tmelt = 348 K before unfolding at the highest temperatures. The more extended charge states present in two or more conformers at room temperature, undergoing thermally induced unfolding before significant structural collapse or annealing at high temperatures. Variable-temperature IM-MS is here shown to be an exciting approach to discern protein unfolding pathways for conformationally diverse proteins.
Collapse
Affiliation(s)
- Eleanor R Dickinson
- †Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Ewa Jurneczko
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Kamila J Pacholarz
- †Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - David J Clarke
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Matthew Reeves
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Kathryn L Ball
- §Institute of Genetics and Molecular Medicine, CRUK Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Ted Hupp
- §Institute of Genetics and Molecular Medicine, CRUK Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Dominic Campopiano
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Penka V Nikolova
- ∥School of Biomedical Science, Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Perdita E Barran
- †Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
31
|
Rapid profiling and identification of anthocyanins in fruits with Hadamard transform ion mobility mass spectrometry. Food Chem 2015; 177:225-32. [PMID: 25660880 DOI: 10.1016/j.foodchem.2015.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 10/23/2014] [Accepted: 01/03/2015] [Indexed: 11/23/2022]
Abstract
The use of Hadamard transform ion mobility mass spectrometry (HT-IMMS) in the profiling of anthocyanins from different fruits is presented. Samples extracted with acidic methanol and purified with solid phase extraction were analyzed with direct IMMS infusion. The separation of various anthocyanins was achieved within 30s with resolving powers up to 110. The ion mobility drift times correlated with their mass-to-charge ratios with a correlation coefficient of 0.979 to produce a trend line that was characteristic for anthocyanins. Isomers with the same anthocyanidin but different hexoses were differentiated by ion mobility spectrometry. Furthermore, mobility separated ions underwent collision induced dissociation at the IMMS interface to provide MS/MS spectra. These fragmentation spectra aided in the identification of anthocyanidins via the loss of the saccharide groups. IMMS appears to be a rapid and efficient approach for profiling and identifying anthocyanins.
Collapse
|
32
|
De Gieter S, Konijnenberg A, Talavera A, Butterer A, Haesaerts S, De Greve H, Sobott F, Loris R, Garcia-Pino A. The intrinsically disordered domain of the antitoxin Phd chaperones the toxin Doc against irreversible inactivation and misfolding. J Biol Chem 2014; 289:34013-23. [PMID: 25326388 PMCID: PMC4256337 DOI: 10.1074/jbc.m114.572396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The toxin Doc from the phd/doc toxin-antitoxin module targets the cellular translation machinery and is inhibited by its antitoxin partner Phd. Here we show that Phd also functions as a chaperone, keeping Doc in an active, correctly folded conformation. In the absence of Phd, Doc exists in a relatively expanded state that is prone to dimerization through domain swapping with its active site loop acting as hinge region. The domain-swapped dimer is not capable of arresting protein synthesis in vitro, whereas the Doc monomer is. Upon binding to Phd, Doc becomes more compact and is secured in its monomeric state with a neutralized active site.
Collapse
Affiliation(s)
- Steven De Gieter
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Ariel Talavera
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Annika Butterer
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Sarah Haesaerts
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Henri De Greve
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels, Belgium, and
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and Center for Proteomics (CFP-CeProMa), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Remy Loris
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Abel Garcia-Pino
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe),
| |
Collapse
|
33
|
Beveridge R, Covill S, Pacholarz KJ, Kalapothakis JMD, MacPhee CE, Barran PE. A Mass-Spectrometry-Based Framework To Define the Extent of Disorder in Proteins. Anal Chem 2014; 86:10979-91. [DOI: 10.1021/ac5027435] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca Beveridge
- Manchester
Institute of Biotechnology, Michael Barber Centre for Collaborative
Mass Spectrometry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sam Covill
- School
of Chemistry, University of Edinburgh, Joseph Black Building, West Mains
Road, Edinburgh EH9 3JJ, United Kingdom
| | - Kamila J. Pacholarz
- School
of Chemistry, University of Edinburgh, Joseph Black Building, West Mains
Road, Edinburgh EH9 3JJ, United Kingdom
| | - Jason M. D. Kalapothakis
- School
of Chemistry, University of Edinburgh, Joseph Black Building, West Mains
Road, Edinburgh EH9 3JJ, United Kingdom
- School
of Physics and Astronomy, University of Edinburgh, James Clerk
Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Cait E. MacPhee
- School
of Physics and Astronomy, University of Edinburgh, James Clerk
Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Perdita E. Barran
- Manchester
Institute of Biotechnology, Michael Barber Centre for Collaborative
Mass Spectrometry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
34
|
Chen SH, Chen L, Russell DH. Metal-induced conformational changes of human metallothionein-2A: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J Am Chem Soc 2014; 136:9499-508. [PMID: 24918957 DOI: 10.1021/ja5047878] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electrospray ionization ion mobility mass spectrometry (ESI IM-MS) and molecular dynamics (MD) simulations reveal new insights into metal-induced conformational changes and the mechanism for metalation of human metallothionein-2A (MT), an intrinsically disordered protein. ESI of solutions containing apoMT yields multiple charge states of apoMT; following addition of Cd(2+) to the solution, ESI yields a range of CdiMT (i = 1-7) product ions (see Chen et al. Anal. Chem. 2013, 85, 7826-33). Ion mobility arrival-time distributions (ATDs) for the CdiMT (i = 0-7) ions reveal a diverse population of ion conformations. The ion mobility data clearly show that the conformational diversity for apoMT and partially metalated ions converges toward ordered, compact conformations as the number of bound Cd(2+) ions increase. MD simulations provide additional information on conformation candidates of CdiMT (i = 0-7) that supports the convergence of distinct conformational populations upon metal binding. Integrating the IM-MS and MD data provides a global view that shows stepwise conformational transition of an ensemble as a function of metal ion bound. ApoMT is comprised of a wide range of conformational states that populate between globular-like compact and coil-rich extended conformations. During the initial stepwise metal addition (number of metal ions bound i = 1-3), the metal ions bind to different sites to yield distinct conformations, whereas for i > 4, the conformational changes appear to be domain-specific, attributed to different degrees of disorder of the β domain; the β domain becomes more ordered as additional metal ions are added, promoting convergences to the dumbbell-shaped conformation.
Collapse
Affiliation(s)
- Shu-Hua Chen
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | |
Collapse
|