1
|
Priyadarshini E, Minzar M, Pandey S, Rawat K. Synergistic reduction of nitrophenols by Au-CDs nanoconjugates with NaBH 4. NANOTECHNOLOGY 2024; 35:275101. [PMID: 38502954 DOI: 10.1088/1361-6528/ad355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Developing sustainable and innovative approaches for the efficient reduction of nitrophenols is crucial for environmental remediation, for managing health concerns posed by their widespread presence as hazardous pollutants in industrial effluents and contaminated water. We report the use of 12.9 ± 1 nm (TEM data) sized gold carbon dot nanoconjugates (Au@CDs) for catalytic conversion of o, m, p-nitrophenols to aminophenols by sodium borohydride. A simple approach was followed to synthesize ultra-small and highly stable Au@CDs, using citric acid and PEG as reducing and stabilizing agents. X-ray diffraction analysis verified the formation of nano-crystalline nanoconjugates. These nanoconjugates showed a remarkable catalytic activity in the range of 0.22-0.33 s-1(varying with nanoconjugate concentration) which was much higher compared to conventional chemical methods of reduction. All the catalytic reaction experiments were performed at room temperature (27 ± 2 °C). Furthermore, an increase in rate constant was observed with increasing concentration of nanoconjugates. The catalytic activity of Au@CDs nanoconjugates was observed to be in order of m-nitrophenol > o-nitrophenol > p-nitrophenol with apparent rate constant (kaap) values of 0.068, 0.043 and 0.031, respectively. Comparative analysis with GNPs, CDs and Au@CDs nanoconjugates stated that the nanoconjugates had superior catalytic activity. The research can have significant implications in the development of new strategies for environmental remediation and biomedical applications.
Collapse
Affiliation(s)
| | - Mohd Minzar
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Kamla Rawat
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Kuila S, Singh AK, Shrivastava A, Dey S, Singha T, Roy L, Satpati B, Nanda J. Probing Molecular Chirality on the Self-Assembly and Gelation of Naphthalimide-Conjugated Dipeptides. J Phys Chem B 2023. [PMID: 37196104 DOI: 10.1021/acs.jpcb.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a β-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-βAla-lVal-OMe (NLV) and NMI-βAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-βAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Tukai Singha
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
3
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
4
|
Misra S, Singh P, Singh AK, Roy L, Kuila S, Dey S, Mahapatra AK, Nanda J. Tuning of the Supramolecular Helicity of Peptide-Based Gel Nanofibers. J Phys Chem B 2022; 126:10882-10892. [PMID: 36516185 DOI: 10.1021/acs.jpcb.2c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helical supramolecular architectures play important structural and functional roles in biological systems. The helicity of synthetic molecules can be tuned mainly by the chiral manipulation of the system. However, tuning of helicity by the achiral unit of the molecules is less studied. In this work, the helicity of naphthalimide-capped peptide-based gel nanofibers is tuned by the alteration of methylene units present in the achiral amino acid. The inversion of supramolecular helicity has been extensively studied by CD spectroscopy and morphological analysis. The density functional theory (DFT) study indicates that methylene spacers influence the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that regulates the helicity. This work illustrates a new approach to tuning the supramolecular chirality of self-assembled biomaterials.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.,Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
5
|
Liu L, Wu Z, Zheng Z, Zhou Q, Chen K, Yin P. Polymerization-induced microphase separation of polymer-polyoxometalate nanocomposites for anhydrous solid state electrolytes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zhang J, Zhang M, Dong Y, Gu W, Liu T, Xing X, Song J, Wang M, Han C. Molecular Design, Supramolecular Assembly, and Excellent Dye Adsorption Capacity of Natural Rigid Dehydroabietic Acid-Tailored Amide Organogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8918-8927. [PMID: 35819938 DOI: 10.1021/acs.langmuir.2c01068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is very appealing to synthesize functional soft materials from natural and abundant plant diterpenes because they have conformationally rigid and chiral properties. Herein, dehydroabietic-based monoamide (DA-1) and diamide (DA-2) were designed by introducing device interactions, π-π stacking and hydrogen bonding, with an aromatic group, C═O, and N-H. DA-1 and DA-2 can be gelled in a mixed solvent and a single solvent, respectively. Several novel supramolecular organic gels including highly entangled three-dimensional networks composed of rods or fibers were constructed. Interestingly, DA-2 forms a helical structure that is right-handed under the cooperative control of the solvent and the rigid structure of rosin. Gel formation was primarily driven by hydrogen bonding, π-π stacking, and van der Waals force. Combined with Gaussian calculation and X-ray diffraction (XRD), we established pack patterns for each system, revealing the roles played by rosin and amide groups. Moreover, the carbon tetrachloride gel of DA-2 can effectively remove Congo red in an aqueous solution, and the removal rate can reach 98.4%. This research explores an efficient organic gel for adsorbing Congo red dye with the secretions of pine trees.
Collapse
Affiliation(s)
- Junjie Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ming Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Dong
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wanting Gu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tong Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinwei Xing
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jie Song
- Department of Natural Sciences, University of Michigan-Flint, 303 E. Kearsley Street, Flint, Michigan 48502, United States
| | - Maogong Wang
- CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
| | - Chunrui Han
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Misra S, Mukherjee S, Ghosh A, Singh P, Mondal S, Ray D, Bhattacharya G, Ganguly D, Ghosh A, Aswal VK, Mahapatra AK, Satpati B, Nanda J. Single Amino-Acid Based Self-Assembled Biomaterials with Potent Antimicrobial Activity. Chemistry 2021; 27:16744-16753. [PMID: 34468048 DOI: 10.1002/chem.202103071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The design and development of soft biomaterials based on amino acid and short-peptide have gained much attention due to their potent biomedical applications. A slight alteration in the side-chain of single amino acid in a peptide or protein sequence has a huge impact on the structure and function. Phenylalanine is one of the most studied amino acids, which contains an aromatic phenyl group connected through a flexible -CH2 - unit. In this work, we have examined whether flexibility and aromatic functionality of phenylalanine (Phe) are important in gel formation of model gelator Fmoc-Phe-OH or not. To examine this hypothesis, we synthesized Fmoc-derivatives of three analogues unnatural amino acids including cyclohexylalanine, phenylglycine, and homophenylalanine; which are slightly varied from Phe. Interestingly, all these three new analogues formed hydrogels in phosphate buffer at pH 7.0 having different gelation efficacy and kinetics. This study suggests that the presence of aromatic side-chain and flexibility are not mandatory for the gelation of this model gelator. Newly synthesized unnatural amino acid derivatives have also exhibited promising antimicrobial activity towards gram-positive bacteria by inhibiting cellular oxygen consumption. We further determined the biocompatibility of these amino acid derivatives by using a hemolysis assay on human blood cells. Overall studies described the development of single amino acid-based new injectable biomaterials with improved antimicrobial activity by the slight alteration in the side-chain of amino acid.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | | | - Anamika Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Sanjoy Mondal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | | | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, Kolkata, 700091, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, PIN-734301, India
| |
Collapse
|
8
|
Hu J, Cai L, Wang H, Chen K, Yin P. Uranyl Peroxide Nanocage Assemblies for Solid-State Electrolytes. ACS APPLIED NANO MATERIALS 2021; 4:3597-3603. [DOI: 10.1021/acsanm.1c00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Jie Hu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Linkun Cai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huihui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125889] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
11
|
Ma L, Xu Z, Chen Y, Zhang M, Yin J, Li M, Chen K, Yin P. Sub-nanoscaled Metal Oxide Cluster-Integrated Polymer Network for Quasi-Homogeneous Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38655-38661. [PMID: 32846496 DOI: 10.1021/acsami.0c09666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simultaneous improvement of catalytic activity and recyclability of metal oxides is exciting, however challenging, due to the paradox for particle size requirements. Herein, we report the design of polymer nanocomposites (PNCs) by covalently integrating a sub-nanoscaled metal oxide cluster (∼0.7 nm) into a polymer network with superelasticity. Due to the ultrasmall sizes of loaded clusters and the high swelling ratios (SRs) of PNCs, the swelled organogels from PNCs claim similar catalytic efficiencies to homogeneous catalysts, while their recyclability can be simply achieved after the catalytic reactions. Thanks to their robust mechanical properties, the PNCs can be processed into microgel particles for column reactors, enabling large-scale and continuous-flow catalysis.
Collapse
Affiliation(s)
- Litao Ma
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zhewei Xu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yidan Chen
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jiafu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
12
|
Singh P, Misra S, Sepay N, Mondal S, Ray D, Aswal VK, Nanda J. Self-assembling behaviour of a modified aromatic amino acid in competitive medium. SOFT MATTER 2020; 16:6599-6607. [PMID: 32608458 DOI: 10.1039/d0sm00584c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aromatic amino acid, specifically phenylalanine (Phe), is one of the most studied building blocks in peptide synthesis due to its importance in biology. It is reported in the literature that Phe-containing peptides have a high tendency to form different self-assembled materials due to efficient aromatic-aromatic interactions. In this article, we have tuned the supramolecular interactions of phenylalanine by making it electron-deficient upon introduction of the nitro group in the ring. The presence of the nitro group has a profound influence on the self-assembly process. It has been observed that 4-nitrophenylalanine (4NP) is a highly efficient gelator compared with the native phenylalanine in DMSO solvent in terms of minimum gelation concentration and it forms hydrogen bonding mediated crystals in water. The change of self-assembling patterns of 4NP in these solvents was studied using X-ray diffraction, UV-Vis spectroscopy, FE-SEM and other techniques. With the help of different experimental data and density functional theory (DFT), we have simulated the theoretical structure of 4NP in DMSO. The theoretical structure of 4NP in DMSO is different compared with that of crystals in water. We then studied the self-assembly process of 4NP in the mixed solvent of DMSO (polar aprotic) and water (polar protic). Different competitive non-covalent interactions of solvents as well as the ratio of the solvent mixture guide the final self-assembly state of 4NP.
Collapse
Affiliation(s)
- Pijush Singh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah-711103, West Bengal, India.
| | - Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah-711103, West Bengal, India.
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700032, India
| | - Sanjoy Mondal
- Polymer Science Unit, Indian association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Jayanta Nanda
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah-711103, West Bengal, India.
| |
Collapse
|
13
|
Piras CC, Mahon CS, Smith DK. Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. Chemistry 2020; 26:8452-8457. [PMID: 32294272 PMCID: PMC7384024 DOI: 10.1002/chem.202001349] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Indexed: 12/28/2022]
Abstract
This Full Paper reports the formation of silver (Ag) NPs within spatially resolved two-component hydrogel beads, which combine a low-molecular-weight gelator (LMWG) DBS-CONHNH2 and a polymer gelator (PG) calcium alginate. The AgNPs are formed through in situ reduction of AgI , with the resulting nanoparticle-loaded gels being characterised in detail. The antibacterial activity of the nanocomposite gel beads was tested against two drug-resistant bacterial strains, often associated with hospital-acquired infections: vancomycin-resistant Enterococcus faecium (VRE) and Pseudomonas aeruginosa (PA14), and the AgNP-loaded gels showed good antimicrobial properties against both types of bacteria. It is suggested that the gel bead format of these AgNP-loaded hybrid hydrogels makes them promising versatile materials for potential applications in orthopaedics or wound healing.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Clare S. Mahon
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
14
|
Baysal T, Noor N, Demir A. Nanofibrous MgO composites: structures, properties, and applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1759212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tuğba Baysal
- Nanoscience and Nanoengineering Programme, Istanbul Technical University, Istanbul, Turkey
- Institute of Nanotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Nuruzzaman Noor
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ali Demir
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
16
|
Xu X, Nie Z, Zheng Z, Zhu L, Zhan X. Effect of different nitrogen sources on the viscosity and rheological properties of welan gum produced by
Sphingomonas
sp. ATCC 31555. J Texture Stud 2020; 51:642-649. [DOI: 10.1111/jtxs.12519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaopeng Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| | - Zuoming Nie
- College of Life SciencesZhejiang Sci‐Tech University Hangzhou China
| | - Zhiyong Zheng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Li Zhu
- Jiangsu Rayguang Biotech Company, Ltd. Wuxi China
| | - Xiaobei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| |
Collapse
|
17
|
Xu S, Jia X, Lu J, Zheng L, Lv K, Shu Y, Sun J. Pteridine derivatives: novel low-molecular-weight organogelators and their piezofluorochromism. NEW J CHEM 2020. [DOI: 10.1039/c9nj05922a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, π-conjugated compounds based on pteridine derivatives were synthesized and their self-assembling behaviors in a variety of organic solvents and piezofluorochromism were studied.
Collapse
Affiliation(s)
- Shenzheng Xu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Xiaoyu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Jiaxin Lu
- Department of Chemistry
- College of Science
- Northeast Forestry University
- Harbin 150040
- P. R. China
| | - Lianyou Zheng
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University
- The College of Chemistry and The School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- P. R. China
| | - Kuo Lv
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Yuanhong Shu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
18
|
Singh P, Misra S, Das A, Roy S, Datta P, Bhattacharjee G, Satpati B, Nanda J. Supramolecular Hydrogel from an Oxidized Byproduct of Tyrosine. ACS APPLIED BIO MATERIALS 2019; 2:4881-4891. [PMID: 35021488 DOI: 10.1021/acsabm.9b00637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pijush Singh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Subhasish Roy
- Department of Chemistry, BITS Pilani Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Gourab Bhattacharjee
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064, India
| | - Jayanta Nanda
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| |
Collapse
|
19
|
Basavalingappa V, Guterman T, Tang Y, Nir S, Lei J, Chakraborty P, Schnaider L, Reches M, Wei G, Gazit E. Expanding the Functional Scope of the Fmoc-Diphenylalanine Hydrogelator by Introducing a Rigidifying and Chemically Active Urea Backbone Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900218. [PMID: 31316891 PMCID: PMC6619482 DOI: 10.1002/advs.201900218] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Indexed: 05/22/2023]
Abstract
Peptidomimetic low-molecular-weight hydrogelators, a class of peptide-like molecules with various backbone amide modifications, typically give rise to hydrogels of diverse properties and increased stability compared to peptide hydrogelators. Here, a new peptidomimetic low-molecular-weight hydrogelator is designed based on the well-studied N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) peptide by replacing the amide bond with a frequently employed amide bond surrogate, the urea moiety, aiming to increase hydrogen bonding capabilities. This designed ureidopeptide, termed Fmoc-Phe-NHCONH-Phe-OH (Fmoc-FuF), forms hydrogels with improved mechanical properties, as compared to those formed by the unmodified Fmoc-FF. A combination of experimental and computational structural methods shows that hydrogen bonding and aromatic interactions facilitate Fmoc-FuF gel formation. The Fmoc-FuF hydrogel possesses properties favorable for biomedical applications, including shear thinning, self-healing, and in vitro cellular biocompatibility. Additionally, the Fmoc-FuF, but not Fmoc-FF, hydrogel presents a range of functionalities useful for other applications, including antifouling, slow release of urea encapsulated in the gel at a high concentration, selective mechanical response to fluoride anions, and reduction of metal ions into catalytic nanoparticles. This study demonstrates how a simple backbone modification can enhance the mechanical properties and functional scope of a peptide hydrogel.
Collapse
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Tom Guterman
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Yiming Tang
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (MOE),and Collaborative Innovation Center of Advanced Microstructures (Nanjing)Fudan UniversityShanghai200433P. R. China
| | - Sivan Nir
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem91905Israel
| | - Jiangtao Lei
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (MOE),and Collaborative Innovation Center of Advanced Microstructures (Nanjing)Fudan UniversityShanghai200433P. R. China
| | - Priyadarshi Chakraborty
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Meital Reches
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem91905Israel
| | - Guanghong Wei
- Department of PhysicsState Key Laboratory of Surface PhysicsKey Laboratory for Computational Physical Sciences (MOE),and Collaborative Innovation Center of Advanced Microstructures (Nanjing)Fudan UniversityShanghai200433P. R. China
| | - Ehud Gazit
- Department of Molecular Microbiology and BiotechnologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
20
|
Kulkarni K, Habila N, Del Borgo MP, Aguilar MI. Novel Materials From the Supramolecular Self-Assembly of Short Helical β 3-Peptide Foldamers. Front Chem 2019; 7:70. [PMID: 30828574 PMCID: PMC6384263 DOI: 10.3389/fchem.2019.00070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Self-assembly is the spontaneous organization of small components into higher-order structures facilitated by the collective balance of non-covalent interactions. Peptide-based self-assembly systems exploit the ability of peptides to adopt distinct secondary structures and have been used to produce a range of well-defined nanostructures, such as nanotubes, nanofibres, nanoribbons, nanospheres, nanotapes, and nanorods. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been reported to undergo supramolecular self-assembly, and have been used to produce materials-such as hydrogels-that are tailored for applications in tissue engineering, cell culture and drug delivery. This review provides an overview of self-assembled peptide nanostructures obtained via the supramolecular self-assembly of short β-peptide foldamers with a specific focus on N-acetyl-β3-peptides and their applications as bio- and nanomaterials.
Collapse
Affiliation(s)
| | | | - Mark P. Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Becher TB, Braga CB, Bertuzzi DL, Ramos MD, Hassan A, Crespilho FN, Ornelas C. The structure-property relationship in LAPONITE® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. SOFT MATTER 2019; 15:1278-1289. [PMID: 30465687 DOI: 10.1039/c8sm01965g] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rheology, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) analysis, zeta potential measurement, scanning electron microscopy (SEM), and micro-FTIR and absorbance spectroscopy were used to enlighten the controversial literature about LAPONITE® materials. Our data suggest that pristine LAPONITE® in water does not form hydrogels induced by the so-called "house of cards" assembly, but rather forms Wigner glasses governed by repulsive forces. Ionic interactions between anisotropic LAPONITE® nanodiscs, sodium polyacrylate and inorganic salts afforded hydrogels that were transparent, self-standing, moldable, strong, and biocompatible with shear-thinning and self-healing behavior. An extensive study on the role of salts in the gelification process dictates a trend that relates the valence of cations with the viscoelastic properties of the bulk material (G' values follow the trend, monovalent < divalent < trivalent). These hydrogels present G' values up to 5.1 × 104 Pa, which are considered high values for non-covalent hydrogels. Hydrogels crosslinked with sodium phosphate salts are biocompatible, and might be valid candidates for injectable drug delivery systems due to their shear-thinning behavior with rapid self-healing after injection.
Collapse
Affiliation(s)
- Tiago B Becher
- Institute of Chemistry, University of Campinas - Unicamp, Campinas, 13083-861, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhai Z, Wu Q, Li J, Zhou B, Shen J, Farooqi ZH, Wu W. Enhanced catalysis of gold nanoparticles in microgels upon on site altering the gold–polymer interface interaction. J Catal 2019. [DOI: 10.1016/j.jcat.2018.10.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Murali DM, Shanmugam G. The aromaticity of the phenyl ring imparts thermal stability to a supramolecular hydrogel obtained from low molecular mass compound. NEW J CHEM 2019. [DOI: 10.1039/c9nj01781j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using Fmoc-phenylalanine and Fmoc-cyclohexylalanine, we show that the aromaticity of the phenyl ring imparts significant thermal stability to a supramolecular hydrogel system and its significance depends on the method of inducing hydrogelation.
Collapse
Affiliation(s)
- Dhanya Mahalakshmi Murali
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
24
|
Noura S, Ghorbani M, Zolfigol MA, Narimani M, Yarie M, Oftadeh M. Biological based (nano) gelatoric ionic liquids (NGILs): Application as catalysts in the synthesis of a substituted pyrazole via vinylogous anomeric based oxidation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Gayen K, Basu K, Bairagi D, Castelletto V, Hamley IW, Banerjee A. Amino-Acid-Based Metallo-Hydrogel That Acts Like an Esterase. ACS APPLIED BIO MATERIALS 2018; 1:1717-1724. [DOI: 10.1021/acsabm.8b00513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whitenights, Reading RG6, 6AD, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whitenights, Reading RG6, 6AD, United Kingdom
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
26
|
Reddy SMM, Augustine G, Ayyadurai N, Shanmugam G. Biocytin-Based pH-Stimuli Responsive Supramolecular Multivariant Hydrogelator for Potential Applications. ACS APPLIED BIO MATERIALS 2018; 1:1382-1388. [DOI: 10.1021/acsabm.8b00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Samala Murali Mohan Reddy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), CLRI campus, Adyar, Chennai 600020, India
| | - George Augustine
- Biochemistry & Biotechnology Laboratory, CSIR, Adyar, Chennai 600020, India
| | | | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), CLRI campus, Adyar, Chennai 600020, India
| |
Collapse
|
27
|
Arivazhagan C, Satapathy S, Jana A, Malakar P, Prasad E, Ghosh S. Phenothiazine-Based Oligo(p
-phenylenevinylene)s: Substituents Affected Self-Assembly, Optical Properties, and Morphology-Induced Transport. Chemistry 2018; 24:13213-13222. [DOI: 10.1002/chem.201801810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Indexed: 01/05/2023]
Affiliation(s)
- C. Arivazhagan
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Sitakanta Satapathy
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Arijit Jana
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Partha Malakar
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Edamana Prasad
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| | - Sundargopal Ghosh
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 India
| |
Collapse
|
28
|
Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, Ou C, Chen M. Folic Acid Derived Hydrogel Enhances the Survival and Promotes Therapeutic Efficacy of iPS Cells for Acute Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24459-24468. [PMID: 29974744 DOI: 10.1021/acsami.8b08659] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stem cell therapy has obtained extensive consensus to be an effective method for post myocardial infarction (MI) intervention. Induced pluripotent stem (iPS) cells, which are able to differentiate into multiple cell types, have the potential to generate cardiovascular lineage cells for myocardial repair after ischemic damage, but their poor retention rate significantly hinders the therapeutic efficacy. In the present study, we developed a supramolecular hydrogel which is formed by the self-assembly of folic acid (FA)-modified peptide via a biocompatible method (glutathione reduction) and suitable for cell encapsulation and transplantation. The iPS cells labeled with CM-Dil were transplanted into the MI hearts of mice with or without FA hydrogel encapsulation. The results corroborated that the FA hydrogel significantly improved the retention and survival of iPS cells in MI hearts post injection, leading to augmentation of the therapeutic efficacy of iPS cells including better cardiac function and much less adverse heart remodeling, by subsequent differentiation toward cardiac cells and stimulation of neovascularization. This study reported a novel supramolecular hydrogel based on FA-peptides capable of improving the therapeutic capacity of iPS cells, which held big potential in the treatment of MI.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yongquan Hua
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Min Ye
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Caiwen Ou
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Minsheng Chen
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| |
Collapse
|
29
|
Sawada H, Yamanaka M. Synthesis of a Bis-Urea Dimer and Its Effects on the Physical Properties of an Amphiphilic Tris-Urea Supramolecular Hydrogel. Chem Asian J 2018; 13:929-933. [PMID: 29512335 DOI: 10.1002/asia.201800217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Indexed: 12/20/2022]
Abstract
The successful development of stiff supramolecular gels is an important goal toward their practical application. One approach to stiffen supramolecular gels is to introduce covalent cross-links. The bis-urea dimer 2, having a structure similar to that of the low-molecular-weight gelator 1, was synthesized. Supramolecular hydrogels were formed from mixtures of 1 and 2 in appropriate ratios, with 2 acting as a covalent cross-linker to connect the fibrous aggregates formed by the self-assembly of 1. The introduction of these covalent cross-links greatly influenced the dynamic viscoelasticity of the supramolecular hydrogels. In the supramolecular hydrogel of 1 mixed with 5 % 2, the storage modulus was 1.35 times higher than that of the supramolecular hydrogel of 1 alone, and the crossover strain was extended from 5 % to over 20 %. The supramolecular hydrogel of 1 and 2 was free-standing and supported 13 times its own weight.
Collapse
Affiliation(s)
- Hiroki Sawada
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masamichi Yamanaka
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
30
|
Hata Y, Sawada T, Sakai T, Serizawa T. Enzyme-Catalyzed Bottom-Up Synthesis of Mechanically and Physicochemically Stable Cellulose Hydrogels for Spatial Immobilization of Functional Colloidal Particles. Biomacromolecules 2018; 19:1269-1275. [DOI: 10.1021/acs.biomac.8b00092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Takamasa Sakai
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
31
|
Paul S, Gayen K, Nandi N, Banerjee A. Carbon nanodot-induced gelation of a histidine-based amphiphile: application as a fluorescent ink, and modulation of gel stiffness. Chem Commun (Camb) 2018; 54:4341-4344. [DOI: 10.1039/c7cc09824c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study demonstrates carbon dots induced hydrogelation of an amino acid based amphiphile and the potential use of this gel as a fluorescent ink.
Collapse
Affiliation(s)
- Subir Paul
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Kousik Gayen
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Nibedita Nandi
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Arindam Banerjee
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
32
|
Javed R, Shah LA, Sayed M, Khan MS. Uptake of heavy metal ions from aqueous media by hydrogels and their conversion to nanoparticles for generation of a catalyst system: two-fold application study. RSC Adv 2018; 8:14787-14797. [PMID: 35541309 PMCID: PMC9079941 DOI: 10.1039/c8ra00578h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels, respectively. The synthesized hydrogels have the ability to be used as absorbents for the removal of selected heavy metal ions such as Cu2+, Co2+, Ni2+ and Zn2+ from aqueous media. Absorption studies revealed that the absorption of metal ions by the hydrogels followed the order Cu2+ > Ni2+ > Co2+ > Zn2+. For the mechanism of absorption, both Freundlich and Langmuir absorption isotherms were applied. Metal ion entrapped hydrogels were treated using an in situ chemical reduction method in order to convert the metal ions into metal nanoparticles for the synthesis of hybrid hydrogels. The synthesis and morphology were confirmed using FT-IR and SEM, while the absorbed metal amounts were measured using TGA and AAS. The hybrid hydrogels were further used as catalysts for the reduction of macro (methylene blue, methyl orange and congo red) and micro (4-nitrophenol and nitrobenzene) pollutants from the aqueous environment. The catalytic performance and re-usability of the hybrid hydrogels were successfully investigated. Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels respectively.![]()
Collapse
Affiliation(s)
- Rida Javed
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Luqman Ali Shah
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Murtaza Sayed
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Muhammad Saleem Khan
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| |
Collapse
|
33
|
Chen S, Chang A, Lin X, Zhai Z, Lu F, Zhou S, Guo H, Wu W. Synthesis and characterization of ureido-derivatized UCST-type poly(ionic liquid) microgels. Polym Chem 2018. [DOI: 10.1039/c8py00077h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ureido-derivatized poly(ionic liquid) microgels, which possess an upper critical solution temperature and can be used in catalytic esterification, are synthesized.
Collapse
Affiliation(s)
- Shoumin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Aiping Chang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xuezhen Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Zhenghao Zhai
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Fan Lu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Shiming Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei 230026
- China
| | - Haoxin Guo
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
34
|
Chen S, Lin X, Zhai Z, Lan R, Li J, Wang Y, Zhou S, Farooqi ZH, Wu W. Synthesis and characterization of CO2-sensitive temperature-responsive catalytic poly(ionic liquid) microgels. Polym Chem 2018. [DOI: 10.1039/c8py00352a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A class of poly(ionic liquid) microgels exhibiting CO2-switchable temperature-responsive volume phase transition behavior have been synthesized and used for CO2 fixation.
Collapse
Affiliation(s)
- Shoumin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xuezhen Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Zhenghao Zhai
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Ruyue Lan
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Jin Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Yusong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
- China
| | - Shiming Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
- China
| | | | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
35
|
Ma X, Liu S, Zhang Z, Niu Y, Wu J. A novel thermo-responsive supramolecular organogel based on dual acylhydrazone: fluorescent detection for Al 3+ ions. SOFT MATTER 2017; 13:8882-8885. [PMID: 29167852 DOI: 10.1039/c7sm02141k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new dual acylhydrazone-functionalized gelator (L) has been synthesized, which behaves as a thermal-responsive supramolecular organogel (L-gel) in DMSO. This L-gel exhibits very weak fluorescence based on the photoinduced electron transfer (PET) mechanism. The L-gel can recognize Al3+ and assemble into an enhanced blue-light-emitting supramolecular metallogel (Al@gel).
Collapse
Affiliation(s)
- Xinxian Ma
- School of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Xiong W, Zhou H, Zhang C, Lu H. An amino acid-based gelator for injectable and multi-responsive hydrogel. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Wang Z, Cai Y, Yi L, Gao J, Yang Z. Supramolecular Hydrogels of Indole-Capped Short Peptides as Vaccine Adjuvants. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhongyan Wang
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 China
- College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yanbin Cai
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 China
- College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Linan Yi
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 China
- College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 China
- College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
38
|
Becher TB, Ornelas C. Nonswellable Injectable Hydrogels Self-Assembled Through Non-Covalent Interactions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tiago B. Becher
- Institute of Chemistry; University of Campinas, UNICAMP; Campinas 13083-970, SP Brazil
| | - Catia Ornelas
- Institute of Chemistry; University of Campinas, UNICAMP; Campinas 13083-970, SP Brazil
| |
Collapse
|
39
|
Zhan J, Cai Y, Ji S, He S, Cao Y, Ding D, Wang L, Yang Z. Spatiotemporal Control of Supramolecular Self-Assembly and Function. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10012-10018. [PMID: 28252276 DOI: 10.1021/acsami.7b00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by the enzyme also significantly affect the outcome of self-assembly, which has not been reported yet. In this work, we demonstrated for the first time a spatiotemporal control of enzyme-triggered peptide self-assembly. By simply adjusting the temperature, we could change both the catalytic activity of the enzyme of phosphatase and their aggregation states. The strategy kinetically controls the production rate of self-assembling peptides and spatially controls their distribution in the system, leading to the formation of nanoparticles at 37 °C and nanofibers at 4 °C. The nanofibers showed ∼10 times higher cellular uptake by 3T3 cells than the nanoparticles, thanks to their higher stability and more ordered structures. Using such spatiotemporal control, we could prepare optimized nanoprobes with low background fluorescence, rapid and high cellular uptake, and high sensitivity. We postulate that this strategy would be very useful in general for preparing self-assembled nanomaterials with controllable morphology and function.
Collapse
Affiliation(s)
- Jie Zhan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Design, Nankai University , Tianjin 300071, People's Republic of China
| | - Yanbin Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Shenglu Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Shuangshuang He
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Design, Nankai University , Tianjin 300071, People's Republic of China
| | - Yi Cao
- College of Physics, Nanjing University , Nanjing 210093, People's Republic of China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Ling Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Design, Nankai University , Tianjin 300071, People's Republic of China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Design, Nankai University , Tianjin 300071, People's Republic of China
| |
Collapse
|
40
|
Bag BG, Majumdar R. Self-assembly of Renewable Nano-sized Triterpenoids. CHEM REC 2017; 17:841-873. [PMID: 28195390 DOI: 10.1002/tcr.201600123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Braja Gopal Bag
- Department of Chemistry and Chemical Technology; Vidyasagar Univesity; Midnapore 721102, West Bengal India
| | - Rakhi Majumdar
- Department of Chemistry and Chemical Technology; Vidyasagar Univesity; Midnapore 721102, West Bengal India
| |
Collapse
|
41
|
Nandi N, Baral A, Basu K, Roy S, Banerjee A. A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water. Biopolymers 2017; 108. [DOI: 10.1002/bip.22915] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Abhishek Baral
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| | - Kingshuk Basu
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| | - Subhasish Roy
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| | - Arindam Banerjee
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| |
Collapse
|
42
|
Ibrahim S, Chakrabarty S, Ghosh S, Pal T. Reduced Graphene Oxide - Zinc Sulfide Composite for Solar Light Responsive Photo Current Generation and Photocatalytic 4-Nitrophenol Reduction. ChemistrySelect 2017. [DOI: 10.1002/slct.201601999] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sk Ibrahim
- Department of Physics and Technophysics; Vidyasagar University; Midnapore 721102 India
| | | | - Surajit Ghosh
- Department of Physics and Technophysics; Vidyasagar University; Midnapore 721102 India
| | - Tanusri Pal
- Department of Physics; Midnapore College; Midnapore 721101 India
| |
Collapse
|
43
|
Hua Y, Pu G, Ou C, Zhang X, Wang L, Sun J, Yang Z, Chen M. Gd(III)-induced Supramolecular Hydrogelation with Enhanced Magnetic Resonance Performance for Enzyme Detection. Sci Rep 2017; 7:40172. [PMID: 28074904 PMCID: PMC5225466 DOI: 10.1038/srep40172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/02/2016] [Indexed: 11/25/2022] Open
Abstract
Here we report a supramolecular hydrogel based on Gd(III)-peptide complexes with dramatically enhanced magnetic resonance (MR) performance. The hydrogelations were formed by adding Gd(III) ion to the nanofiber dispersion of self-assembling peptides naphthalene-Gly-Phe-Phe-Tyr-Gly-Arg-Gly-Asp (Nap-GFFYGRGD) or naphthalene-Gly-Phe-Phe-Tyr-Gly-Arg-Gly-Glu (Nap-GFFYGRGE). We further showed that, by adjusting the molar ratio between Gd(III) and the corresponding peptide, the mechanical property of resulting gels could be fine-tuned. The longitudinal relaxivity (r1) of the Nap-GFFYGRGE-Gd(III) was 58.9 mM-1 S-1, which to our knowledge is the highest value for such peptide-Gd(III) complexes so far. Such an enhancement of r1 value could be applied for enzyme detection in aqueous solutions and cell lysates.
Collapse
Affiliation(s)
- Yongquan Hua
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, P. R. China
| | - Guojuan Pu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China
| | - Caiwen Ou
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, P. R. China
| | - Xiaoli Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China
| | - Jiangtao Sun
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, P. R. China
| |
Collapse
|
44
|
Wu Z, Sun J, Zhang Z, Yang H, Xue P, Lu R. Nontraditional π Gelators Based on β-Iminoenolate and Their Difluoroboron Complexes: Effect of Halogens on Gelation and Their Fluorescent Sensory Properties Towards Acids. Chemistry 2017; 23:1901-1909. [DOI: 10.1002/chem.201604573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Zhu Wu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Zhenqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Hao Yang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Pengchong Xue
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| |
Collapse
|
45
|
Ren C, Chu L, Huang F, Yang L, Fan H, Liu J, Yang C. A novel H2O2responsive supramolecular hydrogel for controllable drug release. RSC Adv 2017. [DOI: 10.1039/c6ra26536g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We reported a peptide-based supramolecular hydrogel possessing a gel–sol phase transition triggered by H2O2.
Collapse
Affiliation(s)
- Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| |
Collapse
|
46
|
Clerici F, Erba E, Gelmi ML, Pellegrino S. Non-standard amino acids and peptides: From self-assembly to nanomaterials. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Vignesh A, Kaminsky W, Dharmaraj N. Palladium complexes catalyzed regioselective arylation of 2-oxindole via in situ C(sp2)−OH activation mediated by PyBroP. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Bhattacharya S, Samanta SK. Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chem Rev 2016; 116:11967-12028. [DOI: 10.1021/acs.chemrev.6b00221] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
- Director’s
Research Unit, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman K. Samanta
- Director’s
Research Unit, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
49
|
Majumdar R, Tantayanon S, Gopal Bag B. A Novel Trihybrid Material Based on Renewables: An Efficient Recyclable Heterogeneous Catalyst for C−C Coupling and Reduction Reactions. Chem Asian J 2016; 11:2406-14. [DOI: 10.1002/asia.201600773] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Rakhi Majumdar
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Supawan Tantayanon
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology; Vidyasagar University; Midnapore 721102, WB India
| |
Collapse
|
50
|
Reddy SMM, Dorishetty P, Deshpande AP, Shanmugam G. Hydrogelation Induced by Change in Hydrophobicity of Amino Acid Side Chain in Fmoc-Functionalised Amino Acid: Significance of Sulfur on Hydrogelation. Chemphyschem 2016; 17:2170-80. [DOI: 10.1002/cphc.201600132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Samala Murali Mohan Reddy
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai- 600020 India), Phone: +91 44 24437224, Fax: +91 44 24911589
- Academy of Scientific and Innovative Research (AcSIR); Council of Scientific and Industrial Research (CSIR); New Delhi 110 001 India
| | - Pramod Dorishetty
- Department of Chemical Engineering; Indian Institute of Technology Madras; Chennai- 600036 India
| | - Abhijit P. Deshpande
- Department of Chemical Engineering; Indian Institute of Technology Madras; Chennai- 600036 India
| | - Ganesh Shanmugam
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai- 600020 India), Phone: +91 44 24437224, Fax: +91 44 24911589
- Academy of Scientific and Innovative Research (AcSIR); Council of Scientific and Industrial Research (CSIR); New Delhi 110 001 India
| |
Collapse
|