1
|
Kraj P, Hewagama ND, Douglas T. Diffusion and molecular partitioning in hierarchically complex virus-like particles. Virology 2023; 580:50-60. [PMID: 36764014 DOI: 10.1016/j.virol.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Viruses are diverse infectious agents found in virtually every type of natural environment. Due to the range of conditions in which viruses have evolved, they exhibit a wide range of structure and function which has been exploited for biotechnology. The self-assembly process of virus-like particles (VLPs), derived from structural virus components, allows for the assembly of a hierarchy of materials. Because VLPs are robust in both their assembly and the final product, functionality can be incorporated through design of their building blocks or chemical modification after their synthesis and assembly. In particular, encapsulation of active enzymes inside VLP results in macromolecular concentration approximating that of cells, introducing excluded volume effects on encapsulated cargo which are not present in traditional experiments done on dilute proteins. This work reviews the hierarchical assembly of VLPs, experiments investigating diffusion in VLP systems, and methods for partitioning of chemical species in VLPs as functional biomaterials.
Collapse
Affiliation(s)
- Pawel Kraj
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Karbelkar A, Ahlmark R, Zhou X, Austin K, Fan G, Yang VY, Furst A. Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins. Bioconjug Chem 2023; 34:358-365. [PMID: 36633230 DOI: 10.1021/acs.bioconjchem.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface. By combining facile electrochemical modification to add an aniline handle to electrodes with a specific and biocompatible oxidative coupling reaction, we can readily modify carbon electrodes with a variety of biomolecules. Importantly, both proteins and DNA maintain bioactive conformations following coupling. We have then used biomolecule-modified electrodes to generate microbial monolayers through DNA-directed immobilization. This work provides an easy, general strategy to modify inexpensive carbon electrodes, significantly expanding their potential as bioelectrochemical systems.
Collapse
Affiliation(s)
- Amruta Karbelkar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Rachel Ahlmark
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xingcheng Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Katherine Austin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Victoria Y Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Ariel Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
3
|
Pei X, Luo Z, Qiao L, Xiao Q, Zhang P, Wang A, Sheldon RA. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem Soc Rev 2022; 51:7281-7304. [PMID: 35920313 DOI: 10.1039/d1cs01004b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent immobilisation of enzymes generally involves the use of highly reactive crosslinkers, such as glutaraldehyde, to couple enzyme molecules to each other or to carriers through, for example, the free amino groups of lysine residues, on the enzyme surface. Unfortunately, such methods suffer from a lack of precision. Random formation of covalent linkages with reactive functional groups in the enzyme leads to disruption of the three dimensional structure and accompanying activity losses. This review focuses on recent advances in the use of bio-orthogonal chemistry in conjunction with rec-DNA to affect highly precise immobilisation of enzymes. In this way, cost-effective combination of production, purification and immobilisation of an enzyme is achieved, in a single unit operation with a high degree of precision. Various bio-orthogonal techniques for putting this precision and elegance into enzyme immobilisation are elaborated. These include, for example, fusing (grafting) peptide or protein tags to the target enzyme that enable its immobilisation in cell lysate or incorporating non-standard amino acids that enable the application of bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zhiyuan Luo
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li Qiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Qinjie Xiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, Johannesburg, South Africa. .,Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
5
|
Ramsey AV, Bischoff AJ, Francis MB. Enzyme Activated Gold Nanoparticles for Versatile Site-Selective Bioconjugation. J Am Chem Soc 2021; 143:7342-7350. [PMID: 33939917 DOI: 10.1021/jacs.0c11678] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new enzymatic method is reported for constructing protein- and DNA-AuNP conjugates. The strategy relies on the initial functionalization of AuNPs with phenols, followed by activation with the enzyme tyrosinase. Using an oxidative coupling reaction, the activated phenols are coupled to proteins bearing proline, thiol, or aniline functional groups. Activated phenol-AuNPs are also conjugated to a small molecule biotin and commercially available thiol-DNA. Advantages of this approach for AuNP bioconjugation include: (1) initial formation of highly stable AuNPs that can be selectively activated with an enzyme, (2) the ability to conjugate either proteins or DNA through a diverse set of functional handles, (3) site-specific immobilization, and (4) facile conjugation that is complete within 2 h at room temperature under aqueous conditions. The enzymatic oxidative coupling on AuNPs is applied to the construction of tobacco mosaic virus (TMV)-AuNP conjugates, and energy transfer between the AuNPs and fluorophores on TMV is demonstrated.
Collapse
Affiliation(s)
- Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
7
|
Lin TY, Klass SH, Francis MB, Shaqfeh ESG. Extravasation of PEGylated Spherical Nanoparticles through a Circular Pore of Similar Size. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiras Y. Lin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sarah H. Klass
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric S. G. Shaqfeh
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Garzón-Posse F, Prunet J, Gamba-Sánchez D. An alternative approach to the synthesis of the three fragments of anachelin H. Org Biomol Chem 2020; 18:2702-2715. [PMID: 32207760 DOI: 10.1039/d0ob00315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of the fully protected peptide, polyketide and alkaloid fragments of anachelin H is presented. The peptide fragment was prepared using a liquid phase peptide synthesis; the polyketide fragment was synthetized using a cross metathesis and an intramolecular oxa-Michael reaction as the key steps to introduce the desired stereochemistry; finally, the alkaloid fragment was obtained by an oxidative cyclization of a catechol derivative using potassium ferricyanide. The synthesis of all fragments was based on the use of natural amino acids as sources of asymmetry. The independent synthesis of the three fragments should allow more efficient biological studies on the fragments instead of the whole natural product. Experiments to illustrate the coupling of fragments and the effectiveness of the convergent strategy are also described.
Collapse
Affiliation(s)
- Fabián Garzón-Posse
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Joëlle Prunet
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| |
Collapse
|
9
|
Marmelstein AM, Lobba MJ, Mogilevsky CS, Maza JC, Brauer DD, Francis MB. Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins. J Am Chem Soc 2020; 142:5078-5086. [PMID: 32093466 DOI: 10.1021/jacs.9b12002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative coupling (OC) through o-quinone intermediates has been established as an efficient and site-selective way to modify protein N-termini and the unnatural amino acid p-aminophenylalanine (paF). Recently, we reported that the tyrosinase-mediated oxidation of phenol-tagged cargo molecules is a particularly convenient method of generating o-quinones in situ. The coupling partners can be easily prepared and stored, the reaction takes place under mild conditions (phosphate buffer, pH 6.5, 4 to 23 °C), and dissolved oxygen is the only oxidant required. Here, we show an important extension of this chemistry for the activation of tyrosine residues that project into solution from the N or C-termini of peptide and protein substrates. Generating the o-quinone electrophiles from tyrosine allows greater flexibility in choosing the nucleophilic coupling partner and expands the scope of the reaction to include C-terminal positions. We also introduce a new bacterial tyrosinase enzyme that shows improved activation for some tyrosine substrates. The efficacy of several secondary amines and aniline derivatives was evaluated in the coupling reactions, providing important information for coupling partner design. This strategy was used to modify the C-termini of an antibody scFv construct and of Protein L, a human IgG kappa light chain binding protein. The use of the modified proteins as immunolabeling agents was also demonstrated.
Collapse
Affiliation(s)
- Alan M Marmelstein
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Marco J Lobba
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Casey S Mogilevsky
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Daniel D Brauer
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Mortensen MR, Skovsgaard MB, Gothelf KV. Considerations on Probe Design for Affinity‐Guided Protein Conjugation. Chembiochem 2019; 20:2711-2728. [DOI: 10.1002/cbic.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
11
|
Ohata J, Martin SC, Ball ZT. Metallvermittelte Funktionalisierung natürlicher Peptide und Proteine: Biokonjugation mit Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
12
|
Ohata J, Martin SC, Ball ZT. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angew Chem Int Ed Engl 2019; 58:6176-6199. [DOI: 10.1002/anie.201807536] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
13
|
Brauer DD, Hartman EC, Bader DLV, Merz ZN, Tullman-Ercek D, Francis MB. Systematic Engineering of a Protein Nanocage for High-Yield, Site-Specific Modification. J Am Chem Soc 2019; 141:3875-3884. [DOI: 10.1021/jacs.8b10734] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Emily C. Hartman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Daniel L. V. Bader
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zoe N. Merz
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
14
|
Maza JC, Bader DLV, Xiao L, Marmelstein AM, Brauer DD, ElSohly AM, Smith MJ, Krska SW, Parish CA, Francis MB. Enzymatic Modification of N-Terminal Proline Residues Using Phenol Derivatives. J Am Chem Soc 2019; 141:3885-3892. [DOI: 10.1021/jacs.8b10845] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Johnathan C. Maza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel L. V. Bader
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lifeng Xiao
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alan M. Marmelstein
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Adel M. ElSohly
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew J. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Craig A. Parish
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Allan C, Kosar M, Burr CV, Mackay CL, Duncan RR, Hulme AN. A Catch-and-Release Approach to Selective Modification of Accessible Tyrosine Residues. Chembiochem 2018; 19:2443-2447. [PMID: 30212615 DOI: 10.1002/cbic.201800532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 01/25/2023]
Abstract
The tyrosine side chain is amphiphilic leading to significant variations in the surface exposure of tyrosine residues in the folded structure of a native sequence protein. This variability can be exploited to give residue-selective functionalization of a protein substrate by using a highly reactive diazonium group tethered to an agarose-based resin. This novel catch-and-release approach to protein modification has been demonstrated for proteins with accessible tyrosine residues, which are compared with a control group of proteins in which there are no accessible tyrosine residues. MS analysis of the modified proteins showed that functionalization was highly selective, but reactivity was further attenuated by the electrostatic environment of any individual residue. Automated screening of PDB structures allows identification of potential candidates for selective modification by comparison with the accessibility of the tyrosine residue in a benchmark peptide (GYG).
Collapse
Affiliation(s)
- Christopher Allan
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Miroslav Kosar
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Christina V Burr
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Rory R Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, David Brewster Building, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
16
|
Mortensen MR, Skovsgaard MB, Okholm AH, Scavenius C, Dupont DM, Rosen CB, Enghild JJ, Kjems J, Gothelf KV. Small-Molecule Probes for Affinity-Guided Introduction of Biocompatible Handles on Metal-Binding Proteins. Bioconjug Chem 2018; 29:3016-3025. [DOI: 10.1021/acs.bioconjchem.8b00424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug Design at the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 C, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 C Aarhus, Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug Design at the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 C, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 C Aarhus, Denmark
| | - Anders H. Okholm
- Center for Multifunctional Biomolecular Drug Design at the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 C, Aarhus, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 C Aarhus, Denmark
| | - Daniel M. Dupont
- Center for Multifunctional Biomolecular Drug Design at the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 C, Aarhus, Denmark
| | - Christian B. Rosen
- Center for Multifunctional Biomolecular Drug Design at the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 C, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 C Aarhus, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 C Aarhus, Denmark
| | - Jørgen Kjems
- Center for Multifunctional Biomolecular Drug Design at the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 C, Aarhus, Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design at the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 C, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 C Aarhus, Denmark
| |
Collapse
|
17
|
Marmelstein AM, Morgan JAM, Penkert M, Rogerson DT, Chin JW, Krause E, Fiedler D. Pyrophosphorylation via selective phosphoprotein derivatization. Chem Sci 2018; 9:5929-5936. [PMID: 30079207 PMCID: PMC6050540 DOI: 10.1039/c8sc01233d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
An important step in elucidating the function of protein post-translational modifications (PTMs) is gaining access to site-specifically modified, homogeneous samples for biochemical characterization. Protein pyrophosphorylation is a poorly characterized PTM, and here a chemical approach to obtain pyrophosphoproteins is reported. Photo-labile phosphorimidazolide reagents were developed for selective pyrophosphorylation, affinity-capture, and release of pyrophosphoproteins. Kinetic analysis of the reaction revealed rate constants between 9.2 × 10-3 to 0.58 M-1 s-1, as well as a striking proclivity of the phosphorimidazolides to preferentially react with phosphate monoesters over other nucleophilic side chains. Besides enabling the characterization of pyrophosphorylation on protein function, this work highlights the utility of phosphoryl groups as handles for selective protein modification for a variety of applications, such as phosphoprotein bioconjugation and enrichment.
Collapse
Affiliation(s)
- Alan M Marmelstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Department of Chemistry , Princeton University , Washington Road , Princeton , New Jersey 08544 , USA
| | - Jeremy A M Morgan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| | - Daniel T Rogerson
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , UK
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| |
Collapse
|
18
|
Sarathi Addy P, Italia JS, Chatterjee A. An Oxidative Bioconjugation Strategy Targeted to a Genetically Encoded 5-Hydroxytryptophan. Chembiochem 2018; 19:1375-1378. [PMID: 29644794 PMCID: PMC6392015 DOI: 10.1002/cbic.201800111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 12/11/2022]
Abstract
Approaches that enable the chemoselective, covalent modification of proteins in a site-specific manner have emerged as a powerful technology for a wide range of applications. The electron-rich unnatural amino acid 5-hydroxytryptophan was recently genetically encoded in both Escherichia coli and eukaryotes, thereby allowing its site-specific incorporation into virtually any recombinant protein. Herein, we report the chemoselective conjugation of various aromatic amines to full-length proteins under mild, oxidative conditions that target this site-specifically incorporated 5-hydroxytryptophan residue.
Collapse
Affiliation(s)
- Partha Sarathi Addy
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - James S Italia
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
19
|
Abstract
Mild conditions for oxime ligations via in situ generation of α-imino amide intermediates are reported. The evaluation of a variety of N-terminal N-phenylglycine residues revealed that a metal-free, chemoselective oxidation was possible using oxygen as the only oxidant in buffer at pH 7.0. Moreover, selective unmasking of an inert residue by addition of potassium ferricyanide is demonstrated. These simple and mild conditions, which can be fine-tuned by the electronic properties of the N-phenylglycine residue, offer unique advantages over conventional approaches for oxime ligations.
Collapse
Affiliation(s)
- Quibria A E Guthrie
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Caroline Proulx
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
20
|
Lee W, Kasanmascheff M, Huynh M, Quartararo A, Costentin C, Bejenke I, Nocera DG, Bennati M, Tommos C, Stubbe J. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Biochemistry 2018; 57:3402-3415. [PMID: 29630358 DOI: 10.1021/acs.biochem.8b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Aminotyrosine (NH2Y) has been a useful probe to study the role of redox active tyrosines in enzymes. This report describes properties of NH2Y of key importance for its application in mechanistic studies. By combining the tRNA/NH2Y-RS suppression technology with a model protein tailored for amino acid redox studies (α3X, X = NH2Y), the formal reduction potential of NH2Y32(O•/OH) ( E°' = 395 ± 7 mV at pH 7.08 ± 0.05) could be determined using protein film voltammetry. We find that the Δ E°' between NH2Y32(O•/OH) and Y32(O•/OH) when measured under reversible conditions is ∼300-400 mV larger than earlier estimates based on irreversible voltammograms obtained on aqueous NH2Y and Y. We have also generated D6-NH2Y731-α2 of ribonucleotide reductase (RNR), which when incubated with β2/CDP/ATP generates the D6-NH2Y731•-α2/β2 complex. By multifrequency electron paramagnetic resonance (35, 94, and 263 GHz) and 34 GHz 1H ENDOR spectroscopies, we determined the hyperfine coupling (hfc) constants of the amino protons that establish RNH2• planarity and thus minimal perturbation of the reduction potential by the protein environment. The amount of Y in the isolated NH2Y-RNR incorporated by infidelity of the tRNA/NH2Y-RS pair was determined by a generally useful LC-MS method. This information is essential to the utility of this NH2Y probe to study any protein of interest and is employed to address our previously reported activity associated with NH2Y-substituted RNRs.
Collapse
Affiliation(s)
| | - Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Michael Huynh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | | | - Cyrille Costentin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States.,Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591 , Université Paris Diderot, Sorbonne Paris Cité , Bâtiment Lavoisier, 15 rue Jean de Baïf , 75205 Paris Cedex 13 , France
| | - Isabel Bejenke
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Cecilia Tommos
- Department of Biochemistry and Biophysics , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
21
|
Abstract
One of the hallmarks of virus-like particles (VLPs) is the fact that they possess distinguishable interior and exterior surfaces. Taking advantage of our knowledge of the amino acid location from X-ray crystal structures, we have developed a series of synthetic modifications of the MS2 bacteriophage viral capsid, including small molecule and polymer attachment, as well as conjugation with peptides, DNA and other proteins. These constructs have found applications in nanomaterial fabrication and as delivery vehicles with therapeutic potential. Importantly, the dual-modification strategies described herein could be extended to other VLP systems.
Collapse
Affiliation(s)
- Ioana L Aanei
- Department of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA, USA.
| |
Collapse
|
22
|
Chen Y, Loredo A, Gordon A, Tang J, Yu C, Ordonez J, Xiao H. A noncanonical amino acid-based relay system for site-specific protein labeling. Chem Commun (Camb) 2018; 54:7187-7190. [DOI: 10.1039/c8cc03819h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A noncanonical amino acid-based relay system spanning the biosynthesis, incorporation, and bioconjugation of p-aminophenylalanine was developed for site-specific protein labeling.
Collapse
Affiliation(s)
- Yuda Chen
- Department of Chemistry
- Rice University
- Houston
- USA
| | - Axel Loredo
- Department of Chemistry
- Rice University
- Houston
- USA
| | - Aviva Gordon
- Department of Chemistry
- Rice University
- Houston
- USA
| | - Juan Tang
- Department of Chemistry
- Rice University
- Houston
- USA
| | - Chenfei Yu
- Department of Chemistry
- Rice University
- Houston
- USA
| | | | - Han Xiao
- Department of Chemistry
- Rice University
- Houston
- USA
- Department of Biosciences
| |
Collapse
|
23
|
Bruins JJ, Albada B, van Delft F. ortho-Quinones and Analogues Thereof: Highly Reactive Intermediates for Fast and Selective Biofunctionalization. Chemistry 2017; 24:4749-4756. [PMID: 29068513 PMCID: PMC5900998 DOI: 10.1002/chem.201703919] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/19/2017] [Indexed: 11/22/2022]
Abstract
Fast, selective and facile functionalization of biologically relevant molecules is a pursuit of ever‐growing importance. A promising approach in this regard employs the high reactivity of quinone and quinone analogues for fast conjugation chemistry by nucleophilic addition or cycloadditions. Combined with in situ generation of these compounds, selective conjugation on proteins and surfaces can be uniquely induced in a time and spatially resolved manner: generation of a quinone can often be achieved by simple addition of an enzyme or stoichiometric amounts of chemoselective oxidant, or by exposure to light. In this Minireview, we discuss the generation and subsequent functionalization of quinones, iminoquinones, and quinone methides. We also discuss practical applications regarding these conjugation strategies.
Collapse
Affiliation(s)
- Jorick J Bruins
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
24
|
Furst AL, Smith MJ, Francis MB. Direct Electrochemical Bioconjugation on Metal Surfaces. J Am Chem Soc 2017; 139:12610-12616. [DOI: 10.1021/jacs.7b06385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ariel L. Furst
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew J. Smith
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
25
|
ElSohly AM, MacDonald JI, Hentzen NB, Aanei IL, El Muslemany KM, Francis MB. ortho-Methoxyphenols as Convenient Oxidative Bioconjugation Reagents with Application to Site-Selective Heterobifunctional Cross-Linkers. J Am Chem Soc 2017; 139:3767-3773. [PMID: 28207247 DOI: 10.1021/jacs.6b12966] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of complex protein-based bioconjugates has been facilitated greatly by recent developments in chemoselective methods for biomolecular modification. The oxidative coupling of o-aminophenols or catechols with aniline functional groups is chemoselective, mild, and rapid; however, the oxidatively sensitive nature of the electron-rich aromatics and the paucity of commercial sources pose some obstacles to the general use of these reactive strategies. Herein, we identify o-methoxyphenols as air-stable, commercially available derivatives that undergo efficient oxidative couplings with anilines in the presence of periodate as oxidant. Mechanistic considerations informed the development of a preoxidation protocol that can greatly reduce the amount of periodate necessary for effective coupling. The stability and versatility of these reagents was demonstrated through the synthesis of complex protein-protein bioconjugates using a site-selective heterobifunctional cross-linker comprising both o-methoxyphenol and 2-pyridinecarboxaldehyde moieties. This compound was used to link epidermal growth factor to genome-free MS2 viral capsids, affording nanoscale delivery vectors that can target a variety of cancer cell types.
Collapse
Affiliation(s)
- Adel M ElSohly
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - James I MacDonald
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Nina B Hentzen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Laboratory of Organic Chemistry, D-CHAB, ETH Zurich , Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Ioana L Aanei
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720-1460, United States
| | - Kareem M El Muslemany
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Matthew B Francis
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720-1460, United States
| |
Collapse
|
26
|
Palla KS, Hurlburt TJ, Buyanin AM, Somorjai GA, Francis MB. Site-Selective Oxidative Coupling Reactions for the Attachment of Enzymes to Glass Surfaces through DNA-Directed Immobilization. J Am Chem Soc 2017; 139:1967-1974. [DOI: 10.1021/jacs.6b11716] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kanwal S. Palla
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
| | - Tyler J. Hurlburt
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and
| | - Alexander M. Buyanin
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| | - Gabor A. Somorjai
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States,
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
27
|
Sangsuwan R, Obermeyer AC, Tachachartvanich P, Palaniappan KK, Francis MB. Direct detection of nitrotyrosine-containing proteins using an aniline-based oxidative coupling strategy. Chem Commun (Camb) 2016; 52:10036-9. [PMID: 27447346 DOI: 10.1039/c6cc04575h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient two-step method is described for the detection of nitrotyrosine-containing proteins. First, nitrotyrosines are reduced to aminophenols using sodium dithionite. Following this, an oxidative coupling reaction is used to attach anilines bearing fluorescence reporters or affinity probes. Features of this approach include fast reaction times, pmol-level sensitivity, and excellent chemoselectivity.
Collapse
Affiliation(s)
- Rapeepat Sangsuwan
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA.
| | | | | | | | | |
Collapse
|
28
|
Vinogradov AA, Simon MD, Pentelute BL. C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates. Org Lett 2016; 18:1222-5. [DOI: 10.1021/acs.orglett.5b03625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander A. Vinogradov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark D. Simon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Chan JMW, Tan JPK, Engler AC, Ke X, Gao S, Yang C, Sardon H, Yang YY, Hedrick JL. Organocatalytic Anticancer Drug Loading of Degradable Polymeric Mixed Micelles via a Biomimetic Mechanism. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Julian M. W. Chan
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Jeremy P. K. Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Amanda C. Engler
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Xiyu Ke
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Haritz Sardon
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
- POLYMAT, University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastián, Spain
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
30
|
ElSohly AM, Francis MB. Development of oxidative coupling strategies for site-selective protein modification. Acc Chem Res 2015; 48:1971-8. [PMID: 26057118 DOI: 10.1021/acs.accounts.5b00139] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the need to prepare ever more complex but well-defined materials has increased, a similar need for reliable synthetic strategies to access them has arisen. Accordingly, recent years have seen a steep increase in the development of reactions that can proceed under mild conditions, in aqueous environments, and with low concentrations of reactants. To enable the preparation of well-defined biomolecular materials with novel functional properties, our laboratory has a continuing interest in developing new bioconjugation reactions. A particular area of focus has been the development of oxidative reactions to perform rapid site- and chemoselective couplings of electron rich aromatic species with both unnatural and canonical amino acid residues. This Account details the evolution of oxidative coupling reactions in our laboratory, from initial concepts to highly efficient reactions, focusing on the practical aspects of performing and developing reactions of this type. We begin by discussing our rationale for choosing an oxidative coupling approach to bioconjugation, highlighting many of the benefits that such strategies provide. In addition, we discuss the general workflow we have adopted to discover protein modification reactions directly in aqueous media with biologically relevant substrates. We then review our early explorations of periodate-mediated oxidative couplings between primary anilines and p-phenylenediamine substrates, highlighting the most important lessons that were garnered from these studies. Key mechanistic insights allowed us to develop second-generation reactions between anilines and anisidine derivatives. In addition, we summarize the methods we have used for the introduction of aniline groups onto protein substrates for modification. The development of an efficient and chemoselective coupling of anisidine derivatives with tyrosine residues in the presence of ceric ammonium nitrate is next described. Here, our logic and workflow are used to highlight the challenges and opportunities associated with the optimization of site-selective chemistries that target native amino acids. We close by discussing the most recent reports from our laboratory that have capitalized on the unique reactivity of o-iminoquinone derivatives. We discuss the various oxidants and conditions that can be used to generate these reactive intermediates from appropriate precursors, as well as the product distributions that result. We also describe our work to determine the nature of iminoquinone reactivity with proteins and peptides bearing free N-terminal amino groups. Through this discussion, we hope to facilitate the use of oxidative approaches to protein bioconjugation, as well as inspire the discovery of new reactions for the site-selective modification of biomolecular targets.
Collapse
Affiliation(s)
- Adel M. ElSohly
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
- The
Molecular Foundry at Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
31
|
Kwant RL, Jaffe J, Palmere PJ, Francis MB. Controlled levels of protein modification through a chromatography-mediated bioconjugation. Chem Sci 2015; 6:2596-2601. [PMID: 28706661 PMCID: PMC5495134 DOI: 10.1039/c4sc03790a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/30/2015] [Indexed: 01/26/2023] Open
Abstract
This article introduces a method to control levels of protein modification through a chromatography-mediated bioconjugation.
Synthetically modified proteins are increasingly finding applications as well-defined scaffolds for materials. In practice it remains difficult to construct bioconjugates with precise levels of modification because of the limited number of repeated functional groups on proteins. This article describes a method to control the level of protein modification in cases where there exist multiple potential modification sites. A protein is first tagged with a handle using any of a variety of modification chemistries. This handle is used to isolate proteins with a particular number of modifications via affinity chromatography, and then the handle is elaborated with a desired moiety using an oxidative coupling reaction. This method results in a sample of protein with a well-defined number of modifications, and we find it particularly applicable to systems like protein homomultimers in which there is no way to discern between chemically identical subunits. We demonstrate the use of this method in the construction of a protein-templated light-harvesting mimic, a type of system which has historically been difficult to make in a well-defined manner.
Collapse
Affiliation(s)
- Richard L Kwant
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , USA .
| | - Jake Jaffe
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , USA .
| | - Peter J Palmere
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , USA .
| | - Matthew B Francis
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , USA . .,Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| |
Collapse
|
32
|
Affiliation(s)
- Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
33
|
Capehart SL, ElSohly AM, Obermeyer AC, Francis MB. Bioconjugation of gold nanoparticles through the oxidative coupling of ortho-aminophenols and anilines. Bioconjug Chem 2014; 25:1888-92. [PMID: 25275488 DOI: 10.1021/bc5003746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
While there are a number of methods for attaching gold nanoparticles (AuNPs) to biomolecules, the existing strategies suffer from nonspecific AuNP adsorption, reagents that are unstable in aqueous solutions, and/or long reaction times. To improve upon existing AuNP bioconjugation strategies, we have adapted a recently reported potassium ferricyanide-mediated oxidative coupling reaction for the attachment of aniline-functionalized AuNPs to o-aminophenol-containing oligonucleotides, peptides, and proteins. The aniline-AuNPs are stable in aqueous solutions, show little-to-no nonspecific adsorption with biomolecules, and react rapidly (30 min) with o-aminophenols under mild conditions (pH 6.5, 1 mM oxidant).
Collapse
Affiliation(s)
- Stacy L Capehart
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
34
|
McKay CS, Finn MG. Click chemistry in complex mixtures: bioorthogonal bioconjugation. CHEMISTRY & BIOLOGY 2014; 21:1075-101. [PMID: 25237856 PMCID: PMC4331201 DOI: 10.1016/j.chembiol.2014.09.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/18/2023]
Abstract
The selective chemical modification of biological molecules drives a good portion of modern drug development and fundamental biological research. While a few early examples of reactions that engage amine and thiol groups on proteins helped establish the value of such processes, the development of reactions that avoid most biological molecules so as to achieve selectivity in desired bond-forming events has revolutionized the field. We provide an update on recent developments in bioorthogonal chemistry that highlights key advances in reaction rates, biocompatibility, and applications. While not exhaustive, we hope this summary allows the reader to appreciate the rich continuing development of good chemistry that operates in the biological setting.
Collapse
Affiliation(s)
- Craig S McKay
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M G Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
35
|
El Muslemany KM, Twite AA, ElSohly AM, Obermeyer AC, Mathies RA, Francis MB. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning. J Am Chem Soc 2014; 136:12600-6. [PMID: 25171554 DOI: 10.1021/ja503056x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.
Collapse
Affiliation(s)
- Kareem M El Muslemany
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | | | | | | | | | |
Collapse
|
36
|
Zhu Y, Bauer M, Ploog J, Ackermann L. Late-stage diversification of peptides by metal-free C-H arylation. Chemistry 2014; 20:13099-102. [PMID: 25168602 DOI: 10.1002/chem.201404603] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Indexed: 01/07/2023]
Abstract
The bioorthogonal late-stage diversification of functionalized oligopeptides was accomplished through a metal-free, site-selective C-H arylation of engineered indole derivatives under mild reaction conditions.
Collapse
Affiliation(s)
- Yingjun Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen (Germany), Fax: (+49) 551-39-6777
| | | | | | | |
Collapse
|
37
|
Obermeyer A, Jarman JB, Francis MB. N-terminal modification of proteins with o-aminophenols. J Am Chem Soc 2014; 136:9572-9. [PMID: 24963951 PMCID: PMC4353012 DOI: 10.1021/ja500728c] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 01/10/2023]
Abstract
The synthetic modification of proteins plays an important role in chemical biology and biomaterials science. These fields provide a constant need for chemical tools that can introduce new functionality in specific locations on protein surfaces. In this work, an oxidative strategy is demonstrated for the efficient modification of N-terminal residues on peptides and N-terminal proline residues on proteins. The strategy uses o-aminophenols or o-catechols that are oxidized to active coupling species in situ using potassium ferricyanide. Peptide screening results have revealed that many N-terminal amino acids can participate in this reaction, and that proline residues are particularly reactive. When applied to protein substrates, the reaction shows a stronger requirement for the proline group. Key advantages of the reaction include its fast second-order kinetics and ability to achieve site-selective modification in a single step using low concentrations of reagent. Although free cysteines are also modified by the coupling reaction, they can be protected through disulfide formation and then liberated after N-terminal coupling is complete. This allows access to doubly functionalized bioconjugates that can be difficult to access using other methods.
Collapse
Affiliation(s)
- Allie
C. Obermeyer
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - John B. Jarman
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Levine PM, Craven TW, Bonneau R, Kirshenbaum K. Intrinsic bioconjugation for site-specific protein PEGylation at N-terminal serine. Chem Commun (Camb) 2014; 50:6909-12. [DOI: 10.1039/c4cc01928h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A rapid and site-specific method to introduce PEG chains onto the N-terminus of peptides and proteins through native amide linkages at serine is described.
Collapse
Affiliation(s)
| | - Timothy W. Craven
- Center for Genomics and Systems Biology
- New York University
- New York, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology
- New York University
- New York, USA
- Courant Institute of Mathematical Sciences
- New York University
| | | |
Collapse
|
39
|
Hu J, Wang P, Zhao X, Lv L, Yang S, Song B, Wang Q. Charge-transfer interactions for the fabrication of multifunctional viral nanoparticles. Chem Commun (Camb) 2014; 50:14125-8. [DOI: 10.1039/c4cc05195e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a facile strategy to fabricate multifunctional viral nanoparticles was described by introducing charge-transfer interactions between a pyrenyl motif with dinitrophenyl and pyridinium-contained guest molecules.
Collapse
Affiliation(s)
- Jun Hu
- State Key Lab of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
- Department of Chemistry and Biochemistry
| | - Peiyi Wang
- State Key Lab Breeding Base of Green Pesticide & Agricultural Bioengineering Centre for R&D of Fine Chemicals
- Guizhou University
- Guiyang, China
| | - Xia Zhao
- State Key Lab of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
| | - Lin Lv
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia, USA
| | - Song Yang
- State Key Lab Breeding Base of Green Pesticide & Agricultural Bioengineering Centre for R&D of Fine Chemicals
- Guizhou University
- Guiyang, China
| | - Baoan Song
- State Key Lab Breeding Base of Green Pesticide & Agricultural Bioengineering Centre for R&D of Fine Chemicals
- Guizhou University
- Guiyang, China
| | - Qian Wang
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia, USA
| |
Collapse
|