1
|
Koirala S, Gaspar MA, Wijesundara YH, Li DH, Gadhvi JG, Ehrman RN, Cornelius SA, Mariasoosai C, Nguyen TQN, Trashi O, Trashi I, Kumari S, Hagge LM, Howlett TS, Torabifard H, Smith BD, De Nisco NJ, Gassensmith JJ. Fluorescent molecular probe for in vivo and in vitro targeting and imaging of an intracellular bacterial infection. Chem Sci 2025:d4sc05680a. [PMID: 40191126 PMCID: PMC11967239 DOI: 10.1039/d4sc05680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Intracellular bacterial infections are difficult to diagnose and treat because the host cells shelter the bacteria from molecular recognition by imaging agents, antibiotics, and the immune system. This problem arises when bladder epithelial cells are infected by uropathogenic Escherichia coli (UPEC)-one of the causative agents of urinary tract infection (UTI). UTIs are among the most common bacterial infections and a worldwide health concern. It is challenging to design molecular probes for intracellular UPEC imaging or targeted antibiotic treatment because the probe must possess multiple capabilities-it must permeate the host cell plasma membrane and selectively associate with the intracellular UPEC. Here, we report a "first-in-class" fluorescent probe called BactVue that is comprised of two structural components: a modified zinc(ii)-2,2'-dipicolylamine complex (Zn-Oxy-DPA) as the bacteria targeting unit and an appended near-infrared cyanine fluorophore that is hydrophilic but with a near-neutral electrostatic charge. The unique capacity of BactVue to penetrate infected bladder cells and stain intracellular UPEC was demonstrated by a series of in vitro and in vivo fluorescence imaging studies, including a mouse model of UTI. The results support the feasibility of incorporating BactVue into diagnostic near-infrared fluorescence imaging methods that visualize the location of infected bladder cells during active UTI.
Collapse
Affiliation(s)
- Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Miguel A Gaspar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame 236 Nieuwland Science Hall, Notre Dame Indiana 46556 USA
| | - Jashkaran G Gadhvi
- Department of Biological Sciences, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Samuel A Cornelius
- Department of Biological Sciences, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Charles Mariasoosai
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Thien-Quang N Nguyen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Laurel M Hagge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame 236 Nieuwland Science Hall, Notre Dame Indiana 46556 USA
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
- Department of Biomedical Engineering, The University of Texas at Dallas 800 West Campbell Road Richardson Texas 75080-3021 USA
| |
Collapse
|
2
|
Yuan H, Jiang M, Fang H, Tian H. Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery. NANOSCALE 2025; 17:3549-3584. [PMID: 39745097 DOI: 10.1039/d4nr04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs in vivo. This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body. This review systematically describes the structural characteristics and preparation methods of poly(amino acids) and polypeptides, summarizes the advantages of poly(amino acids), polypeptides, and their derivatives in drug delivery, and detailedly introduces the latest advancements in this area. The review also discusses current challenges and opportunities associated with poly(amino acids), peptides, and their derivatives, and offers insights into the future directions for these biodegradable materials. This review aims to provide valuable references for scientific research and clinical translation of biodegradable biomaterials based on poly(amino acids) and peptides.
Collapse
Affiliation(s)
- Huilin Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
3
|
Encinas A, Blade R, Abutaleb NS, Abouelkhair AA, Caine C, Seleem MN, Chmielewski J. Effects of Rigidity and Configuration of Charged Moieties within Cationic Amphiphilic Polyproline Helices on Cell Penetration and Antibiotic Activity. ACS Infect Dis 2024; 10:3052-3058. [PMID: 39054961 DOI: 10.1021/acsinfecdis.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Effective molecular strategies are needed to target pathogenic bacteria that thrive and proliferate within mammalian cells, a sanctuary inaccessible to many therapeutics. Herein, we present a class of cationic amphiphilic polyproline helices (CAPHs) with a rigid placement of the cationic moiety on the polyproline helix and assess the role of configuration of the unnatural proline residues making up the CAPHs. By shortening the distance between the guanidinium side chain and the proline backbone of the agents, a notable increase in cellular uptake and antibacterial activity was observed, whereas changing the configuration of the moieties on the pyrrolidine ring from cis to trans resulted in more modest increases. When the combination of these two activities was evaluated, the more rigid CAPHs were exceptionally effective at eradicating intracellular methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella infections within macrophages, significantly exceeding the clearance with the parent CAPH.
Collapse
Affiliation(s)
- Andrew Encinas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Reena Blade
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Ahmed A Abouelkhair
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Colin Caine
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| |
Collapse
|
4
|
Chen Y, Jiang Y, Xue T, Cheng J. Strategies for the eradication of intracellular bacterial pathogens. Biomater Sci 2024; 12:1115-1130. [PMID: 38284808 DOI: 10.1039/d3bm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Intracellular pathogens affect a significant portion of world population and cause millions of deaths each year. They can invade host cells and survive inside them and are extremely resistant to immune systems and antibiotics. Current treatments have limitations, and therefore, new effective therapies are needed to combat this ongoing health challenge. Active research efforts have been made to develop many new strategies to eradicate these intracellular pathogens. In this review, we focus on the intracellular bacterial pathogens and first introduce several representative intracellular bacteria and the diseases they cause. We then discuss the challenges in eradicating these bacteria and summarize the current therapeutics for intracellular bacteria. Finally, recent advances in intracellular bacteria eradication are highlighted.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518071, China
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
5
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
6
|
Bhowmick J, Nag M, Ghosh P, Rajmani RS, Chatterjee R, Karmakar K, Chandra K, Chatterjee J, Chakravortty D, Varadarajan R. A CcdB toxin-derived peptide acts as a broad-spectrum antibacterial therapeutic in infected mice. EMBO Rep 2023; 24:e55338. [PMID: 37166011 PMCID: PMC10328072 DOI: 10.15252/embr.202255338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
The bacterial toxin CcdB (Controller of Cell death or division B) targets DNA Gyrase, an essential bacterial topoisomerase, which is also the molecular target for fluoroquinolones. Here, we present a short cell-penetrating 24-mer peptide, CP1-WT, derived from the Gyrase-binding region of CcdB and examine its effect on growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and a carbapenem- and tigecycline-resistant strain of Acinetobacter baumannii in both axenic cultures and mouse models of infection. The CP1-WT peptide shows significant improvement over ciprofloxacin in terms of its in vivo therapeutic efficacy in treating established infections of S. Typhimurium, S. aureus and A. baumannii. The molecular mechanism likely involves inhibition of Gyrase or Topoisomerase IV, depending on the strain used. The study validates the CcdB binding site on bacterial DNA Gyrase as a viable and alternative target to the fluoroquinolone binding site.
Collapse
Grants
- Department of Biotechnology, Ministry of Science and Technology, India - Indian Institute of Science (DBT-IISc) partnership program
- BT/COE/34/SP15219/2015 Department of Biotechnology, Ministry of Science and Technology, India
- DT.20/11/2015 Department of Biotechnology, Ministry of Science and Technology, India
- Department of Science and Technology, Ministry of Science and Technology, India (DST FIST)
- Ministry of Education, India (MHRD)
- University Grants Commission, Ministry of Education, India (UGC Centre for Advanced Studies)
- Department of Biotechnology, Ministry of Science and Technology, India
- Ministry of Education, India (MHRD)
Collapse
Affiliation(s)
- Jayantika Bhowmick
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Manish Nag
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Pritha Ghosh
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Raju S Rajmani
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Ritika Chatterjee
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Kapudeep Karmakar
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Kasturi Chandra
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Jayanta Chatterjee
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
- School of BiologyIndian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)ThiruvananthapuramIndia
| | | |
Collapse
|
7
|
Werby SH, Brčić J, Chosy MB, Sun J, Rendell JT, Neville LF, Wender PA, Cegelski L. Detection of intact vancomycin-arginine as the active antibacterial conjugate in E. coli by whole-cell solid-state NMR. RSC Med Chem 2023; 14:1192-1198. [PMID: 37360389 PMCID: PMC10285746 DOI: 10.1039/d3md00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
The introduction of new and improved antibacterial agents based on facile synthetic modifications of existing antibiotics represents a promising strategy to deliver urgently needed antibacterial candidates to treat multi-drug resistant bacterial infections. Using this strategy, vancomycin was transformed into a highly active agent against antibiotic-resistant Gram-negative organisms in vitro and in vivo through the addition of a single arginine to yield vancomycin-arginine (V-R). Here, we report detection of the accumulation of V-R in E. coli by whole-cell solid-state NMR using 15N-labeled V-R. 15N CPMAS NMR revealed that the conjugate remained fully amidated without loss of arginine, demonstrating that intact V-R represents the active antibacterial agent. Furthermore, C{N}REDOR NMR in whole cells with all carbons at natural abundance 13C levels exhibited the sensitivity and selectivity to detect the directly bonded 13C-15N pairs of V-R within E. coli cells. Thus, we also present an effective methodology to directly detect and evaluate active drug agents and their accumulation within bacteria without the need for potentially perturbative cell lysis and analysis protocols.
Collapse
Affiliation(s)
- Sabrina H Werby
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jasna Brčić
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Madeline B Chosy
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | | | | | - Paul A Wender
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Department of Chemical and Systems Biology, Stanford University Stanford CA 94305 USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
8
|
Ramos-Martín F, Herrera-León C, D'Amelio N. Bombyx mori Cecropin D could trigger cancer cell apoptosis by interacting with mitochondrial cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184003. [PMID: 35850261 DOI: 10.1016/j.bbamem.2022.184003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Cecropin D is an antimicrobial peptide from Bombyx mori displaying anticancer and pro-apoptotic activities and, together with Cecropin XJ and Cecropin A, one of the very few peptides targeting esophageal cancer. Cecropin D displays poor similarity to other cecropins but a remarkable similarity in the structure and activity spectrum with Cecropin A and Cecropin XJ, offering the possibility to highlight key motifs at the base of the biological activity. In this work we show by NMR and MD simulations that Cecropin D is partially structured in solution and stabilizes its two-helix folding upon interaction with biomimetic membranes. Simulations show that Cecropin D strongly interacts with the surface of cancer cell biomimetic bilayers where it recognises the phosphatidylserine headgroup often exposed in the outer leaflet of cancerous cells by means of specific salt bridges. Cecropin D is also able to penetrate deeply in bilayers containing cardiolipin, a phospholipid found in mitochondria, causing significant destabilization in the lipid packing which might account for its pro-apoptotic activity. In bacterial membranes, phosphatidylglycerol and phosphatidylethanolamine act synergically by electrostatically attracting cecropin D and providing access to the membrane core, respectively.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| |
Collapse
|
9
|
Zhao S, Wang Z, Lin Z, Wei G, Wen X, Li S, Yang X, Zhang Q, Jing C, Dai Y, Guo J, He Y. Drug Repurposing by Siderophore Conjugation: Synthesis and Biological Evaluation of Siderophore‐Methotrexate Conjugates as Antibiotics. Angew Chem Int Ed Engl 2022; 61:e202204139. [DOI: 10.1002/anie.202204139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sheng Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Zhi‐Peng Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Zihua Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Guoxing Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Xumei Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Qun Zhang
- Medicine Laboratory Children's Hospital of Chongqing Medical University Ministry of Education Key Laboratory of Child Development and Disorders 136 Zhongshan 2nd Rd Yuzhong, Chongqing 400014 P. R. China
| | - Chunmei Jing
- Medicine Laboratory Children's Hospital of Chongqing Medical University Ministry of Education Key Laboratory of Child Development and Disorders 136 Zhongshan 2nd Rd Yuzhong, Chongqing 400014 P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
10
|
Zhao S, Wang ZP, Lin Z, Wei G, Wen X, Li S, Yang X, Zhang Q, Jing C, Dai Y, Guo J, He Y. Drug Repurposing by Siderophore Conjugation: Synthesis and Biological Evaluation of Siderophore‐Methotrexate Conjugates as Antibiotics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sheng Zhao
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Zhi-Peng Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Zihua Lin
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Guoxing Wei
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Xumei Wen
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Siyu Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Xiaohong Yang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Qun Zhang
- Chongqing Medical University Affiliated Children's Hospital Medicine Laboratory CHINA
| | - Chunmei Jing
- Chongqing Medical University Affiliated Children's Hospital Department of Clinical Laboratory CHINA
| | - Yuanwei Dai
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Jian Guo
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yun He
- Chongqing University School of Pharmaceutical Sciences Daxuecheng South Road 401331 Chongqing CHINA
| |
Collapse
|
11
|
Ramos-Martín F, Herrera-León C, D'Amelio N. Molecular basis of the anticancer, apoptotic and antibacterial activities of Bombyx mori Cecropin A. Arch Biochem Biophys 2022; 715:109095. [PMID: 34826396 DOI: 10.1016/j.abb.2021.109095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
As Cecropin XJ, Cecropin A from Bombyx mori is one of the very few antimicrobial peptides having shown activity against esophageal cancer cells. It displays remarkable sequence-similarity to Cecropin XJ but slightly enhanced activity. In this work we show by NMR that both peptides are unstructured in solution but get structured in the presence of DPC micelles, mimicking the surface of biological membranes. In order to get insight into the molecular basis of its anticancer, antimicrobial and antifungal activity, we have investigated by MD simulations their interaction with a large variety of lipid bilayers mimicking cancer, mitochondrial, bacterial and fungal membranes. At variance with CecXJ, organized in two main helices, CecA tends to form a three helix bundle resulting in enhanced adaptability to its membrane targets. A specificity for the headgroup of phosphatidylserine and affinity for phosphatidylglycerol and cardiolipin may account for its selective targeting of cancer, bacterial and mitochondrial membranes, respectively.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
12
|
Liu WB, Gao RT, Zhou L, Liu N, Chen Z, Wu ZQ. Combination of vancomycin and guanidinium-functionalized helical polymers for synergistic antibacterial activity and biofilm ablation. Chem Sci 2022; 13:10375-10382. [PMID: 36277626 PMCID: PMC9473644 DOI: 10.1039/d2sc03419k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of various resistant bacteria and overuse of antibiotics have led to severe side effects. Therefore, developing efficient and safe antibacterial systems is important. Herein, well-defined antimicrobial material–helical poly(phenyl guanidinium isocyanide) block copolymers with different conformations (l-P3-van, d-P3-van, and dl-P3-van) that connect vancomycin (van) to the polymer through a disulfide bond were synthesized. The prepared antimicrobial materials exhibit broad-spectrum antimicrobial activity, low bacterial resistance, and good proteolytic stability. They also overcome the intrinsic resistance of Gram-negative bacteria to van with a 100-fold increase in antimicrobial activity. Interestingly, the conformation of the material promotes its antimicrobial activity. The left-handed helix conformation shows five-fold more antimicrobial activity than the right-handed helical conformation, thereby opening a path for the application of nanochirality in the field of antibiotics. Helical poly(phenyl isocyanide)-based antibacterial materials have been developed, which have a broad antibacterial spectrum and high antibacterial activity and can effectively destroy preformed biofilms.![]()
Collapse
Affiliation(s)
- Wen-Bin Liu
- Department of Polymer Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Zeiders SM, Chmielewski J. Antibiotic-cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria. Chem Biol Drug Des 2021; 98:762-778. [PMID: 34315189 DOI: 10.1111/cbdd.13930] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The failure to treat everyday bacterial infections is a current threat as pathogens are finding new ways to thwart antibiotics through mechanisms of resistance and intracellular refuge, thus rendering current antibiotic strategies ineffective. Cell-penetrating peptides (CPPs) are providing a means to improve antibiotics that are already approved for use. Through coadministration and conjugation of antibiotics with CPPs, improved accumulation and selectivity with alternative and/or additional modes of action against infections have been observed. Herein, we review the recent progress of this antibiotic-cell-penetrating peptide strategy in combatting sensitive and drug-resistant pathogens. We take a closer look into the specific antibiotics that have been enhanced, and in some cases repurposed as broad-spectrum drugs. Through the addition and conjugation of cell-penetrating peptides to antibiotics, increased permeation across mammalian and/or bacterial membranes and a broader range in bacterial selectivity have been achieved.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
14
|
Liu X, Deng Q, Zhang L, Sang Y, Dong K, Ren J, Qu X. Elimination of macrophage-entrapped antibiotic-resistant bacteria by a targeted metal-organic framework-based nanoplatform. Chem Commun (Camb) 2021; 57:2903-2906. [PMID: 33616152 DOI: 10.1039/d0cc08340b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel metal-organic framework-based platform was designed and constructed for photosensitizer delivery for the elimination of intracellular antibiotic-resistant bacteria. With the merit of targeting and internalizing ability, the system could kill the stealthy bacteria efficiently under light irradiation.
Collapse
Affiliation(s)
- Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
15
|
Han H, Teng D, Mao R, Hao Y, Yang N, Wang Z, Li T, Wang X, Wang J. Marine Peptide-N6NH2 and Its Derivative-GUON6NH2 Have Potent Antimicrobial Activity Against Intracellular Edwardsiella tarda in vitro and in vivo. Front Microbiol 2021; 12:637427. [PMID: 33767681 PMCID: PMC7985170 DOI: 10.3389/fmicb.2021.637427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Edwardsiella tarda is a facultative intracellular pathogen in humans and animals. There is no effective way except vaccine candidates to eradicate intracellular E. tarda. In this study, four derivatives of marine peptide-N6NH2 were designed by an introduction of unnatural residues or substitution of natural ones, and their intracellular activities against E. tarda were evaluated in macrophages and in mice, respectively. The minimum inhibitory concentration (MIC) value of N6NH2 and GUON6NH2 against E. tarda was 8 μg/mL. GUON6NH2 showed higher stability to trypsin, lower toxicity (<1%) and longer post-antibiotic effect (PAE) than N6NH2 and other derivatives. Antibacterial mechanism results showed that GUON6NH2 could bind to LPS and destroyed outer/inner cell membranes of E. tarda, superior to N6NH2 and norfloxacin. Both N6NH2 and GUON6NH2 were internalized into macrophages mainly via lipid rafts, micropinocytosis, and microtubule polymerization, respectively, and distributed in the cytoplasm. The intracellular inhibition rate of GUON6NH2 against E. tarda was 97.05–100%, higher than that in case of N6NH2 (96.82–100%). In the E. tarda-induced peritonitis mouse model, after treatment with of 1 μmol/kg N6NH2 and GUON6NH2, intracellular bacterial numbers were reduced by 1.54- and 1.97-Log10 CFU, respectively, higher than norfloxacin (0.35-Log10 CFU). These results suggest that GUON6NH2 may be an excellent candidate for novel antimicrobial agents to treat infectious diseases caused by intracellular E. tarda.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Ramos-Martín F, D’Amelio N. Molecular Basis of the Anticancer and Antibacterial Properties of CecropinXJ Peptide: An In Silico Study. Int J Mol Sci 2021; 22:E691. [PMID: 33445613 PMCID: PMC7826669 DOI: 10.3390/ijms22020691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/04/2023] Open
Abstract
Esophageal cancer is an aggressive lethal malignancy causing thousands of deaths every year. While current treatments have poor outcomes, cecropinXJ (CXJ) is one of the very few peptides with demonstrated in vivo activity. The great interest in CXJ stems from its low toxicity and additional activity against most ESKAPE bacteria and fungi. Here, we present the first study of its mechanism of action based on molecular dynamics (MD) simulations and sequence-property alignment. Although unstructured in solution, predictions highlight the presence of two helices separated by a flexible hinge containing P24 and stabilized by the interaction of W2 with target biomembranes: an amphipathic helix-I and a poorly structured helix-II. Both MD and sequence-property alignment point to the important role of helix I in both the activity and the interaction with biomembranes. MD reveals that CXJ interacts mainly with phosphatidylserine (PS) but also with phosphatidylethanolamine (PE) headgroups, both found in the outer leaflet of cancer cells, while salt bridges with phosphate moieties are prevalent in bacterial biomimetic membranes composed of PE, phosphatidylglycerol (PG) and cardiolipin (CL). The antibacterial activity of CXJ might also explain its interaction with mitochondria, whose phospholipid composition recalls that of bacteria and its capability to induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
17
|
Jiang Y, Han M, Bo Y, Feng Y, Li W, Wu JR, Song Z, Zhao Z, Tan Z, Chen Y, Xue T, Fu Z, Kuo SH, Lau GW, Luijten E, Cheng J. "Metaphilic" Cell-Penetrating Polypeptide-Vancomycin Conjugate Efficiently Eradicates Intracellular Bacteria via a Dual Mechanism. ACS CENTRAL SCIENCE 2020; 6:2267-2276. [PMID: 33376787 PMCID: PMC7760462 DOI: 10.1021/acscentsci.0c00893] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 05/02/2023]
Abstract
Infections by intracellular pathogens are difficult to treat because of the poor accessibility of antibiotics to the pathogens encased by host cell membranes. As such, a strategy that can improve the membrane permeability of antibiotics would significantly increase their efficiency against the intracellular pathogens. Here, we report the design of an adaptive, metaphilic cell-penetrating polypeptide (CPP)-antibiotic conjugate (VPP-G) that can effectively eradicate the intracellular bacteria both in vitro and in vivo. VPP-G was synthesized by attaching vancomycin to a highly membrane-penetrative guanidinium-functionalized metaphilic CPP. VPP-G effectively kills not only extracellular but also far more challenging intracellular pathogens, such as S. aureus, methicillin-resistant S. aureus, and vancomycin-resistant Enterococci. VPP-G enters the host cell via a unique metaphilic membrane penetration mechanism and kills intracellular bacteria through disruption of both cell wall biosynthesis and membrane integrity. This dual antimicrobial mechanism of VPP-G prevents bacteria from developing drug resistance and could also potentially kill dormant intracellular bacteria. VPP-G effectively eradicates MRSA in vivo, significantly outperforming vancomycin, which represents one of the most effective intracellular antibacterial agents reported so far. This strategy can be easily adapted to develop other conjugates against different intracellular pathogens by attaching different antibiotics to these highly membrane-penetrative metaphilic CPPs.
Collapse
Affiliation(s)
- Yunjiang Jiang
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ming Han
- Applied Physics Graduate Program, Department of Materials Science and Engineering,Department of Engineering
Sciences and Applied Mathematics, Department of Chemistry, Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Chicago
Materials Research Center, University of
Chicago, Chicago, Illinois 60637, United States
| | - Yang Bo
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yujun Feng
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wenming Li
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jason Ren Wu
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihao Zhao
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tianrui Xue
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihuan Fu
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shanny Hsuan Kuo
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gee W. Lau
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Erik Luijten
- Applied Physics Graduate Program, Department of Materials Science and Engineering,Department of Engineering
Sciences and Applied Mathematics, Department of Chemistry, Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Jianjun Cheng
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Dietsche TA, Eldesouky HE, Zeiders SM, Seleem MN, Chmielewski J. Targeting Intracellular Pathogenic Bacteria Through N-Terminal Modification of Cationic Amphiphilic Polyproline Helices. J Org Chem 2020; 85:7468-7475. [PMID: 32425046 DOI: 10.1021/acs.joc.0c00871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular pathogens can thrive within mammalian cells and are inaccessible to many antimicrobial agents. Herein, we present a facile method of enhancing the cell penetrating and antibacterial properties of cationic amphiphilic polyproline helices (CAPHs) with modifications to the hydrophobic moiety at the N-terminus. These altered CAPHs display superior cell penetration within macrophage cells, and in some cases, minimal cytotoxicity. Furthermore, one CAPH, Pentyl-P14 exhibited excellent antibacterial activity against multiple strains of pathogenic bacteria and promoted the clearance of intracellular Shigella within macrophages.
Collapse
Affiliation(s)
- Thomas A Dietsche
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Hassan E Eldesouky
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907-2027, United States
| | - Samantha M Zeiders
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907-2027, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| |
Collapse
|
19
|
Peng H, Xie B, Yang X, Dai J, Wei G, He Y. Pillar[5]arene-based, dual pH and enzyme responsive supramolecular vesicles for targeted antibiotic delivery against intracellular MRSA. Chem Commun (Camb) 2020; 56:8115-8118. [DOI: 10.1039/d0cc02522d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A rationally designed mannosylated amphiphilic pillar[5]arene (Man@AP5) self-assembles into supramolecular vesicles with encapsulated vancomycin (Man@AP5-Van), enhancing vancomycin's antibacterial efficacy against intracellular MRSA.
Collapse
Affiliation(s)
- Haibo Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- 401331 Shapingba
- China
| | - Beibei Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- 401331 Shapingba
- China
| | - Xiaohong Yang
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Jiaojiao Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- 401331 Shapingba
- China
| | - Guoxing Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- 401331 Shapingba
- China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- 401331 Shapingba
- China
| |
Collapse
|
20
|
Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2019; 59:270-284. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are multifunctional subcellular organelles whose operations encompass energy production, signal transduction, and metabolic regulation. Given their wide range of roles, they have been studied extensively as a potential therapeutic target for the treatment of various diseases, including cancer, diabetes, and neurodegenerative diseases. Mitochondrion-mediated pathways have been identified as promising targets in the context of these diseases. However, the delivery of specific probes and drugs to the mitochondria is one of the major problems that remains to be solved. Over the past decade, much effort has been devoted to developing mitochondrion-targeted delivery methods based on the membrane characteristics and the protein import machinery of mitochondria. While various methods utilizing small molecules to polymeric particles have been introduced, it is notable that many of these compounds share common structural elements and physicochemical properties for optimal selectivity and efficiency. In this Perspective, we will review the most recently developed mitochondrion-targeting peptides and peptidomimetics to outline the key aspects of structural requirements and design principles. We will also discuss successful and potential applications of mitochondrial delivery to assess opportunities and challenges in the targeting of mitochondria.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
21
|
Yang QQ, Zhu LJ, Xi TK, Zhu HY, Chen XX, Wu M, Sun C, Xu C, Fang GM, Meng X. Delivery of cell membrane impermeable peptides into living cells by using head-to-tail cyclized mitochondria-penetrating peptides. Org Biomol Chem 2019; 17:9693-9697. [PMID: 31691700 DOI: 10.1039/c9ob02075f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of cyclic Arg-rich mitochondria-penetrating peptides were prepared with variation in the macrocycle size and the chirality of Arg residues. A cyclic heptapeptide was demonstrated to be an efficient mitochondria-specific delivery vector for delivering membrane impermeable peptides.
Collapse
Affiliation(s)
- Qian-Qian Yang
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Liang-Jing Zhu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Tong-Kuai Xi
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Han-Ying Zhu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Xiao-Xu Chen
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Meng Wu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Chuan Sun
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Changzhi Xu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Ge-Min Fang
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Xiangming Meng
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
22
|
Qi G, Hu F, Kenry, Shi L, Wu M, Liu B. An AIEgen‐Peptide Conjugate as a Phototheranostic Agent for Phagosome‐Entrapped Bacteria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Leilei Shi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
23
|
Qi G, Hu F, Kenry, Shi L, Wu M, Liu B. An AIEgen-Peptide Conjugate as a Phototheranostic Agent for Phagosome-Entrapped Bacteria. Angew Chem Int Ed Engl 2019; 58:16229-16235. [PMID: 31471928 DOI: 10.1002/anie.201906099] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/20/2019] [Indexed: 01/07/2023]
Abstract
The detection and elimination of intracellular bacteria remain a major challenge. In this work, we report an aggregation-induced emission (AIE) bioprobe that can detect bacterial infection and kill bacteria surviving inside macrophages through a dynamic process, notably specific molecular tailoring of the probe by caspase-1 activation in infected macrophages and accumulation of the residue on phagosomes containing bacteria, leading to light-up fluorescent signals. Moreover, the AIEgen can serve as a photosensitizer for generation of reactive oxygen species (ROS); and the average ROS indicator fluorescent signal intensity per unit area in the bacterial phagosomes is approximately 2.7-fold higher than that in the cytoplasm. This, in turn, induces bacteria killing with high efficiency and minimal cytotoxicity towards macrophages. We envision that this specific light-up bioprobe may provide a new approach for selective and sensitive detection and eradication of intracellular bacterial infections.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Kenry
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
24
|
Louzoun‐Zada S, Jaber QZ, Fridman M. Guiding Drugs to Target‐Harboring Organelles: Stretching Drug‐Delivery to a Higher Level of Resolution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sivan Louzoun‐Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Qais Z. Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
25
|
Louzoun-Zada S, Jaber QZ, Fridman M. Guiding Drugs to Target-Harboring Organelles: Stretching Drug-Delivery to a Higher Level of Resolution. Angew Chem Int Ed Engl 2019; 58:15584-15594. [PMID: 31237741 DOI: 10.1002/anie.201906284] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/04/2023]
Abstract
The ratio between the dose of drug required for optimal efficacy and the dose that causes toxicity is referred to as the therapeutic window. This ratio can be increased by directing the drug to the diseased tissue or pathogenic cell. For drugs targeting fungi and malignant cells, the therapeutic window can be further improved by increasing the resolution of drug delivery to the specific organelle that harbors the drug's target. Organelle targeting is challenging and is, therefore, an under-exploited strategy. Here we provide an overview of recent advances in control of the subcellular distribution of small molecules with the focus on chemical modifications. Highlighted are recent examples of active and passive organelle-specific targeting by incorporation of organelle-directing molecular determinants or by chemical modifications of the pharmacophore. The outstanding potential that lies in the development of organelle-specific drugs is becoming increasingly apparent.
Collapse
Affiliation(s)
- Sivan Louzoun-Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Qais Z Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
26
|
Kuroki A, Kengmo Tchoupa A, Hartlieb M, Peltier R, Locock KES, Unnikrishnan M, Perrier S. Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship. Biomaterials 2019; 217:119249. [PMID: 31279102 DOI: 10.1016/j.biomaterials.2019.119249] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 11/29/2022]
Abstract
Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy.
Collapse
Affiliation(s)
- Agnès Kuroki
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Matthias Hartlieb
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Katherine E S Locock
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia; Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
27
|
Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343-2396. [PMID: 31004359 DOI: 10.1002/med.21588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has emerged as a huge challenge to the effective treatment of infectious diseases. Aside from a modest number of novel anti-infective agents, very few new classes of antibiotics have been successfully developed for therapeutic use. Despite the research efforts of numerous scientists, the fight against antimicrobial (ATB) resistance has been a longstanding continued effort, as pathogens rapidly adapt and evolve through various strategies, to escape the action of ATBs. Among other mechanisms of resistance to antibiotics, the sophisticated envelopes surrounding microbes especially form a major barrier for almost all anti-infective agents. In addition, the mammalian cell membrane presents another obstacle to the ATBs that target intracellular pathogens. To negotiate these biological membranes, scientists have developed drug delivery systems to help drugs traverse the cell wall; these are called "Trojan horse" strategies. Within these delivery systems, ATB molecules can be conjugated with one of many different types of carriers. These carriers could include any of the following: siderophores, antimicrobial peptides, cell-penetrating peptides, antibodies, or even nanoparticles. In recent years, the Trojan horse-inspired delivery systems have been increasingly reported as efficient strategies to expand the arsenal of therapeutic solutions and/or reinforce the effectiveness of conventional ATBs against drug-resistant microbes, while also minimizing the side effects of these drugs. In this paper, we aim to review and report on the recent progress made in these newly prevalent ATB delivery strategies, within the current context of increasing ATB resistance.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | - Pauline Loupias
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | | | - Pascal Sonnet
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| |
Collapse
|
28
|
Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, Amieva MR, Kline KA, Wender PA, Cegelski L. A Dual-Function Antibiotic-Transporter Conjugate Exhibits Superior Activity in Sterilizing MRSA Biofilms and Killing Persister Cells. J Am Chem Soc 2018; 140:16140-16151. [PMID: 30388366 PMCID: PMC6430714 DOI: 10.1021/jacs.8b08711] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New strategies are urgently needed to target MRSA, a major global health problem and the leading cause of mortality from antibiotic-resistant infections in many countries. Here, we report a general approach to this problem exemplified by the design and synthesis of a vancomycin-d-octaarginine conjugate (V-r8) and investigation of its efficacy in addressing antibiotic-insensitive bacterial populations. V-r8 eradicated MRSA biofilm and persister cells in vitro, outperforming vancomycin by orders of magnitude. It also eliminated 97% of biofilm-associated MRSA in a murine wound infection model and displayed no acute dermal toxicity. This new dual-function conjugate displays enhanced cellular accumulation and membrane perturbation as compared to vancomycin. Based on its rapid and potent activity against biofilm and persister cells, V-r8 is a promising agent against clinical MRSA infections.
Collapse
Affiliation(s)
- Alexandra Antonoplis
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaoyu Zang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie A. Huttner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637553
| | - Yu B. Lee
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Julia Y. Co
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
- Department of Microbiology & Immunology, Stanford University, Stanford, California 94305, United States
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
29
|
Nepal M, Mohamed MF, Blade R, Eldesouky HE, N. Anderson T, Seleem MN, Chmielewski J. A Library Approach to Cationic Amphiphilic Polyproline Helices that Target Intracellular Pathogenic Bacteria. ACS Infect Dis 2018; 4:1300-1305. [PMID: 29979033 DOI: 10.1021/acsinfecdis.8b00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of pathogenic bacteria reproduce inside mammalian cells and are thus inaccessible to many antimicrobial drugs. Herein, we present a facile method to a focused library of antibacterial agents known as cationic amphiphilic polyproline helices (CAPHs). We identified three CAPHs from the library with superior cell penetration within macrophages and excellent antibacterial action against both Gram-positive and Gram-negative bacteria. These cell-penetrating antibacterial CAPHs have specific subcellular localizations that allow for targeting of pathogenic bacteria at their intracellular niches, a unique feature that promotes the successful clearance of intracellular pathogens ( Salmonella, Shigella, and Listeria) residing within macrophages. Furthermore, the selected CAPHs also significantly reduced bacterial infections in an in vivo model of Caenorhabditis elegans, with minimal in vivo toxicity.
Collapse
Affiliation(s)
- Manish Nepal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Mohamed F. Mohamed
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907-2027, United States
| | - Reena Blade
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Hassan E. Eldesouky
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907-2027, United States
| | - Tiffany N. Anderson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907-2027, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| |
Collapse
|
30
|
Li Z, Teng D, Mao R, Wang X, Hao Y, Wang X, Wang J. Improved Antibacterial Activity of the Marine Peptide N6 against Intracellular Salmonella Typhimurium by Conjugating with the Cell-Penetrating Peptide Tat 11 via a Cleavable Linker. J Med Chem 2018; 61:7991-8000. [PMID: 30095906 DOI: 10.1021/acs.jmedchem.8b01079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The poor penetration ability of antimicrobial agents limits their use in the treatment of intracellular bacteria. In this study, the conjugate CNC (6) was generated by connecting the cell-penetrating peptide Tat11 (1) and marine peptide N6 (2) via a cathepsin-cleavable linker, and the C-terminal aminated N6 (7) and CNC (8) were first designed and synthesized to eliminate intracellular Salmonellae Typhimurium. The cellular uptake of 6 and stability of 7 were higher than those of 2, and conjugates 6, 8, and 7 had almost no hemolysis and cytotoxicity. The antibacterial activities of 6, 8, and 7 against S. Typhimurium in RAW264.7 cells were increased by 67.2-76.2%, 98.6-98.9%, and 96.3-97.6%, respectively. After treatment with 1-2 μmol/kg of 6, 8, or 7, the survival of the S. Typhimurium-infected mice was 66.7-100%, higher than that of 2 (33.4-66.7%). This result suggested that 6, 8, and 7 may be excellent candidates for novel antimicrobial agents to treat intracellular pathogens.
Collapse
Affiliation(s)
- Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture , Beijing 100081 , People's Republic of China.,Gene Engineering Laboratory , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
31
|
Faggi E, Luis SV, Alfonso I. Sensing, Transport and Other Potential Biomedical Applications of Pseudopeptides. Curr Med Chem 2018; 26:4065-4097. [PMID: 29493442 DOI: 10.2174/0929867325666180301091040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/22/2022]
Abstract
Pseudopeptides are privileged synthetic molecules built from the designed combination of peptide-like and abiotic artificial moieties. Consequently, they are benefited from the advantages of both families of chemical structures: modular synthesis, chemical and functional diversity, tailored three-dimensional structure, usually high stability in biological media and low non-specific toxicity. Accordingly, in the last years, these compounds have been used for different biomedical applications, ranging from bio-sensing, ion transport, the molecular recognition of biologically relevant species, drug delivery or gene transfection. This review highlights a selection of the most remarkable and recent advances in this field.
Collapse
Affiliation(s)
- Enrico Faggi
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| | - Santiago V Luis
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Castellon, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| |
Collapse
|
32
|
Ahmed M, Kelley SO. Enhancing the Potency of Nalidixic Acid toward a Bacterial DNA Gyrase with Conjugated Peptides. ACS Chem Biol 2017; 12:2563-2569. [PMID: 28825963 DOI: 10.1021/acschembio.7b00540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quinolones and fluoroquinolones are widely used antibacterial agents. Nalidixic acid (NA) is a first-generation quinolone-based antibiotic that has a narrow spectrum and poor pharmacokinetics. Here, we describe a family of peptide-nalidixic acid conjugates featuring different levels of hydrophobicity and molecular charge prepared by solid-phase peptide synthesis that exhibit intriguing improvements in potency. In comparison to NA, which has a low level of potency in S. aureus, the NA peptide conjugates with optimized hydrophobicities and molecular charges exhibited significantly improved antibacterial activity. The most potent NA conjugate-featuring a peptide containing cyclohexylalanine and arginine-exhibited efficient bacterial uptake and, notably, specific inhibition of S. aureus DNA gyrase. A systematic study of peptide-NA conjugates revealed that a fine balance of cationic charge and hydrophobicity in an appendage anchored to the core of the drug is required to overcome the intrinsic resistance of S. aureus DNA gyrase toward this quinolone-based drug.
Collapse
Affiliation(s)
- Marya Ahmed
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, and Department of Biochemistry,
Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, and Department of Biochemistry,
Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Mudakavi RJ, Vanamali S, Chakravortty D, Raichur AM. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv 2017; 7:7022-7032. [DOI: 10.1039/c6ra27868j] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Arginine decorated nanocarriers exhibited intravacuolar targeting capability which was utilized to deliver antibiotics and reactive NO into the intracellular niche of pathogens likeSalmonellaandMycobacterium.
Collapse
Affiliation(s)
- Rajeev J. Mudakavi
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Department of Materials Engineering
| | - Surya Vanamali
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Centre for BioSystems Science and Engineering
| | - Ashok M. Raichur
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
- Centre for BioSystems Science and Engineering
| |
Collapse
|
34
|
Jean SR, Ahmed M, Lei EK, Wisnovsky SP, Kelley SO. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria. Acc Chem Res 2016; 49:1893-902. [PMID: 27529125 DOI: 10.1021/acs.accounts.6b00277] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are organelles with critical roles in key processes within eukaryotic cells, and their dysfunction is linked with numerous diseases including neurodegenerative disorders and cancer. Pharmacological manipulation of mitochondrial function is therefore important both for basic science research and eventually, clinical medicine. However, in comparison to other organelles, mitochondria are difficult to access due to their hydrophobic and dense double membrane system as well as their negative membrane potential. To tackle the challenge of targeting these important subcellular compartments, significant effort has been put forward to develop mitochondria-targeted systems capable of transporting bioactive cargo into the mitochondrial interior. Systems now exist that utilize small molecule, peptide, liposome, and nanoparticle-based transport. The vectors available vary in size and structure and can facilitate transport of a variety of compounds for mitochondrial delivery. Notably, peptide-based delivery scaffolds offer attractive features such as ease of synthesis, tunability, biocompatibility, and high uptake both in cellulo and in vivo. Owing to their simple and modular synthesis, these peptides are highly adaptable for delivering chemically diverse cargo. Key design features of mitochondria-targeted peptides include cationic charge, which allows them to harness the negative membrane potential of mitochondria, and lipophilicity, which permits favorable interaction with hydrophobic membranes of mitochondria. These peptides have been covalently tethered to target therapeutic agents, including anticancer drugs, to enhance their drug properties, and to provide probes for mitochondrial biology. Interestingly, mitochondria-targeted DNA damaging agents demonstrate high potency and the ability to evade resistance mechanisms and off-target effects. Moreover, a combination of mitochondria-targeted DNA damaging agents was applied to an siRNA screen for the elucidation of poorly understood mitochondrial DNA repair and replication pathways. In this work, a variety of novel proteins were identified that are essential for the maintenance of mitochondrial nucleic acids. Mitochondria-targeted peptides have also been used to increase the therapeutic window of antibacterial drugs with significant mammalian toxicity. Given the evolutionary similarity of mitochondria and bacteria, peptides are effective transporters that can target both of these entities. These antimicrobial peptides are highly effective even in difficult to target intracellular bacteria which reside within host cells. This peptide-based approach to targeting mitochondria has provided a variety of insights into the "druggability" of mitochondria and new biological processes that could be future drug targets. Nevertheless, the mitochondrial-targeting field is quite nascent and many exciting applications of organelle-specific conjugates remain to be explored. In this Account, we highlight the development and optimization of the mitochondria-penetrating peptides that our laboratory has developed, the unique applications of mitochondria-targeted bioactive cargo, and offer a perspective on important directions for the field.
Collapse
Affiliation(s)
- Sae Rin Jean
- Department
of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Marya Ahmed
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Eric K. Lei
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Simon P. Wisnovsky
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shana O. Kelley
- Department
of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
35
|
Brezden A, Mohamed MF, Nepal M, Harwood JS, Kuriakose J, Seleem MN, Chmielewski J. Dual Targeting of Intracellular Pathogenic Bacteria with a Cleavable Conjugate of Kanamycin and an Antibacterial Cell-Penetrating Peptide. J Am Chem Soc 2016; 138:10945-9. [PMID: 27494027 DOI: 10.1021/jacs.6b04831] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacterial infection caused by intracellular pathogens, such as Mycobacterium, Salmonella, and Brucella, is a burgeoning global health epidemic that necessitates urgent action. However, the therapeutic value of a number of antibiotics, including aminoglycosides, against intracellular pathogenic bacteria is compromised due to their inability to traverse eukaryotic membranes. For this significant problem to be addressed, a cleavable conjugate of the antibiotic kanamycin and a nonmembrane lytic, broad-spectrum antimicrobial peptide with efficient mammalian cell penetration, P14LRR, was prepared. This approach allows kanamycin to enter mammalian cells as a conjugate linked via a tether that breaks down in the reducing environment within cells. Potent antimicrobial activity of the P14KanS conjugate was demonstrated in vitro, and this reducible conjugate effectively cleared intracellular pathogenic bacteria within macrophages more potently than that of a conjugate lacking the disulfide moiety. Notably, successful clearance of Mycobacterium tuberculosis within macrophages was observed with the dual antibiotic conjugate, and Salmonella levels were significantly reduced in an in vivo Caenorhabditis elegans model.
Collapse
Affiliation(s)
| | - Mohamed F Mohamed
- Department of Comparative Pathobiology, Purdue University , 625 Harrison Street, West Lafayette, Indiana 47907-2027, United States
| | | | | | | | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University , 625 Harrison Street, West Lafayette, Indiana 47907-2027, United States
| | | |
Collapse
|
36
|
Gasparini G, Bang EK, Montenegro J, Matile S. Cellular uptake: lessons from supramolecular organic chemistry. Chem Commun (Camb) 2016; 51:10389-402. [PMID: 26030211 DOI: 10.1039/c5cc03472h] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.
Collapse
Affiliation(s)
- Giulio Gasparini
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
37
|
Nepal M, Thangamani S, Seleem MN, Chmielewski J. Targeting intracellular bacteria with an extended cationic amphiphilic polyproline helix. Org Biomol Chem 2016; 13:5930-6. [PMID: 25925008 DOI: 10.1039/c5ob00227c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An extended cationic and amphiphilic polyproline helix (CAPH) is described with a dual mode of action: effective cell penetration of human macrophages, and potent antimicrobial activity in vitro against both Gram-positive and negative pathogens, including Acinetobacter baumannii, Escherichia coli O157 and Bacillus anthracis. This dual action was successfully combined to clear pathogenic bacteria (Brucella and Salmonella) residing within macrophages.
Collapse
Affiliation(s)
- Manish Nepal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2027, USA.
| | | | | | | |
Collapse
|
38
|
Morelli P, Martin-Benlloch X, Tessier R, Waser J, Sakai N, Matile S. Ethynyl benziodoxolones: functional terminators for cell-penetrating poly(disulfide)s. Polym Chem 2016. [DOI: 10.1039/c6py00562d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hypervalent iodine terminators are introduced to secure synthetic access to doubly-labeled cell-penetrating poly(disulfide)s.
Collapse
Affiliation(s)
- Paola Morelli
- National Centre of Competence in Research (NCCR) Chemical Biology
- Switzerland
- Department of Organic Chemistry
- University of Geneva
- Geneva
| | - Xavier Martin-Benlloch
- National Centre of Competence in Research (NCCR) Chemical Biology
- Switzerland
- Department of Organic Chemistry
- University of Geneva
- Geneva
| | - Romain Tessier
- National Centre of Competence in Research (NCCR) Chemical Biology
- Switzerland
- Laboratory of Catalysis and Organic Synthesis
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Lausanne
| | - Jerome Waser
- National Centre of Competence in Research (NCCR) Chemical Biology
- Switzerland
- Laboratory of Catalysis and Organic Synthesis
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Lausanne
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Chemical Biology
- Switzerland
- Department of Organic Chemistry
- University of Geneva
- Geneva
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Chemical Biology
- Switzerland
- Department of Organic Chemistry
- University of Geneva
- Geneva
| |
Collapse
|
39
|
Pereira MP, Shi J, Kelley SO. Peptide Targeting of an Antibiotic Prodrug toward Phagosome-Entrapped Mycobacteria. ACS Infect Dis 2015; 1:586-92. [PMID: 27623056 DOI: 10.1021/acsinfecdis.5b00099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterial infections are difficult to treat due to the bacterium's slow growth, ability to reside in intracellular compartments within macrophages, and resistance mechanisms that limit the effectiveness of conventional antibiotics. Developing antibiotics that overcome these challenges is therefore critical to providing a pipeline of effective antimicrobial agents. Here, we describe the synthesis and testing of a unique peptide-drug conjugate that exhibits high levels of antimicrobial activity against M. smegmatis and M. tuberculosis as well as clearance of intracellular mycobacteria from cultured macrophages. Using an engineered peptide sequence, we deliver a potent DHFR inhibitor and target the intracellular phagosomes where mycobacteria reside and also incorporate a β-lactamase-cleavable cephalosporin linker to enhance the targeting of quiescent intracellular β-lactam-resistant mycobacteria. By using this type of prodrug approach to target intracellular mycobacterial infections, the emergence of antibacterial resistance mechanisms could be minimized.
Collapse
Affiliation(s)
- Mark P. Pereira
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, and Department of Biochemistry, Faculty
of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julie Shi
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, and Department of Biochemistry, Faculty
of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, and Department of Biochemistry, Faculty
of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. Biochem J 2015; 469:357-66. [PMID: 26008950 DOI: 10.1042/bj20150149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Mitochondrial labile iron (LI) plays a crucial role in oxidative injuries and pathologies. At present, there is no organelle-specific sensitive iron sensor which can reside exclusively in the mitochondria and reliably monitor levels of LI in this organelle. In the present study, we describe the development of novel fluorescent and highly specific mitochondria iron sensors, using the family of mitochondria-homing 'SS-peptides' (short cell-permeant signal peptides mimicking mitochondrial import sequence) as carriers of highly specific iron chelators for sensitive evaluation of the mitochondrial LI. Microscopic analysis of subcellular localization of a small library of fluorescently labelled SS-like peptides identified dansyl (DNS) as the lead fluorophore for the subsequent synthesis of chimaeric iron chelator-peptides of either catechol (compounds 10 and 11) or hydroxypyridinone (compounds 13 and 14) type. The iron-sensing ability of these chimaeric compounds was confirmed by fluorescent quenching and dequenching studies both in solution and in cells, with compound 13 exhibiting the highest sensitivity towards iron modulation. The intramolecular fluorophore-chelator distance and the iron affinity both influence probe sensitivity towards iron. These probes represent the first example of highly sensitive mitochondria-directed fluorescent iron chelators with potential to monitor mitochondrial LI levels.
Collapse
|
41
|
Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:315-29. [PMID: 25348382 PMCID: PMC4397104 DOI: 10.1002/wnan.1305] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Mitochondria, the so-called 'energy factory of cells' not only produce energy but also contribute immensely in cellular mortality management. Mitochondrial dysfunctions result in various diseases including but not limited to cancer, atherosclerosis, and neurodegenerative diseases. In the recent years, targeting mitochondria emerged as an attractive strategy to control mitochondrial dysfunction-related diseases. Despite the desire to direct therapeutics to the mitochondria, the actual task is more difficult due to the highly complex nature of the mitochondria. The potential benefits of integrating nanomaterials with properties such as biodegradability, magnetization, and fluorescence into a single object of nanoscale dimensions can lead to the development of hybrid nanomedical platforms for targeting therapeutics to the mitochondria. Only a handful of nanoparticles based on metal oxides, gold nanoparticles, dendrons, carbon nanotubes, and liposomes were recently engineered to target mitochondria. Most of these materials face tremendous challenges when administered in vivo due to their limited biocompatibility. Biodegradable polymeric nanoparticles emerged as eminent candidates for effective drug delivery. In this review, we highlight the current advancements in the development of biodegradable nanoparticle platforms as effective targeting tools for mitochondrial medicine.
Collapse
Affiliation(s)
- Rakesh K. Pathak
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| | - Nagesh Kolishetti
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
- PartiKula LLC, 7777 Davie Rd., Hollywood, FL 33024
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| |
Collapse
|
42
|
Chuard N, Gasparini G, Roux A, Sakai N, Matile S. Cell-penetrating poly(disulfide)s: the dependence of activity, depolymerization kinetics and intracellular localization on their length. Org Biomol Chem 2015; 13:64-7. [DOI: 10.1039/c4ob02060j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that, with the increasing length, cell-penetrating poly(disulfide)s preferably accumulate in the endosomes, cytosol and then the nucleoli.
Collapse
Affiliation(s)
- Nicolas Chuard
- School of Chemistry and Biochemistry
- University of Geneva
- Geneva
- Switzerland
| | - Giulio Gasparini
- School of Chemistry and Biochemistry
- University of Geneva
- Geneva
- Switzerland
| | - Aurélien Roux
- School of Chemistry and Biochemistry
- University of Geneva
- Geneva
- Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry
- University of Geneva
- Geneva
- Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry
- University of Geneva
- Geneva
- Switzerland
| |
Collapse
|
43
|
Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug Chem 2014; 26:71-7. [PMID: 25547808 PMCID: PMC4306504 DOI: 10.1021/bc500408p] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.
Collapse
Affiliation(s)
- Ran Lin
- Department of Chemical and Biomolecular Engineering, ‡Institute for NanoBioTechnology, §Division of Geriatrics Medicine and Gerontology, and ⊥Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | | | | | |
Collapse
|
44
|
Gasparini G, Bang EK, Molinard G, Tulumello DV, Ward S, Kelley SO, Roux A, Sakai N, Matile S. Cellular Uptake of Substrate-Initiated Cell-Penetrating Poly(disulfide)s. J Am Chem Soc 2014; 136:6069-74. [DOI: 10.1021/ja501581b] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giulio Gasparini
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Eun-Kyoung Bang
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Guillaume Molinard
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - David V. Tulumello
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
- Department
of Pharmaceutical Sciences and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sandra Ward
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Aurelien Roux
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
45
|
Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol 2014; 9:323-33. [PMID: 24410267 DOI: 10.1021/cb400821p] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mitochondria within human cells play a major role in a variety of critical processes involved in cell survival and death. An understanding of mitochondrial involvement in various human diseases has generated an appreciable amount of interest in exploring this organelle as a potential drug target. As a result, a number of strategies to probe and combat mitochondria-associated diseases have emerged. Access to mitochondria-specific delivery vectors has allowed the study of biological processes within this intracellular compartment with a heightened level of specificity. In this review, we summarize the features of existing delivery vectors developed for targeting probes and therapeutics to this highly impermeable organelle. We also discuss the major applications of mitochondrial targeting of bioactive molecules, which include the detection and treatment of oxidative damage, combating bacterial infections, and the development of new therapeutic approaches for cancer. Future directions include the assessment of the therapeutic benefit achieved by mitochondrial targeting for treatment of disease in vivo. In addition, the availability of mitochondria-specific chemical probes will allow the elucidation of the details of biological processes that occur within this cellular compartment.
Collapse
Affiliation(s)
- Sae Rin Jean
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - David V. Tulumello
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Simon P. Wisnovsky
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Eric K. Lei
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Mark P. Pereira
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Bang EK, Ward S, Gasparini G, Sakai N, Matile S. Cell-penetrating poly(disulfide)s: focus on substrate-initiated co-polymerization. Polym Chem 2014. [DOI: 10.1039/c3py01570j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|