1
|
Wang Y, Zeng Z, Luo S, Guo Y, Liu X. Enhancing the single-molecule magnetic performance of β-diketonate Dy(III) complexes by modulating the coordination microenvironment and magnetic interaction: from a mononuclear to a dinuclear structure. Dalton Trans 2024; 53:17272-17280. [PMID: 39370881 DOI: 10.1039/d4dt02179g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Based on a β-diketonate ligand, a mononuclear Dy(III) complex, [Dy(dmpd)3(bpy)] (1) (dmpd = 4,4-dimethyl-1-phenylpentane-1,3-dione, bpy = 2,2'-dipyridyl), of [DyN2O6] type has been synthesized with a capping nitrogen-containing coligand. Then, a dual capping coligand 2,2'-bipyrimidine (bmp) is introduced to be a bridge to link two β-diketonate-Dy(III) motifs, leading to a new dinuclear Dy(III) complex, [Dy2(dmpd)6(bmp)] (2). Dy(III) centers in both complexes feature an N2O6 octacoordinated environment with an approximate square-antiprism geometry (D4d). Without a dc field, the SMM behaviour is absent in complex 1, but can be clearly observed in dinuclear 2 with a Ueff of 87.29 K. The significantly improved magnetism arising in 2 is mainly due to the modulation of the coordination environment around the Dy(III) ions and the superexchange magnetic interactions inside the dinuclear units, thus allowing for the effective inhibition of the quantum tunneling of magnetization at low temperatures and promotion of the uniaxial magnetic anisotropy. For 1, a diamagnetic Y(III) analogue [Y(dmpd)3(bpy)] (3) and diluted sample 1@Y were constructed to further perform the dilution experiment, coupled with theoretical calculations further supporting that the synergetic contributions of intermolecular dipole-dipole interactions, intramolecular coupling and uniaxial magnetic anisotropy cause the enhancement of dynamic magnetic relaxation.
Collapse
Affiliation(s)
- Yafu Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Zhaopeng Zeng
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
- Xinhua College of Ningxia University, Yinchuan 750021, China
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Yan Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Bazhina ES, Shmelev MA, Gogoleva NV, Babeshkin KA, Kurganskii IV, Efimov NN, Fedin MV, Kiskin MA, Eremenko IL. Investigation of slow magnetic relaxation in a series of 1D polymeric cyclobutane-1,1-dicarboxylates based on Ln IIIVIV2 units (Ln III = Tb, Dy, Ho, Er, Tm, Yb): rare examples of V IV-4f single-molecule magnets. Dalton Trans 2024. [PMID: 39446052 DOI: 10.1039/d4dt01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The reactions of VOSO4·3H2O with Na2(cbdc) (cbdc2- - dianion of cyclobutane-1,1-dicarboxylic acid) and lanthanide(III) nitrates taken in a molar ratio of 1 : 2 : 1 were found to yield a series of isostructural heterometallic compounds [NaLn(VO)2(cbdc)4(H2O)10]n (1Ln, Ln = Tb, Dy, Ho, Er, Tm, Yb). These compounds are constructed from trinuclear anionic units [Ln(VO)2(cbdc)4(H2O)8]- ({LnV2}-) linked by Na+ ions into 1D polymeric chains. The crystal structures of 1Dy and 1Er were determined by single-crystal X-ray diffraction (XRD), and their isostructurality with 1Tb, 1Ho, 1Tm, and 1Yb was proved by powder X-ray diffraction (PXRD). According to alternating current (ac) magnetic susceptibility measurements, 1Dy, 1Er, and 1Yb exhibited field-induced slow relaxation of magnetization. Compound 1Er is the first representative of ErIII-VIV single-molecule magnets. Measuring the temperature dependences of the phase memory time (Tm) for 1Dy and 1Yb using pulsed EPR spectroscopy allowed us to observe the phenomenon of phase relaxation enhancement (PRE) at temperatures below 30 K. In future, this phenomenon may contribute to the evaluation of relaxation times of the lanthanide ions.
Collapse
Affiliation(s)
- Evgeniya S Bazhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Maxim A Shmelev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Natalia V Gogoleva
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Konstantin A Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Ivan V Kurganskii
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090, Russian Federation
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Matvey V Fedin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090, Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| |
Collapse
|
3
|
Batista L, Paul S, Molina-Jirón C, Jaén JA, Fensker D, Fuhr O, Ruben M, Wernsdorfer W, Moreno-Pineda E. Magnetic behaviour of a spin-canted asymmetric lanthanide quinolate trimer. Dalton Trans 2024; 53:12927-12935. [PMID: 39041069 DOI: 10.1039/d4dt01588f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An asymmetrical dysprosium trimer with a molecular formula of [Dy3(hq)7(hqH)(NO3)2(H2O)] was obtained through a reflux reaction employing as starting material Dy(NO3)3·nH2O and 8-quinolinoline as ligand. Magnetic susceptibility investigations show the system to be an SMM, which was corroborated by sub-Kelvin μSQUID studies. Upon cooling, the magnetic susceptibility also exhibits a decrease in the χMT product, which was confirmed to be due to intramolecular antiferromagnetic interactions. μSQUID measurements, moreover, reveal a marked magnetic behaviour in the angular dependence of the hysteresis loops. The latter is a direct consequence of the non-colinear spin arrangement of the anisotropy axes of each Dy(III) ion in [Dy3(hq)7(hqH)(NO3)2(H2O)] and the interaction between the ions, as also evidenced by CASSCF calculations. Our results evidence the effect of spin canting along with the intramolecular interactions, which can induce non-trivial magnetic behaviour in SMMs.
Collapse
Affiliation(s)
- Lester Batista
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. Física, 0824, Panamá
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
| | - Concepción Molina-Jirón
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Bioquímica, 0824, Panamá.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Juan A Jaén
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| | - Dieter Fensker
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Eufemio Moreno-Pineda
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| |
Collapse
|
4
|
Braun J, Powell AK, Unterreiner AN. Gaining Insights into the Interplay between Optical and Magnetic Properties in Photoexcited Coordination Compounds. Chemistry 2024; 30:e202400977. [PMID: 38693865 DOI: 10.1002/chem.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.
Collapse
Affiliation(s)
- Jonas Braun
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Gharu A, Vignesh KR. Theoretical exploration of single-molecule magnetic and single-molecule toroic behaviors in peroxide-bridged double-triangular {MII3LnIII3} (M = Ni, Cu and Zn; Ln = Gd, Tb and Dy) complexes. Dalton Trans 2024. [PMID: 39087311 DOI: 10.1039/d4dt01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Detailed state-of-the-art ab initio and density functional theory (DFT) calculations have been undertaken to understand both Single-Molecule Magnetic (SMM) and Single-Molecule Toroic (SMT) behaviors of fascinating 3d-4f {M3Ln3} triangular complexes having the molecular formula [MII3LnIII3(O2)L3(PyCO2)3](OH)2(ClO4)2·8H2O (with M = Zn; Ln = Dy (1), Tb (2) & Gd (3) and M = Cu; Ln = Dy (4), Tb (5) & Gd (6)) and [Ni3Ln3(H2O)3(mpko)9(O2)(NO3)3](ClO4)·3CH3OH·3CH3CN (Ln = Dy (7), Tb (8), and Gd (9)) [mpkoH = 1-(pyrazin-2-yl)ethanone oxime]. All these complexes possess a peroxide ligand that bridges the {LnIII3} triangle in a μ3-η3:η3 fashion and the oxygen atoms/oxime of co-ligands that connect each MII ion to the {LnIII3} triangle. Through our computational studies, we tried to find the key role of the peroxide bridge and how it affects the SMM and SMT behavior of these complexes. Primarily, ab initio Complete Active Space Self-Consistent Field (CASSCF) SINGLE_ANISO + RASSI-SO + POLY_ANISO calculations were performed on 1, 2, 4, 5, 7, and 8 to study the anisotropic behavior of each Ln(III) ion, to derive the magnetic relaxation mechanism and to calculate the LnIII-LnIII and CuII/NiII-LnIII magnetic coupling constants. DFT calculations were also performed to validate these exchange interactions (J) by computing the GdIII-GdIII and CuII/NiII-GdIII interactions in 3, 6, and 9. Our calculations explained the experimental magnetic relaxation processes and the magnetic exchange interactions for all the complexes, which also strongly imply that the peroxide bridge plays a role in the SMM behavior observed in these systems. On the other hand, this peroxide bridge does not support the SMT behavior. To investigate the effect of bridging ions in {M3Ln3} systems, we modeled a {ZnII3DyIII3} complex (1a) with a hydroxide ion replacing the bridged peroxide ion in complex 1 and considered a hydroxide-bridged {CoIII3DyIII3} complex (10) having the formula [Co3Dy3(OH)4(OOCCMe3)6(teaH)3(H2O)3](NO3)2·H2O. We discovered that as compared to the LoProp charges of the peroxide ion, the greater negative charges on the bridging hydroxide ion reduce quantum tunneling of magnetization (QTM) effects, enabling more desirable SMM characteristics and also leading to good SMT behavior.
Collapse
Affiliation(s)
- Amit Gharu
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| | - Kuduva R Vignesh
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|
6
|
Cabrosi D, Mecchia Ortiz JH, Carrella LM, Rentschler E, Alborés P. SMM features of a large lanthanide family of butterfly CrIII2LnIII2 pivalate complexes (Ln = Gd, Tb, Dy, Ho, Er, Tm and Yb). Dalton Trans 2024; 53:12189-12198. [PMID: 38967417 DOI: 10.1039/d4dt01492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
In this work we report the synthesis, structural characterization and magnetic properties of a family of butterfly complexes {Cr2Ln2} with Ln = Tb (4), Ho (5), Er (6), Tm (7) and Yb (8), extending the family of previously reported isostructural compounds with Gd (1), Dy (2) and Y (3). As in 1 and 2, an anti-ferromagnetic Cr(III)-Ln(III) exchange interaction is found. For oblate ions 4 and 5, SMM behavior with a purely Orbach relaxation mechanism is observed with thermal barriers of 38 cm-1 (4) and 32 cm-1 (5). Complex 4 displays hysteresis opening up to 2.4 K with loss of magnetization at zero field. The prolate complex ions 6 and 7 are field-induced SMM's with dominant Orbach, direct and QTM relaxation mechanisms. Compound 8 did not show SMM properties.
Collapse
Affiliation(s)
- Daiana Cabrosi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | - Juan H Mecchia Ortiz
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | - Luca M Carrella
- Department Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-12, D-55128 Mainz, Germany
| | - Eva Rentschler
- Department Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-12, D-55128 Mainz, Germany
| | - Pablo Alborés
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
7
|
Xin J, Hu Z, Yao YR, Ullah A, Han X, Xiang W, Jin H, Jiang Z, Yang S. Short Didysprosium Covalent Bond Enables High Magnetization Blocking Temperature of a Direct 4f-4f Coupled Dinuclear Single-Molecule Magnet. J Am Chem Soc 2024; 146:17600-17605. [PMID: 38869355 DOI: 10.1021/jacs.4c04429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Coupling two magnetic anisotropic lanthanide ions via a direct covalent bond is an effective way to realize high magnetization blocking temperature of single-molecule magnets (SMMs) by suppressing quantum tunneling of magnetization (QTM), whereas so far only single-electron lanthanide-lanthanide bonds with relatively large bond distances are stabilized in which coupling between lanthanide and the single electron dominates over weak direct 4f-4f coupling. Herein, we report for the first time synthesis of short Dy(II)-Dy(II) single bond (3.61 Å) confined inside a carbon cage in the form of an endohedral metallofullerene Dy2@C82. Such a direct Dy(II)-Dy(II) covalent bond renders a strong Dy-Dy antiferromagnetic coupling that effectively quenches QTM at zero magnetic field, thus opening up magnetic hysteresis up to 25 K using a field sweep rate of 25 Oe/s, concomitant with a high 100 s magnetization blocking temperature (TB,100s) of 27.2 K.
Collapse
Affiliation(s)
- Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Rong Yao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Aman Ullah
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Xinyi Han
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wenhao Xiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huaimin Jin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhanxin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Zabala-Lekuona A, Lopez de Pariza X, Díaz-Ortega IF, Cepeda J, Nojiri H, Gritsan NP, Dmitriev AA, López-Ortega A, Rodríguez-Diéguez A, Seco JM, Colacio E. From field-induced to zero-field SMMs associated with open/closed structures of bis(ZnDy) tetranuclear complexes: a combined magnetic, theoretical and optical study. Dalton Trans 2024; 53:7971-7984. [PMID: 38647324 DOI: 10.1039/d4dt00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We have prepared a bis(compartmental) Mannich base ligand H4L (1,4,8,11-tetraaza-1,4,8,11-tetrakis(2-hydroxy-3-methoxy-5-methylbenzyl)cyclotetradecane) specifically designed to obtain bis(TMIILnIII) tetranuclear complexes (TM = transition metal). In this regard, we have succeeded in obtaining three new complexes of the formula [Zn2(μ-L)(μ-OAc)Dy2(NO3)2]·[Zn2(μ-L)(μ-OAc)Dy2(NO3)(OAc)]·4CHCl3·2MeOH (1) and [TM2(μ-H2L)2(μ-succinate)Ln2(NO3)2] (NO3)2·2H2O·6MeOH (TMII = Zn, LnIII = Dy (2); TMII = Co, LnIII = Dy (3)). Compound 1 contains two different bis(ZnDy) tetranuclear molecules that cocrystallize in the structure, in which acetato bridging ligands connect the ZnII and DyIII ions within each ZnDy subunit. This compound does not exhibit slow magnetic relaxation at zero field, but it is activated in the presence of an applied dc magnetic field and/or by Dy/Y magnetic dilution, showing two relaxation processes corresponding to each of the two different bis(ZnDy) units found in the structure. As revealed by the theoretical calculations, magnetic relaxation in 1 is single-ion in origin and takes place through the first excited state of each DyIII ion. When using the succinato dicarboxylate bridging ligand instead of acetate, compounds 2 and 3 were serendipitously formed, which have a closed structure with the succinate anion bridging two ZnDy subunits belonging to two different ligands. It should be noted that only compound 2 exhibits slow relaxation of magnetization in the absence of an external magnetic field. According to experimental and theoretical data, 2 relaxes through the second excited Kramers doublet (Ueff = 342 K). In contrast, 3 displays field-induced SMM behaviour (Ueff = 203 K). However, the Co/Zn diluted version of this compound 3Zn shows slow relaxation at zero field (Ueff = 347 K). Ab initio theoretical calculations clearly show that the weak ferromagnetic coupling between CoII and DyIII ions is at the origin of the lack of slow relaxation of this compound at zero field. Compound 2 and its diluted analogues 2Y and 3Zn show hysteresis loops at very low temperature, thus confirming their SMM behaviour. Finally, compounds 1 and 2 show DyIII based emission even at room temperature that, in the case of 2, allows us to extract the splitting of the ground 6H15/2 term, which matches reasonably well with theoretical calculations.
Collapse
Affiliation(s)
- Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Ismael F Díaz-Ortega
- Departamento de Química y Física-CIESOL, Universidad de Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
- Institute for Materials Research, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Nina P Gritsan
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey A Dmitriev
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alberto López-Ortega
- Departamento de Ciencias, Universidad Pública de Navarra, E-31006 Pamplona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra, E-31006 Pamplona, Spain
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastian, 20018, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - José M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
9
|
Wang Y, Zhou Y, Ma Y, Lu P, Zhang Y, Sun Y, Cheng P. Magnetodielectric Effect in a Triangular Dysprosium Single-Molecule Toroics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308220. [PMID: 38233211 PMCID: PMC10933626 DOI: 10.1002/advs.202308220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Single-molecule toroics are molecular magnets with vortex distribution of magnetic moments. The coupling between magnetic and electric properties such as the magnetodielectric effect will provide potential applications for them. Herein, the observation of significant magnetodielectric effect in a triangular Dy3 crystal with toroidal magnetic moment and multiple magnetic relaxations is reported. The analysis of magnetic and electric properties implies that the magnetodielectric effect is closely related to the strong spin-lattice coupling, magnetic interactions of Dy3+ ions, as well as molecular packing models.
Collapse
Affiliation(s)
- Yu‐Xia Wang
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal UniversityTianjin300387P. R. China
| | - Yicheng Zhou
- Key Laboratory of Advanced Energy Material ChemistryFrontiers Science Center for New Organic Matterand Haihe Laboratory of Sustainable Chemical Transformations (Tianjin)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yinina Ma
- State Key Laboratory of MagnetismInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Peipei Lu
- College of PhysicsHebei Normal UniversityShijiazhuang050024China
| | - Yi‐Quan Zhang
- Jiangsu Key Lab for NSLSCSSchool of Physical Science and TechnologyNanjing Normal UniversityNanjing210023P. R. China
| | - Young Sun
- State Key Laboratory of MagnetismInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- Center of Quantum Materials and Devices and Department of Applied PhysicsChongqing UniversityChongqing401331P. R. China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Material ChemistryFrontiers Science Center for New Organic Matterand Haihe Laboratory of Sustainable Chemical Transformations (Tianjin)College of ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
10
|
Vieru V, Gómez-Coca S, Ruiz E, Chibotaru LF. Increasing the Magnetic Blocking Temperature of Single-Molecule Magnets. Angew Chem Int Ed Engl 2024; 63:e202303146. [PMID: 37539652 DOI: 10.1002/anie.202303146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.
Collapse
Affiliation(s)
- Veacheslav Vieru
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, 6229 EN, Maastricht, The Netherlands
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, 3001, Leuven, Belgium
| |
Collapse
|
11
|
Huang C, Sun R, Bao L, Tian X, Pan C, Li M, Shen W, Guo K, Wang B, Lu X, Gao S. A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage. Nat Commun 2023; 14:8443. [PMID: 38114506 PMCID: PMC10730828 DOI: 10.1038/s41467-023-44194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Reducing inter-spin distance can enhance magnetic interactions and allow for the realization of outstanding magnetic properties. However, achieving reduced distances is technically challenging. Here, we construct a 3d-4f metal cluster (Dy2VN) inside a C80 cage, affording a heretofore unseen metallofullerene containing both paramagnetic 3d and 4f metal ions. The significantly suppressed 3d-4f (Dy-V) distances, due to the unique cage confinement effect, were observed by crystallographic and theoretical analysis of Dy2VN@Ih(7)-C80. These reduced distances result in an enhanced magnetic coupling (Jtotal, Dy-V = 53.30 cm-1; Jtotal, Dy-Dy = -6.25 cm-1), leading to a high magnetic blocking temperature compared to reported 3d-4f single-molecule magnets and strong coercive field of 2.73 Tesla. Our work presents a new class of single-molecule magnets with both paramagnetic 3d and 4f metals confined in a fullerene cage, offering superior and tunable magnetic properties due to the unique cage confinement effect and the diverse composition of the entrapped magnetic core.
Collapse
Affiliation(s)
- Chenli Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Rong Sun
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China.
| | - Xinyue Tian
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Changwang Pan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an, 710071, China
| | - Wangqiang Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China.
- College of Chemistry and Chemical Engineering, Hainan University, No. 58, Renmin Avenue, Haikou, 570228, P. R. China.
| | - Song Gao
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
12
|
Lien CY, Boyn JN, Anferov SW, Mazziotti DA, Anderson JS. Origin of Weak Magnetic Coupling in a Dimanganese(II) Complex Bridged by the Tetrathiafulvalene-Tetrathiolate Radical. Inorg Chem 2023; 62:19488-19497. [PMID: 37967380 DOI: 10.1021/acs.inorgchem.3c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Magnetic exchange coupling (J) between different spin centers plays a crucial role in molecule-based magnetic materials. Direct exchange coupling between an organic radical and a metal is frequently stronger than superexchange through diamagnetic ligands, and the strategy of using organic radicals to engender desirable magnetic properties has been an area of active investigation. Despite significant advances and exciting bulk properties, the magnitude of J for radical linkers bridging paramagnetic centers is still difficult to rationally predict. It is thus important to elucidate the features of organic radicals that govern this parameter. Here, we measure J for the tetrathiafulvalene-tetrathiolate radical (TTFtt3-•) in a dinuclear Mn(II) complex. Magnetometry studies show that the antiferromagnetic coupling in this complex is much weaker than that in related Mn(II)-radical compounds, in contrast to what might be expected for the S-based chelating donor atoms of TTFtt. Experimental and computational analyses suggest that this small J coupling may be attributed to poor overlap between Mn- and TTFtt-based magnetic orbitals coupled with insignificant spin density on the coordinating S-atoms. These factors override any expected increase in J from the comparatively strong S-donors. This work elucidates the magnetic coupling properties of the TTFtt3-• radical for the first time and also demonstrates how multiple competing factors must be considered in rationally designing organic radical ligands for molecular-based magnetic compounds.
Collapse
Affiliation(s)
- Chen-Yu Lien
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Zabala-Lekuona A, Landart-Gereka A, Quesada-Moreno MM, Mota AJ, Díaz-Ortega IF, Nojiri H, Krzystek J, Seco JM, Colacio E. Zero-Field SMM Behavior Triggered by Magnetic Exchange Interactions and a Collinear Arrangement of Local Anisotropy Axes in a Linear Co 3II Complex. Inorg Chem 2023. [PMID: 37991724 DOI: 10.1021/acs.inorgchem.3c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A new linear trinuclear Co(II)3 complex with a formula of [{Co(μ-L)}2Co] has been prepared by self-assembly of Co(II) ions and the N3O3-tripodal Schiff base ligand H3L, which is obtained from the condensation of 1,1,1-tris(aminomethyl)ethane and salicylaldehyde. Single X-ray diffraction shows that this compound is centrosymmetric with triple-phenolate bridging groups connecting neighboring Co(II) ions, leading to a paddle-wheel-like structure with a pseudo-C3 axis lying in the Co-Co-Co direction. The Co(II) ions at both ends of the Co(II)3 molecule exhibit distorted trigonal prismatic CoN3O3 geometry, whereas the Co(II) at the middle presents an elongated trigonal antiprismatic CoO6 geometry. The combined analysis of the magnetic data and theoretical calculations reveal strong easy-axis magnetic anisotropy for both types of Co(II) ions (|D| values higher than 115 cm-1) with the local anisotropic axes lying on the pseudo-C3 axis of the molecule. The magnetic exchange interaction between the middle and ends Co(II) ions, extracted by using either a Hamiltonian accounting for the isotropic magnetic coupling and ZFS or the Lines' model, was found to be medium to strong and antiferromagnetic in nature, whereas the interaction between the external Co(II) ions is weak antiferromagnetic. Interestingly, the compound exhibits slow relaxation of magnetization and open hysteresis at zero field and therefore SMM behavior. The significant magnetic exchange coupling found for [{Co(μ-L)}2Co] is mainly responsible for the quenching of QTM, which combined with the easy-axis local anisotropy of the CoII ions and the collinearity of their local anisotropy axes with the pseudo-C3 axis favors the observation of SMM behavior at zero field.
Collapse
Affiliation(s)
- Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Aritz Landart-Gereka
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - María Mar Quesada-Moreno
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Antonio J Mota
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Ismael F Díaz-Ortega
- Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Jurek Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - José M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
14
|
Kuang X, Li Y, Yang M, Dong W, Leng J. Ln III/Mn II-Ln III complexes derived from a salicylic azo dye ligand: synthesis, structures, magnetic and fluorescence properties. Dalton Trans 2023; 52:16791-16801. [PMID: 37902968 DOI: 10.1039/d3dt02876c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Two LnIII complexes Ln(HTMSA)3(H2O)2·5.5H2O (Ln = Dy (1) and Tb (2), H2TMSA = 5-azotriazolyl-3-methoxysalicylaldehyde) and two MnII-LnIII clusters [Mn(H2O)6][MnLn2(TTMSA)4(HTTMSA)2(H2O)6]·4H2O (Ln = Dy (3) and Tb (4), H2TTMSA = 5-azotetrazolyl-3-methoxysalicylaldehyde) have been synthesized and structurally characterized. Single-crystal X-ray diffraction reveals that 1 and 2 are isostructural complexes in which the LnIII ions are surrounded by six oxygen atoms from three chelate HTMSA ligands and two oxygen atoms from two coordinated water molecules forming a distorted square-anti-prismatic geometry. In complexes 3 and 4, the MnII ions adjust two LnIII mononuclear anion clusters into tri-nuclear LnIII-MnII-LnIII anion clusters, with an additional [Mn(H2O)6]2+ as a counter ion to maintain the electroneutrality of the compound. Magnetic studies reveal that all the complexes 1-4 show nonzero out-of-phase signals, indicating single-molecule magnet behavior. The photoluminescence spectra of all the complexes were investigated and are discussed in detail.
Collapse
Affiliation(s)
- Xiaoman Kuang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Youhong Li
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Jidong Leng
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| |
Collapse
|
15
|
Mao PD, Zhang SH, Yao NT, Sun HY, Yan FF, Zhang YQ, Meng YS, Liu T. Regulating Magnetic Relaxations of Cyano-Bridged {Dy III Mo V } Systems by Tuning the N-Sites in β-Diketone Ligands. Chemistry 2023; 29:e202301262. [PMID: 37272418 DOI: 10.1002/chem.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 ⋅ 6H2 O and K4 Mo(CN)8 ⋅ 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} ⋅ 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 ⋅ 2CH3 OH ⋅ 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] ⋅ H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} ⋅ 2H2 O⋅CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the β-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.
Collapse
Affiliation(s)
- Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Hui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
16
|
Han J, Jin C, Wang X, Huang X, Song H, Xie J, Li L. Magnetic relaxation in unique nitronyl nitroxide biradical-Ln-Cu chains with Ln-bis(NIT)-Cu-bis(NIT)-Ln units. Dalton Trans 2023; 52:6853-6859. [PMID: 37144923 DOI: 10.1039/d3dt00752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Utilizing a nitronyl nitroxide biradical NITPhPybis [5-(4-pyridyl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)-benzene], a new family of isomorphic 2p-3d-4f chains {[LnCu(hfac)5(NITPhPybis)]·CHCl3}n (hfac: hexafluoroacetylacetonate; LnIII: Gd 1; Dy 2; Ho 3; Tb 4) have been successfully produced. In complexes 1-4, the NITPhPybis biradical chelates one LnIII ion through its bis(NIT) moiety while the N donor of pyridine and another uncoordinated NO group of the biradical, respectively, bind one CuII ion, yielding a biradical-Ln-Cu 1D zigzag chain with a unique [Ln-bis(NIT)-Cu-bis(NIT)-Ln] structural motif. DC magnetic studies reveal that ferromagnetic exchanges dominate in these Cu-Ln-biradical chains, originating from the ferromagnetic Ln-NO and NOaxial-Cu exchanges. Non-zero χ'' signals were observed for Dy/Tb-Cu derivatives implying slow magnetic relaxation behavior. The obtained effective energy barrier is Ueff = 18.0 K and τ0 = 2.0 × 10-8 s for the DyCu derivative.
Collapse
Affiliation(s)
- Jing Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chaoyi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaotong Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaohui Huang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Hongwei Song
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Junfang Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Li HD, Wu SG, Tong ML. Lanthanide-radical single-molecule magnets: current status and future challenges. Chem Commun (Camb) 2023; 59:6159-6170. [PMID: 37129902 DOI: 10.1039/d2cc07042a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the field of molecular magnetism, the lanthanide-radical (Ln-Rad) method has become one of the most appealing tactics for introducing strong magnetic interactions and has spurred on the booming development of heterospin single-molecule magnets (SMMs). The article is a timely retrospect on the research progress of Ln-Rad heterospin systems and special attention is invested on low dimensional Ln-Rad compounds with SMM behavior, primarily concerning with nitrogen-based radicals, semiquinone and nitroxide radicals. Rational design, molecular structures, magnetic behaviors and magneto-structural correlations are highlighted. Meanwhile, particular attention is focused on the influence of exchange couplings on the dynamic magnetic properties, with the purpose of helping to guide the design of prospective radical-based Ln-SMMs.
Collapse
Affiliation(s)
- Hong-Dao Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
18
|
Swain A, Sharma T, Rajaraman G. Strategies to quench quantum tunneling of magnetization in lanthanide single molecule magnets. Chem Commun (Camb) 2023; 59:3206-3228. [PMID: 36789911 DOI: 10.1039/d2cc06041h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Enhancing blocking temperature (TB) is one of the holy grails in Single Molecule Magnets(SMMs), as any future potential application in this class of molecules is directly correlated to this parameter. Among many factors contributing to a reduction of TB value, Quantum Tunnelling of Magnetisation (QTM), a phenomenon that is a curse or a blessing based on the application sought after, tops the list. Theoretical tools based on density functional and ab initio CASSCF/RASSI-SO methods have played a prominent role in estimating various spin Hamiltonian parameters and establishing the mechanism of magnetization relaxation in this class of molecules. Particularly, various strategies to quench QTM effects go hand-in-hand with experiments, and different methods proposed to quell QTM effects are scattered in the literature. In this perspective, we have explored various approaches that are proposed in the literature to quench QTM effects, and these include the role of (i) local symmetry of lanthanides, (ii) super-exchange interaction in {3d-4f} complexes, (iii) direct-exchange interaction in {radical-4f} and metal-metal bonded complexes to suppress the QTM, (iv) utilizing external stimuli such as an electric field or pressure to modulate the QTM and (v) avoiding QTM effects by stabilising toroidal states in 4f and {3d-4f} clusters. We believe the strategies summarized here will help to design new-generation SMMs.
Collapse
Affiliation(s)
- Abinash Swain
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Tanu Sharma
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | | |
Collapse
|
19
|
Zou Q, Wang GL, Chen YQ, Huang XD, Wen GH, Qin MF, Bao SS, Zhang YQ, Zheng LM. X-Ray Triggered Coordination-Bond Breakage in Dysprosium-Organic Framework and its Impact on Magnetic Properties. Chemistry 2023; 29:e202203454. [PMID: 36445817 DOI: 10.1002/chem.202203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Photosensitive lanthanide-based single-molecule magnets (Ln-SMM) are very attractive for their potential applications in information storage, switching, and sensors. However, the light-driven structural transformation in Ln-SMMs hardly changes the coordination number of the lanthanide ion. Herein, for the first time it is reported that X-ray (λ=0.71073 Å) irradiation can break the coordination bond of Dy-OH2 in the three-dimensional (3D) metal-organic framework Dy2 (amp2 H2 )3 (H2 O)6 ⋅ 4H2 O (MDAF-5), in which the {Dy2 (OPO)2 } dimers are cross-linked by dianthracene-phosphonate ligands. The structural transformation proceeds in a single-crystal-to-single-crystal (SC-SC) fashion, forming the new phase Dy2 (amp2 H2 )3 (H2 O)4 ⋅ 4H2 O (MDAF-5-X). The phase transition is accompanied by a significant change in magnetic properties due to the alteration in coordination geometry of the DyIII ion from a distorted pentagonal bipyramid in MDAF-5 to a distorted octahedron in MDAF-5-X.
Collapse
Affiliation(s)
- Qian Zou
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Guo-Lu Wang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Yi-Qing Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Ge Hua Wen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
20
|
Huang XD, Ma XF, Shang T, Zhang YQ, Zheng LM. Photocontrollable Magnetism and Photoluminescence in a Binuclear Dysprosium Anthracene Complex. Inorg Chem 2023; 62:1864-1874. [PMID: 35830693 DOI: 10.1021/acs.inorgchem.2c01210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
By incorporating photoreactive anthracene moieties into binuclear Dy2O2 motifs, we obtain two new compounds with the formulas [Dy2(SCN)4(L)2(dmpma)4] (1) and [Dy2(SCN)4(L)2(dmpma)2(CH3CN)2] (2), where HL is 4-methyl-2,6-dimethoxyphenol and dmpma is dimethylphosphonomethylanthracene. Compound 1 contains face-to-face π-π interacted anthracene groups that meet the Schmidt rule for a [4 + 4] photocycloaddition reaction, while stacking of the anthracene groups in compound 2 does not meet the Schmidt rule. Compound 1 undergoes a reversible single-crystal-to-single-crystal structural transformation upon UV-light irradiation and thermal annealing, forming a one-dimensional coordination polymer of [Dy2(SCN)4(L)2(dmpma)2(dmpma2)]n (1UV). The process is concomitant with changes in the magnetic dynamics and photoluminescent properties. The spin-reversal energy barrier is significantly increased from 1 (55.9 K) to 1UV (116 K), and the emission color is changed from bright yellow for 1 to weak blue for 1UV. This is the first binuclear lanthanide complex that exhibits synergistic photocontrollable magnetic dynamics and photoluminescence. Ab initio calculations are conducted to understand the magnetostructural relationships of compounds 1, 1UV, and 2.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiu-Fang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Tao Shang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
21
|
Dy3 and Gd3 Complexes with Dy3 Exhibiting Field-Induced Single-Molecule Magnet Behaviour. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Mn-Ln complexes based on azo-salicylaldehyde: Synthesis, structure and magnetic properties. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Wang M, Meng X, Liu N, Zhang YQ, Xu N, Shi W, Cheng P. Two monofluoride-bridged DyIII dimers with different magnetization dynamics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Lunghi A, Sanvito S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat Rev Chem 2022; 6:761-781. [PMID: 37118096 DOI: 10.1038/s41570-022-00424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Having served as a playground for fundamental studies on the physics of d and f electrons for almost a century, magnetic molecules are now becoming increasingly important for technological applications, such as magnetic resonance, data storage, spintronics and quantum information. All of these applications require the preservation and control of spins in time, an ability hampered by the interaction with the environment, namely with other spins, conduction electrons, molecular vibrations and electromagnetic fields. Thus, the design of a novel magnetic molecule with tailored properties is a formidable task, which does not only concern its electronic structures but also calls for a deep understanding of the interaction among all the degrees of freedom at play. This Review describes how state-of-the-art ab initio computational methods, combined with data-driven approaches to materials modelling, can be integrated into a fully multiscale strategy capable of defining design rules for magnetic molecules.
Collapse
|
25
|
Mecchia Ortiz JH, Cabrosi D, Carrella LM, Rentschler E, Alborés P. SMM Behaviour of the Butterfly {Cr
III
2
Dy
III
2
} Pivalate Complex and Magneto‐structurally Correlated Relaxation Thermal Barrier. Chemistry 2022; 28:e202201450. [DOI: 10.1002/chem.202201450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Juan H. Mecchia Ortiz
- Departamento de Química Inorgánica Analítica y Química Física/ INQUIMAE (CONICET) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| | - Daiana Cabrosi
- Departamento de Química Inorgánica Analítica y Química Física/ INQUIMAE (CONICET) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| | - Luca M. Carrella
- Department Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–12 D-55128 Mainz Germany
| | - Eva Rentschler
- Department Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–12 D-55128 Mainz Germany
| | - Pablo Alborés
- Departamento de Química Inorgánica Analítica y Química Física/ INQUIMAE (CONICET) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| |
Collapse
|
26
|
Oyarzabal I, Zabala-Lekuona A, Mota AJ, Palacios MA, Rodríguez-Diéguez A, Lorusso G, Evangelisti M, Rodríguez-Esteban C, Brechin EK, Seco JM, Colacio E. Magneto-thermal properties and slow magnetic relaxation in Mn(II)Ln(III) complexes: influence of magnetic coupling on the magneto-caloric effect. Dalton Trans 2022; 51:12954-12967. [PMID: 35960153 DOI: 10.1039/d2dt01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of Mn(II)Ln(III) dinuclear and tetranuclear complexes (Ln = Gd and Dy) has been prepared from the compartmental ligands N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromobenzyl)ethylenediamine (H2L1) and N,N',N''-trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L2). The Mn(II)Gd(III) complexes exhibit antiferromagnetic interactions between Mn(II) and Gd(III) ions in most cases, which are supported by Density Functional Theory (DFT) calculations. Experimental magneto-structural correlations carried out for the reported complexes and other related complexes found in bibliography show that the highest ferromagnetic coupling constants are observed in di-μ-phenoxido bridged complexes, which is due to the planarity of the Mn-(μ-O)2-Gd bridging fragment and to the high Mn-O-Gd angles. The effect of these angles has been studied by DFT calculations performed on a di-μ-phenoxido doubly bridged model. The magneto-thermal properties of the Mn(II)Gd(III) based complexes have also been measured, concluding that the magnitude of the Magneto-Caloric Effect (MCE) is due to the strength rather than to the nature of the magnetic coupling. Moreover, when two Mn(II)Gd(III) dinuclear units are connected by two carbonato-bridging ligands the MCE is enhanced, obtaining a maximum magnetic entropy change of 36.4 Jkg-1 K-1 at ΔB = 7 T and T = 2.2 K. On the other hand, one of the dinuclear Mn(II)Dy(III) complexes displays Single-Molecule Magnet (SMM) behaviour with an energy barrier of 14.8 K under an applied external field of 1000 Oe.
Collapse
Affiliation(s)
- Itziar Oyarzabal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain. .,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain.
| | - Antonio J Mota
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - María A Palacios
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Giulia Lorusso
- CNR - Istituto per la Microelettronica e Microsistemi, Unità di Bologna, 40129 Bologna, Italy
| | - Marco Evangelisti
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Corina Rodríguez-Esteban
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - José M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain.
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
27
|
Li G, Xie H, Yang S, Fu Y, Zhang Y, Wang Y. Dramatic Impact of Auxiliary Ligands on the Dynamic Magnetic Relaxation in Tetranuclear
Dy
III
2
Zn
II
2
Single Molecule Magnet. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gao‐Peng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials of the Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University Taiyuan 030031 P.R. China
| | - Hong‐Fang Xie
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials of the Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University Taiyuan 030031 P.R. China
| | - Shi‐Rui Yang
- Weinan Bureau of Natural Resources and Planning Weinan 714000 P.R. China
| | - Yun‐Long Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials of the Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University Taiyuan 030031 P.R. China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University Nanjing 210023 P.R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico‐Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710127 P. R. China
| |
Collapse
|
28
|
Wang W, Shang T, Wang J, Yao BL, Li LC, Ma Y, Wang QL, Zhang YZ, Zhang YQ, Zhao B. Slow magnetic relaxation in a Dy 3 triangle and a bistriangular Dy 6 cluster. Dalton Trans 2022; 51:9404-9411. [PMID: 35674238 DOI: 10.1039/d1dt03414f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two lanthanide single-molecule magnets (SMMs) [Dy3(μ3-OH)(HL-1)3(H2O)3](NO3)2·3H3O (1, H3L-1 = (E)-3-(((8-hydroxyquinolin-2-yl)methylene)amino)propane-1,2-diol) and [Dy6(μ3-OH)4(H2L-2)4(HL-2)2(L-2)2] (2, H3L-2 = (E)-2-hydroxy-N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide) were synthesized and characterized structurally and magnetically. Complex 1 contains a triangular Dy3 core in which the three Dy3+ ions share a μ3-OH- anion and the deprotonated ligands of (HL-1)2- serve both capping and bridging functions, while 2 displays a centrosymmetric hexanuclear DyIII structure with two similar Dy3 triangular cores ligated by two fully deprotonated (L-2)3- ligands, each of which shares two μ3-OH- anions. All the DyIII ions are eight-coordinated with quasi D2d or C2v symmetry. Magnetic studies reveal that 1 exhibited two-step magnetic relaxation under an applied dc field of 800 Oe, with effective energy barriers of 40.1 and 31.0 K for the slow relaxation (SR) and fast relaxation regimes (FR), respectively. Meanwhile, 2 only showed a tail of slow magnetic relaxation at above 2 K. Ab initio calculations have been carried out to show the nature of their different magnetic properties.
Collapse
Affiliation(s)
- Wen Wang
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE) and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.
| | - Tao Shang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Juan Wang
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE) and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.
| | - Bin-Ling Yao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Li-Cun Li
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE) and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE) and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.
| | - Qing-Lun Wang
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE) and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Bin Zhao
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE) and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Ahmed N, Sharma T, Spillecke L, Koo C, Ansari KU, Tripathi S, Caneschi A, Klingeler R, Rajaraman G, Shanmugam M. Probing the Origin of Ferro-/Antiferromagnetic Exchange Interactions in Cu(II)–4f Complexes. Inorg Chem 2022; 61:5572-5587. [DOI: 10.1021/acs.inorgchem.2c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Tanu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Lena Spillecke
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Changhyun Koo
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Andrea Caneschi
- Department of Industrial Engineering, “DIEF” and INSTM RU, University of Florence, Via di S. Marta 3, 50131 Florence, Italy
| | - Rüdiger Klingeler
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
30
|
Ahmed N, Uddin Ansari K. Experimental and theoretical insights into Co-Ln magnetic exchange and the rare slow-magnetic relaxation behavior of [CoII2Pr] 2+ in a series of linear [CoII2Ln] 2+ complexes. Dalton Trans 2022; 51:4122-4134. [PMID: 35188157 DOI: 10.1039/d1dt03573h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a series of near-linear trinuclear complexes [Co2Ln(HL)4(NO3)](NO3)2 (where HL = (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) with Ln(III) = La (1), Ce (2), Pr (3)). For the comparative study, we have also included the recently reported analogous complexes of Gd(III), Tb(III), and Dy(III) (complexes 4-6) with the same H2L ligand. The experimental nature of the dc magnetic susceptibilities profile and an empirical approach revealed that the magnetic exchange interaction between Co(II) and Ln(III) having <4f7 (complexes 2 and 3) is antiferromagnetic while the dominant interaction between Co(II) and Ln(III) having ≥4f7 (complexes 4-6) is ferromagnetic. Dynamic magnetic relaxation studies on complexes 1-3 revealed the field induced single-molecule magnetic (SMM) behavior of 1 and 3 with effective energy barriers of 10.65 K and 15.03 K respectively, for magnetic relaxation. To the best of our knowledge, 3d-Pr(III) based zero or field induced SMMs have not been reported to date. CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations on the X-ray structures of complexes 1-6, followed by POLY_ANISO simulations, estimated the magnetic exchange coupling constants JCo-Ln and JCo-Co and also rationalized our experimental findings for the dynamic magnetic properties.
Collapse
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
31
|
|
32
|
Li XZ, Tian CB, Sun QF. Coordination-Directed Self-Assembly of Functional Polynuclear Lanthanide Supramolecular Architectures. Chem Rev 2022; 122:6374-6458. [PMID: 35133796 DOI: 10.1021/acs.chemrev.1c00602] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lanthanide supramolecular chemistry is a fast growing and intriguing research field due to the unique photophysical, magnetic, and coordination properties of lanthanide ions (LnIII). Compared with the intensively investigated mononuclear Ln-complexes, polymetallic lanthanide supramolecular assemblies offer more structural superiority and functional advantages. In recent decades, significant progress has been made in polynuclear lanthanide supramolecules, varying from structural evolution to luminescent and magnetic functional materials. This review summarizes the design principles in ligand-induced coordination-driven self-assembly of polynuclear Ln-structures and intends to offer guidance for the construction of more elegant Ln-based architectures and optimization of their functional performances. Design principles concerning the water solubility and chirality of the lanthanide-organic assemblies that are vital in extending their applications are emphasized. The strategies for improving the luminescent properties and the applications in up-conversion, host-guest chemistry, luminescent sensing, and catalysis have been summarized. Magnetic materials based on supramolecular assembled lanthanide architectures are given in an individual section and are classified based on their structural features. Challenges remaining and perspective directions in this field are also briefly discussed.
Collapse
Affiliation(s)
- Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| |
Collapse
|
33
|
Yan H, Wang C, Chen P, Zhang YQ, Sun W. Schiff Base Tetranuclear Zn2Ln2 Single-Molecule Magnets bridged by Hydroxamic acid in association with Near-Infrared Luminescence. Dalton Trans 2022; 51:6918-6926. [DOI: 10.1039/d2dt00001f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Zn-Ln heteronuclear SMMs formed by hexadentate compartment Schiff base Zn-precursor and lanthanoid ions were structurally and magnetically characterized, in which the two [Zn-Ln] moieties are bridged by...
Collapse
|
34
|
Yu S, Hu HC, Liu D, Liang Y, Liang F, Yin B, Chen Z. Structural and magnetic studies of six-coordinated Schiff base Dy(III) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00356b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim to tune magnetic anisotropies of six-coordinated Dy(III) complexes, four bis-Schiff bases bearing different spacers and one mono-Schiff base were designed, which are bis(2-hydroxylnaphthalenylmethylene)hydrazine (H2L1), bis(2-hydroxylnaphthylmethylene)ethylenediamine (H2L2), bis(2-hydroxylnaphthylmethylene)-propylenediamine...
Collapse
|
35
|
Chen YC, Tong ML. Single-Molecule Magnets beyond a Single Lanthanide Ion: The Art of Coupling. Chem Sci 2022; 13:8716-8726. [PMID: 35975153 PMCID: PMC9350631 DOI: 10.1039/d2sc01532c] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
The promising future of storing and processing quantized information at the molecular level has been attracting the study of Single-Molecule Magnets (SMMs) for almost three decades. Although some recent breakthroughs are mainly about the SMMs containing only one lanthanide ion, we believe SMMs can tell a much deeper story than the single-ion anisotropy. Here in this Perspective, we will try to draw a unified picture of SMMs as a delicately coupled spin system between multiple spin centres. The hierarchical couplings will be presented step-by-step, from the intra-atomic hyperfine coupling, to the direct and indirect intra-molecular couplings with neighbouring spin centres, and all the way to the inter-molecular and spin–phonon couplings. Along with the discussions on their distinctive impacts on the energy level structures and thus magnetic behaviours, a promising big picture for further studies is proposed, encouraging the multifaceted developments of molecular magnetism and beyond. In this Perspective, we draw a unified picture for single-molecule magnets as delicately coupled spin systems, discuss the hierarchical couplings (from intra-atomic to inter-molecular) and their distinctive impacts on the magnetic behaviours.![]()
Collapse
Affiliation(s)
- Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
36
|
Wang HS, Zhou PF, Wang J, Long QQ, Hu Z, Chen Y, Li J, Song Y, Zhang YQ. Significantly Enhancing the Single-Molecule-Magnet Performance of a Dinuclear Dy(III) Complex by Utilizing an Asymmetric Auxiliary Organic Ligand. Inorg Chem 2021; 60:18739-18752. [PMID: 34865470 DOI: 10.1021/acs.inorgchem.1c02169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we employed an asymmetric auxiliary organic ligand (1,1,1-trifluoroacetylacetone, Htfac) to further regulate the magnetic relaxation behavior of series of Dy2 single-molecule magnets (SMMs) with a N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2L) ligand. Fortunately, an air-stable Dy2 complex, [Dy2(L)2(tfac)2] (1; Htfac = 1,1,1-trifluoroacetylacetone) was obtained at room temperature. A structural analysis indicated that some Dy-O or Dy-N bond lengths for 1 are not in the range of those for the complexes [DyIII2(L)2(acac)2]·2CH2Cl2 (Dy2-acac; Hacac = acetylacetone) and [DyIII2(L)2(hfac)2] (Dy2-hfac; Hhfac = hexafluoroacetylacetone), although the electron-withdrawing ability of tfac- is stronger than that of acac- but weaker than that of hfac-. Additionally, the Dy-O3/O3a (the two O atoms bridged to DyIII ions) bond lengths are also affected by the asymmetrical Htfc ligand. This indicated that the charge distribution of the coordination atoms around DyIII has been modified in 1, which leads to the fine-tuning of the magnetic relaxation behavior of 1. Magnetic studies indicated that the values of effective energy barrier (Ueff) for 1 and its diluted sample (2) are 234.8(3) and 188.0(6) K, respectively, which are both higher than the reported value of 110 K for the complex Dy2-hfac. More interestingly, 1 exhibits a magnetic hysteresis opening when T < 2.5 K at zero field, while the hysteresis loops of 2 are closed at a zero dc field. This discrepancy is due to the weak intramolecular exchange coupling in 2, which cannot overcome the QTM of the single DyIII ion. Ab initio calculations for 1 revealed that the charge distributions of the coordination atoms around DyIII ions were regulated and the intramolecular exchange coupling was indeed improved when the asymmetrical Htfc was employed as a ligand for the synthesis of this kind of Dy2 SMM.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Peng-Fei Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jia Wang
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiao-Qiao Long
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Zhaobo Hu
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jing Li
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - You Song
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
37
|
Li S, Xiong J, Yuan Q, Zhu WH, Gong HW, Wang F, Feng CQ, Wang SQ, Sun HL, Gao S. Effect of the Transition Metal Ions on the Single-Molecule Magnet Properties in a Family of Air-Stable 3d-4f Ion-Pair Compounds with Pentagonal Bipyramidal Ln(III) Ions. Inorg Chem 2021; 60:18990-19000. [PMID: 34851093 DOI: 10.1021/acs.inorgchem.1c02828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule magnets (SMMs) are expected to be promising candidates for the applications of high-density information storage materials and quantum information processing. Lanthanide SMMs have attracted considerable interest in recent years due to their excellent performance. It has always been interesting but not straightforward to study the relaxation and blocking mechanisms by embedding 3d ions into 4f SMMs. Here we report a family of air-stable 3d-4f ion-pair compounds, YFe (1), DyCr (2), DyFe (3), DyCo (4), and Dy0.04Y0.96Fe (5), composed of pentagonal bipyramidal (D5h) LnIII cations and transition metallocyanate anions. The ion-pair nature makes the dipole-dipole interactions almost the only component of the magnetic interactions that can be clarified and analytically resolved under proper approximation. Therefore, this family provides an intuitive opportunity to investigate the effects of 3d-4f and 4f-4f magnetic interactions on the behavior of site-resolved 4f SMMs. Dynamic magnetic measurements of 1 under a 4 kOe external field reveal slow magnetic relaxation originating from the isolated [FeIII]LS (S = 1/2) ions. Under zero dc field, compounds 2-5 show similar magnetic relaxation processes coming from the separated pentagonal bipyramidal (D5h) DyIII ions with high Orbach barriers of 592(5), 596(4), 595(3), and 606(4) K, respectively. Comparatively, both compounds 3 and 5 exhibit two distinct relaxation processes, respectively from the [FeIII]LS and DyIII [Ueff = 596(4) K for 3 and 610(7) K for 5] ions, under a 4 kOe dc field. The dipolar interactions between the neighboring TMIII (TM = transition metal, CrIII or [FeIII]LS) and DyIII ions were revealed to have little effect on the thermal relaxation in compounds 2, 3, and 5, or the coexistence of the two separate relaxation processes in compounds 3 and 5 under a 4 kOe dc field, but they significantly affect the quantum tunneling of magnetization and the magnetic hysteresis behavior of 2 and 3 at low temperatures compared to those of 4.
Collapse
Affiliation(s)
- Shan Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Qiong Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Wen-Hua Zhu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Hui-Wen Gong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Fei Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Chuan-Qi Feng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Shi-Quan Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, P. R. China
| |
Collapse
|
38
|
Mecchia Ortiz JH, Cabrosi D, Cruz C, Paredes-García V, Alborés P. Synthesis, structural characterization, and magnetic property study of {Cr 3Ln 3}, Ln = Gd and Dy complexes. Dalton Trans 2021; 51:624-637. [PMID: 34904980 DOI: 10.1039/d1dt03176g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have successfully prepared and structurally characterized triangle-in-triangle {Cr3Ln3} complexes with Ln = Gd and Dy employing alcohol-amine, N-methyldiethanolamine (H2mdea) and pivalate ligands. These complexes and the Yttrium analogue proved to be isostructural and crystallized in a P1 triclinic cell. DC and AC magnetic measurements were carried out and supported by quantum computations at DFT and CASSCF levels. DC magnetic data are dominated by the Cr(III)-Ln(III) antiferromagnetic interaction and by single-ion anisotropy in the case of the Dy(III) complex. Ln(III)-Ln(III) magnetic interactions are negligible, as well as Cr(III)-Cr(III) ones. From AC data, slow relaxation of the magnetization is observed at 0 DC applied magnetic field in the case of the Dy(III) complex below 4 K. From temperature and field dependence data, possible Raman and Orbach relaxation mechanisms are established in the absence of quantum tunnelling pathways, suggesting a successful suppression of the latter due to the Cr(III)-Dy(III) exchange interaction.
Collapse
Affiliation(s)
- Juan H Mecchia Ortiz
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | - Daiana Cabrosi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | - Carlos Cruz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Verónica Paredes-García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Pablo Alborés
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
39
|
Wang X, Han J, Huang X, Li L. LnIII-NiII heterometallic compounds linked by nitronyl nitroxides: Structure and magnetism. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Koroteev PS, Dobrokhotova ZV, Ilyukhin AB, Belova EV, Yapryntsev AD, Rouzières M, Clérac R, Efimov NN. Tetranuclear Cr-Ln ferrocenecarboxylate complexes with a defect-dicubane structure: synthesis, magnetism, and thermolysis. Dalton Trans 2021; 50:16990-16999. [PMID: 34612322 DOI: 10.1039/d1dt02562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using ferrocenecarboxylic acid (FcCO2H) and triethanolamine (H3tea) as ligands, the isostructural heterotrimetallic complexes [LnIII2CrIII2(OH)2(FcCO2)4(NO3)2(Htea)2]·2MePh·2THF (Ln = Tb (1), Dy (2), Ho (3), Er (4), and Y (5); Fc = (η5-C5H4)(η5-C5H5)Fe; H3tea = N(CH2CH2OH)3) were obtained. In all of the complexes which possess a defective dicubane structure, two doubly deprotonated triethanolamine ligands chelate the chromium ions. However, during the synthesis of 1, an isomeric complex 1a in which Tb3+ is chelated by triethanolamine as a tetradentate ligand, was also isolated as a few single crystals. Magnetic susceptibility measurements revealed dominant antiferromagnetic interactions in the {LnIII2CrIII2} cores of 1-4 leading to the formation of complexes with an uncompensated magnetic moment, while weak Cr-Cr ferromagnetic interactions were detected in the Y analogue. Complexes 1, 2, and 3 exhibit single-molecule magnet properties dominated by an Orbach-type relaxation mechanism with magnetization reversal barriers (Δ/kB) estimated around 54, 75, and 47 K, respectively. The Dy complex exhibits a magnetization hysteresis in an applied magnetic field at temperatures below 4 K. Thermolysis of the complexes was studied by TGA and DSC techniques; the final products obtained under an air atmosphere contain mixed oxide Cr0.75Fe1.25O3 and heterotrimetallic oxide LnCr1-xFexO3 (with x ≈ 0.75) phases.
Collapse
Affiliation(s)
- Pavel S Koroteev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Zhanna V Dobrokhotova
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Andrey B Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Ekaterina V Belova
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation. .,Lomonosov Moscow State University, Department of Chemistry, GSP-1, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Alexey D Yapryntsev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France.
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France.
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp. 31, 119991 Moscow, Russian Federation.
| |
Collapse
|
41
|
Gupta SK, Dey S, Rajeshkumar T, Rajaraman G, Murugavel R. Deciphering the Role of Anions and Secondary Coordination Sphere in Tuning Anisotropy in Dy(III) Air-Stable D 5h SIMs*. Chemistry 2021; 28:e202103585. [PMID: 34788493 DOI: 10.1002/chem.202103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 01/05/2023]
Abstract
Precise control of the crystal field and symmetry around the paramagnetic spin centre has recently facilitated the engineering of high-temperature single-ion magnets (SIMs), the smallest possible units for future spin-based devices. In the present work, we report a series of air-stable seven coordinate Dy(III) SIMs {[L2 Dy(H2 O)5 ][X]3 ⋅L2 ⋅n(H2 O), n = 0, X = Cl (1), n=1, X = Br (2), I (3)} possessing pseudo-D5h symmetry or pentagonal bipyramidal coordination geometry with high anisotropy energy barrier (Ueff ) and blocking temperature (TB ). While the strong axial coordination from the sterically encumbered phosphonamide, t BuPO(NHi Pr)2 (L), increases the overall anisotropy of the system, the presence of high symmetry significantly quenches quantum tunnelling of magnetization, which is the prominent deactivating factor encountered in SIMs. The energy barrier (Ueff ) and the blocking temperature (TB ) decrease in the order 3>2>1 with the change of anions from larger iodide to smaller strongly hydrogen-bonded chloride in the secondary coordination sphere, albeit the local coordination geometry and the symmetry around the Dy(III) display only slight deviations. Ab initio CASSCF/RASSI-SO/SINGLE_ANISO calculations provide deeper insights into the dynamics of magnetic relaxation in addition to the role of the secondary coordination sphere in modulating the anisotropy of the D5h systems, using diverse models. Thus, in addition to the importance of the crystal field and the symmetry to obtain high-temperature SIMs, this study also probes the significance of the secondary coordination sphere that can be tailored to accomplish novel SIMs.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400 076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400 076, India
| | - Thayalan Rajeshkumar
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400 076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400 076, India
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400 076, India
| |
Collapse
|
42
|
Briganti M, Totti F, Andruh M. Hetero-tri-spin systems: an alternative stairway to the single molecule magnet heaven? Dalton Trans 2021; 50:15961-15972. [PMID: 34647933 DOI: 10.1039/d1dt02511b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The search for molecule-based magnetic materials has stimulated over the years the development of extremely rich coordination chemistry. Various combinations of spin carriers have been investigated and illustrated by a plethora of hetero-spin complexes: 3d-nd, 3d-4f, 2p-3d, and 2p-4f. More recently, two other classes of hetero-spin complexes have grown rapidly: compounds containing three different paramagnetic metal ions, or one radical and two different paramagnetic metal ions (all within the same molecular entity). Such new classes of systems represent a challenge both from a synthetic and theoretical point of view. Indeed, the synthetic control and the understanding of the spin topology effect on the overall magnetic behavior from first-principles is a difficult problem to be solved. The presence of different spin carriers in a single molecule makes such compounds particularly interesting because they offer the possibility of developing new magnetic properties, different from those of hetero-bi-spin or homo-spin systems. A critical overview taking the case of 2p-3d-4f complexes is the focus of this perspective paper. An original organic picture of the state-of-art in this field and new hints about the main directions that should be pursued to achieve hetero-tri-spin systems with large anisotropy barriers, low quantum tunneling of magnetization and, possibly, large blocking temperatures are provided in this article through an analysis based on numerically revisiting already published data and a critical survey of the literature reported so far. The reasons for the limited success obtained for the largely used 3d-2p-4f topology are given along with the ones explaining the failure for the 2p-4f-3d case. The still never synthesized linear 2p-3d-4f spin topology seemed to be the most promising one based on the results obtained for the unique closed hetero-tri-spin closed triangular system synthesized so far.
Collapse
Affiliation(s)
- Matteo Briganti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Federico Totti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Marius Andruh
- Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, 020464 Bucharest, Romania. .,"Costin D. Nenitzescu" Institute of Organic Chemistry of the Romanian Academy, Spl. Independentei nr. 202B, Bucharest, Romania
| |
Collapse
|
43
|
Hu JJ, Peng Y, Liu SJ, Wen HR. Recent advances in lanthanide coordination polymers and clusters with magnetocaloric effect or single-molecule magnet behavior. Dalton Trans 2021; 50:15473-15487. [PMID: 34668916 DOI: 10.1039/d1dt02797b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular magnetorefrigerant materials for low-temperature magnetic refrigeration and single-molecule magnets for high-density information storage and quantum computing have received extensive attention from chemists and magnetic experts. Lanthanide ions with unique magnetic properties have always been considered as ideal candidates for the construction of such materials. This frontier article focuses on GdIII-based molecular magnetorefrigerants and lanthanide-based single-molecule magnets and highlights the most significant advances.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
44
|
Dey S, Rajaraman G. Attaining record-high magnetic exchange, magnetic anisotropy and blocking barriers in dilanthanofullerenes. Chem Sci 2021; 12:14207-14216. [PMID: 34760206 PMCID: PMC8565386 DOI: 10.1039/d1sc03925c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
While the blocking barrier (U eff) and blocking temperature (T B) for "Dysprocenium" SIMs have been increased beyond liquid N2 temperature, device fabrication of these molecules remains a challenge as low-coordinate Ln3+ complexes are very unstable. Encapsulating the lanthanide ion inside a cage such as a fullerene (called endohedral metallofullerene or EMF) opens up a new avenue leading to several Ln@EMF SMMs. The ab initio CASSCF calculations play a pivotal role in identifying target metal ions and suitable cages in this area. Encouraged by our earlier prediction on Ln2@C79N, which was verified by experiments, here we have undertaken a search to enhance the exchange coupling in this class of molecules beyond the highest reported value. Using DFT and ab initio calculations, we have studied a series of Gd2@C2n (30 ≤ 2n ≤ 80), where an antiferromagnetic J Gd⋯Gd of -43 cm-1 was found for a stable Gd2@C38-D 3h cage. This extremely large and exceptionally rare 4f⋯4f interaction results from a direct overlap of 4f orbitals due to the confinement effect. In larger cages such as Gd2@C60 and Gd2@C80, the formation of two centre-one-electron (2c-1e-) Gd-Gd bonds is perceived. This results in a radical formation in the fullerene cage leading to its instability. To avoid this, we have studied heterofullerenes where one of the carbon atoms is replaced by a nitrogen atom. Specifically, we have studied Ln2@C59N and Ln2@C79N, where strong delocalisation of the electron yields a mixed valence-like behaviour. This suggests a double-exchange (B) is operational, and CASSCF calculations yield a B value of 434.8 cm-1 and resultant J Gd-rad of 869.5 cm-1 for the Gd2@C59N complex. These parameters are found to be two times larger than the world-record J reported for Gd2@C79N. Further ab initio calculations reveal an unprecedented U cal of 1183 and 1501 cm-1 for Dy2@C59N and Tb2@C59N, respectively. Thus, this study offers strong exchange coupling as criteria for new generation SMMs as the existing idea of enhancing the blocking barrier via crystal field modulation has reached its saturation point.
Collapse
Affiliation(s)
- Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
45
|
Kaemmerer H, Mereacre V, Ako AM, Mameri S, Anson CE, Clérac R, Powell AK. Assisted Self-Assembly to Target Heterometallic Mn-Nd and Mn-Sm SMMs: Synthesis and Magnetic Characterisation of [Mn 7 Ln 3 (O) 4 (OH) 4 (mdea) 3 (piv) 9 (NO 3 ) 3 ] (Ln=Nd, Sm, Eu, Gd)*. Chemistry 2021; 27:15095-15101. [PMID: 34554613 PMCID: PMC8596590 DOI: 10.1002/chem.202102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/10/2022]
Abstract
In an assisted self-assembly approach starting from the [Mn6 O2 (piv)10 (4-Me-py)2 (pivH)2 ] cluster a family of Mn-Ln compounds (Ln=Pr-Yb) was synthesised. The reaction of [Mn6 O2 (piv)10 (4-Me-py)2 (pivH)2 ] (1) with N-methyldiethanolamine (mdeaH2 ) and Ln(NO3 )3 ⋅ 6H2 O in MeCN generally yields two main structure types: for Ln=Tb-Yb a previously reported Mn5 Ln4 motif is obtained, whereas for Ln=Pr-Eu a series of Mn7 Ln3 clusters is obtained. Within this series the GdIII analogue represents a special case because it shows both structural types as well as a third Mn2 Ln2 inverse butterfly motif. Variation in reaction conditions allows access to different structure types across the whole series. This prompts further studies into the reaction mechanism of this cluster assisted self-assembly approach. For the Mn7 Ln3 analogues reported here variable-temperature magnetic susceptibility measurements suggest that antiferromagnetic interactions between the spin carriers are dominant. Compounds incorporating Ln=NdIII (2), SmIII (3) and GdIII (5) display SMM behaviour. The slow relaxation of the magnetisation for these compounds was confirmed by ac measurements above 1.8 K.
Collapse
Affiliation(s)
- Hagen Kaemmerer
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 1576131KarlsruheGermany
- Institute for Quantum Materials and Technologies (IQMT)Karlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Valeriu Mereacre
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 1576131KarlsruheGermany
| | - Ayuk M. Ako
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 1576131KarlsruheGermany
| | - Samir Mameri
- Université de StrasbourgIUT Robert SchumanCS 10315, 67411Illkirch CedexFrance
| | - Christopher E. Anson
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 1576131KarlsruheGermany
| | - Rodolphe Clérac
- Univ. Bordeaux CNRS, Centre de Recherche Paul Pascal UMR 503133600PessacFrance
| | - Annie K. Powell
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 1576131KarlsruheGermany
- Institute for Quantum Materials and Technologies (IQMT)Karlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Nanotechnology (INT)Karlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
46
|
Peng Y, Kaemmerer H, Powell AK. From the {Fe III 2 Ln 2 } Butterfly's Perspective: the Magnetic Benefits and Challenges of Cooperativity within 3 d-4 f Based Coordination Clusters. Chemistry 2021; 27:15043-15065. [PMID: 34582064 PMCID: PMC8597143 DOI: 10.1002/chem.202102962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/19/2022]
Abstract
In this Review we discuss the tuning handles which can be used to steer the magnetic properties of FeIII‐4 f “butterfly” compounds. The majority of presented compounds were produced in the context of project A3 “Di‐ to tetranuclear compounds incorporating highly anisotropic paramagnetic metal ions” within the SFB/TRR88 “3MET”. These contain {FeIII2Ln2} cores encapsulated in ligand shells which are easy to tune in a “test‐bed” system. We identify the following advantages and variables in such systems: (i) the complexes are structurally simple usually with one crystallographically independent FeIII and LnIII, respectively. This simplifies theory and anaylsis; (ii) choosing Fe allows 57Fe Mössbauer spectroscopy to be used as an additional technique which can give information about oxidation levels and spin states, local moments at the iron nuclei and spin‐relaxation and, more importantly, about the anisotropy not only of the studied isotope, but also of elements interacting with this isotope; (iii) isostructural analogues with all the available (i. e. not Pm) 4 f ions can be synthesised, enabling a systematic survey of the influence of the 4 f ion on the electronic structure; (iv) this cluster type is obtained by reacting [FeIII3O(O2CR)6(L)3](X) (X=anion, L=solvent such as H2O, py) with an ethanolamine‐based ligand L′ and lanthanide salts. This allows to study analogues of [FeIII2Ln2(μ3‐OH)2(L′)2(O2CR)6] using the appropriate iron trinuclear starting materials. (v) the organic main ligand can be readily functionalised, facilitating a systematic investigation of the effect of organic substituents on the ligands on the magnetic properties of the complexes. We describe and discuss 34 {MIII2Ln2} (M=Fe or in one case Al) butterfly compounds which have been reported up to 2020. The analysis of these gives perspectives for designing new SMM systems with specific electronic and magnetic signatures
Collapse
Affiliation(s)
- Yan Peng
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Hagen Kaemmerer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany.,Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131, Karlsruhe, Germany.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
47
|
Ye HJ, Zhang T, Huang SY, Liu XL, Chen WB, Zhang YQ, Tang J, Dong W. Syntheses, structural modulation, and slow magnetic relaxation of three dysprosium(III) complexes with mononuclear, dinuclear, and one-dimensional structures. Dalton Trans 2021; 50:13728-13736. [PMID: 34518853 DOI: 10.1039/d1dt02532e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three mononuclear, dinuclear and one-dimensional dysprosium(III) complexes based on 3-azotriazolyl-2,6-dihydroxybenzoic acid (H4ATB) of [Dy(H3ATB)3]·3H2O (1), [Dy2(H2ATB)2(H2DHB)2(H2O)4]·2CH3CN·5H2O (2), and [Dy2(H2ATB)2(DCB)(DMF)2(H2O)2]·4DMF (3) were synthesized and structurally characterized by X-ray single crystal diffraction (H3DHB = 2,6-dihydroxybenzoic acid, H2DCB = 1,4-dicarboxybenzene). Complex 1 was used as a precursor to synthesize complexes 2 and 3, and 2 was further used to synthesize 3. Complex 1 is a mononuclear complex, in which the Dy(III) ion is in a nine-coordinated structure surrounded by three tridentate chelate H3ATB- ligands. Complex 2 displays a dinuclear structure bridged by two μ2 carboxyl groups of two H2DHB- ligands and two μ1,1-O atoms from the phenolic hydroxyl groups of two H2ATB2- ligands. Complex 3 shows a one-dimensional structure formed by two bridging DCB2- ligands. The magnetic measurements were performed on three complexes 1-3, and they showed different magnetic behavior. Complex 1 shows a field-induced slow magnetic relaxation. Complexes 2 and 3 display distinct slow magnetic relaxation under zero dc field with energy barriers (Ueff) of 26(2) cm-1 and 11(1) cm-1, respectively. The magnetic behavior of three complexes 1-3 was investigated by ab initio calculations.
Collapse
Affiliation(s)
- Hua-Jian Ye
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Tian Zhang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Shu-Yuan Huang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xiao-Ling Liu
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| |
Collapse
|
48
|
Hu P, Cao LH, Liu AG, Zhang YQ, Zhang TL, Li B. Modulating the relaxation dynamics via structural transition from a dinuclear dysprosium cluster to a nonanuclear cluster. Dalton Trans 2021; 50:12814-12820. [PMID: 34494040 DOI: 10.1039/d1dt02380b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dinuclear dysprosium cluster [Dy2(NO3)4(H2O)2(L)2]·2CH3CN was successfully prepared by employing HL (HL = 2,6-dimethoxyphenol) and Dy(NO3)3·6H2O in a mixture of CH3OH and CH3CN. The conversion of this Dy2 compound by reaction with additional deprotonated ligand generated a Dy9 cluster [Dy9(μ4-OH)2(μ3-OH)8(μ2-OCH3)4(NO3)8(H2O)8(L)4](OH)·2H2O with the well-known "diabolo" topology. Magnetic investigation revealed that both of the clusters exhibit typical SMM characteristics, and variable magnetic relaxation with the energy barrier changing from 217.87 K to 9.24 K along with the transition from a dinuclear dysprosium cluster to a nonanuclear one. Ab initio calculations further confirm the corresponding structure-activity relationships that originate the different magnetic behaviours. This design may afford a feasible strategy for modulating the magnetic relaxation dynamics of polynuclear systems.
Collapse
Affiliation(s)
- Peng Hu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, People's Republic of China.,Key laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Ling-Hui Cao
- Key laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Ao-Gang Liu
- Key laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Tian-le Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Bao Li
- Key laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
49
|
Li X, Liu YH, Zhu GZ, Yang FL, Gao F. Successive syntheses and magnetic properties of homodinuclear lanthanide macrocyclic complexes. Dalton Trans 2021; 50:12215-12225. [PMID: 34396380 DOI: 10.1039/d1dt01514a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of homodinuclear β-diketone lanthanide(III) complexes, formulated as [(acac)4Ln2(L1)] (Ln3+ = Dy3+ (1), Tb3+ (2), and Gd3+ (3), respectively) were first synthesized based on a closed-macrocyclic ligand (H2L1) derived from the [2 + 2] cyclocondensation of 4-tert-butyl-2,6-diformylphenol and o-phenylenediamine in the presence of lanthanide acetylacetonates. Subsequently, by using the above compounds as building blocks to assemble directly with another Schiff base ligand, N,N'-bis(5-chlorosalicylidene)-o-phenylenediamine (H2L2), three new homodinuclear sandwich-type lanthanide complexes with the general formula [Ln2(L1)(L2)2] (Ln3+ = Dy3+ (4), Tb3+ (5), and Gd3+ (6), respectively) were further designed and prepared. Single-crystal X-ray analyses show that the central Ln3+ ion adopts a distorted square antiprism conformation with D4d local symmetry. Magnetic studies reveal ferromagnetic interaction between Dy3+ and Tb3+ centres and zero-field slow relaxation of magnetization for Dy complexes 1 and 4. The corresponding magneto-structural correlations of SMMs 1 and 4 were further discussed by theoretical calculations and with experimental outcomes.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yu-Han Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Guang-Zhou Zhu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Feng-Lei Yang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Feng Gao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
50
|
Swain A, Martin R, Vignesh KR, Rajaraman G, Murray KS, Langley SK. Enhancing the barrier height for magnetization reversal in 4d/4f RuIII2LnIII2 "butterfly" single molecule magnets (Ln = Gd, Dy) via targeted structural alterations. Dalton Trans 2021; 50:12265-12274. [PMID: 34519749 DOI: 10.1039/d1dt01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of 4d-4f {RuIII2DyIII2} and {RuIII2GdIII2} 'butterfly' (rhombohedral) complexes have been synthesized and characterized and their magnetic properties investigated. Earlier, we have reported the first 4d/4f SMM - [RuIII2DyIII2(OMe)2(O2CPh)4(mdea)2(NO3)2] (1Dy) with a Ueff value of 10.7 cm-1. As the structural distortion around the DyIII centres and the RuIII⋯DyIII exchange interactions are key to enhancing the anisotropy, in this work we have synthesised three more {Ru2Dy2} butterfly complexes where structural alteration around the DyIII centres and alterations to the bridging groups are performed with an aim to improve the magnetic properties. The new complexes reported here are [Ru2Dy2(OMe)2(O2C(4-Me-Ph)4(mdea)2(MeOH)4], 2Dy, [Ru2Dy2(OMe)2(O2C(2-Cl,4,5-F-Ph)4(mdea)2(NO3)2], 3Dy, and an acac derivative [Ru2Dy2(OMe)2(acac)4(NO3)2(edea)2], 4Dy, where acac- = acetylacetonate, edea2- = N-ethyldiethanolamine dianion. Complex 2Dy describes alteration in the DyIII centers, while complexes 3Dy and 4Dy are aimed to alter the RuIII⋯DyIII exchange pathways. To ascertain the 4d-4f exchange, the Gd-analogues of 1Dy and 4Dy were synthesised [Ru2Gd2(OMe)2(O2CPh)4(mdea)2(NO3)2], 1Gd, [Ru2Gd2(OMe)2(acac)4(NO3)2(edea)2], 4Gd. Both ac and dc susceptibility studies were performed on all these complexes, and out-of-phase signals were observed for 3Dy in zero-field while 2Dy and 4Dy show out-of-phase signals in the presence of an applied field. Complex 3Dy reveals a barrier height Ueff of 45 K. To understand the difference in the magnetic dynamic behavior compared to our earlier reported {RuIII2DyIII2} analogue, detailed theoretical calculations based on ab initio CASSCF/RASSI-SO calculations have been performed. Calculations reveal that the JRu⋯Dy value varies from -1.8 cm-1 (4Dy) to -2.4 cm-1 (3Dy). These values are also affirmed by DFT calculations performed on the corresponding GdIII analogues. The origin of the largest barrier and observation of slow magnetic relaxation in 3Dy is routed back to the stronger single-ion anisotropy and stronger JRu⋯Dy exchange which quenches the QTM effects more efficiently. This study thus paves the way forward to tune local structure around the LnIII center and the exchange pathway to enhance the SMM characteristics in other {3d-4f}/{4d-4f} SMMs.
Collapse
Affiliation(s)
- Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Robert Martin
- School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH, UK.
| | - Kuduva R Vignesh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Keith S Murray
- School of Chemistry, 17 Rainforest Walk, Monash University, Clayton, Victoria 3800, Australia.
| | - Stuart K Langley
- School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH, UK.
| |
Collapse
|