1
|
Feng KN, Zhang Y, Zhang M, Yang YL, Liu JK, Pan L, Zeng Y. A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone. Nat Commun 2023; 14:3436. [PMID: 37301868 PMCID: PMC10257657 DOI: 10.1038/s41467-023-39108-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Oxepinone rings represent one of structurally unusual motifs of natural products and the biosynthesis of oxepinones is not fully understood. 1,5-Seco-vibralactone (3) features an oxepinone motif and is a stable metabolite isolated from mycelial cultures of the mushroom Boreostereum vibrans. Cyclization of 3 forms vibralactone (1) whose β-lactone-fused bicyclic core originates from 4-hydroxybenzoate, yet it remains elusive how 4-hydroxybenzoate is converted to 3 especially for the oxepinone ring construction in the biosynthesis of 1. In this work, using activity-guided fractionation together with proteomic analyses, we identify an NADPH/FAD-dependent monooxygenase VibO as the key enzyme performing a crucial ring-expansive oxygenation on the phenol ring to generate the oxepin-2-one structure of 3. The crystal structure of VibO reveals that it forms a dimeric phenol hydroxylase-like architecture featured with a unique substrate-binding pocket adjacent to the bound FAD. Computational modeling and solution studies provide insight into the likely VibO active site geometry, and suggest possible involvement of a flavin-C4a-OO(H) intermediate.
Collapse
Affiliation(s)
- Ke-Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan-Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Serrano-Aparicio N, Moliner V, Świderek K. Nature of Irreversible Inhibition of Human 20S Proteasome by Salinosporamide A. The Critical Role of Lys–Asp Dyad Revealed from Electrostatic Effects Analysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
3
|
Fu DJ, Zhang YF, Chang AQ, Li J. β-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets. Eur J Med Chem 2020; 201:112510. [PMID: 32592915 DOI: 10.1016/j.ejmech.2020.112510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
β-Lactam, commonly referred as azetidin-2-one, is a multifunctional building block for synthesizing β-amino ketones, γ-amino alcohols, and other compounds. Besides its well known antibiotic activity, this ring system exhibits a wide range of activities, attracting the attention of researchers. However, the structurally diverse β-lactam analogues as anticancer agents and their different molecular targets are poorly discussed. The purpose of this review is 3-fold: (1) to explore the molecular hybridization approach to design β-lactams hybrids as anticancer agents; (2) the structure activity relationship of the most active anticancer β-lactams and (3) to summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yun-Feng Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - An-Qi Chang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Feng K, Yang Y, Xu Y, Zhang Y, Feng T, Huang S, Liu J, Zeng Y. A Hydrolase‐Catalyzed Cyclization Forms the Fused Bicyclic β‐Lactone in Vibralactone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| | - Yu‐Xing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 Hubei China
| | - Sheng‐Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 Hubei China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|
5
|
Feng K, Yang Y, Xu Y, Zhang Y, Feng T, Huang S, Liu J, Zeng Y. A Hydrolase‐Catalyzed Cyclization Forms the Fused Bicyclic β‐Lactone in Vibralactone. Angew Chem Int Ed Engl 2020; 59:7209-7213. [PMID: 32050043 DOI: 10.1002/anie.202000710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| | - Yu‐Xing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 Hubei China
| | - Sheng‐Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 Hubei China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|
6
|
Robinson SL, Christenson JK, Wackett LP. Biosynthesis and chemical diversity of β-lactone natural products. Nat Prod Rep 2019; 36:458-475. [PMID: 30191940 DOI: 10.1039/c8np00052b] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 β-Lactones are strained rings that are useful organic synthons and pharmaceutical warheads. Over 30 core scaffolds of β-lactone natural products have been described to date, many with potent bioactivity against bacteria, fungi, or human cancer cell lines. β-Lactone natural products are chemically diverse and have high clinical potential, but production of derivatized drug leads has been largely restricted to chemical synthesis partly due to gaps in biochemical knowledge about β-lactone biosynthesis. Here we review recent discoveries in enzymatic β-lactone ring closure via ATP-dependent synthetases, intramolecular cyclization from seven-membered rings, and thioesterase-mediated cyclization during release from nonribosomal peptide synthetase assembly lines. We also comprehensively cover the diversity and taxonomy of source organisms for β-lactone natural products including their isolation from bacteria, fungi, plants, insects, and marine sponges. This work identifies computational and experimental bottlenecks and highlights future directions for genome-based discovery of biosynthetic gene clusters that may produce novel compounds with β-lactone rings.
Collapse
Affiliation(s)
- Serina L Robinson
- BioTechnology Institute, University of Minnesota - Twin Cities 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA.
| | | | | |
Collapse
|
7
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
8
|
Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent). Food Chem Toxicol 2017; 109:1048-1054. [DOI: 10.1016/j.fct.2017.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
|
9
|
Malapit CA, Luvaga IK, Caldwell DR, Schipper NK, Howell AR. Rh-Catalyzed Conjugate Addition of Aryl and Alkenyl Boronic Acids to α-Methylene-β-lactones: Stereoselective Synthesis of trans-3,4-Disubstituted β-Lactones. Org Lett 2017; 19:4460-4463. [PMID: 28809569 DOI: 10.1021/acs.orglett.7b01994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-step preparation of 3,4-disubstituted β-lactones through Rh-catalyzed conjugate addition of aryl or alkenyl boronic acids to α-methylene-β-lactones is described. The operationally simple, stereoselective transformation provides a broad range of β-lactones from individual α-methylene-β-lactone templates. This methodology allowed for a direct, final-step C-3 diversification of nocardiolactone, an antimicrobial natural product.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060 United States
| | - Irungu K Luvaga
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060 United States
| | - Donald R Caldwell
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060 United States
| | - Nicholas K Schipper
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060 United States
| | - Amy R Howell
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060 United States
| |
Collapse
|
10
|
Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 2017; 33:681-708. [PMID: 27098809 PMCID: PMC5063044 DOI: 10.1039/c6np00001k] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on chemical probes to identify the protein binding partners of natural products in living systems.
Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.
Collapse
Affiliation(s)
- M H Wright
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - S A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
11
|
Aqueveque P, Céspedes CL, Becerra J, Dávila M, Sterner O. Bioactive compounds isolated from submerged fermentations of the Chilean fungus Stereum rameale. ACTA ACUST UNITED AC 2015; 70:97-102. [PMID: 26020559 DOI: 10.1515/znc-2015-5005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/23/2015] [Indexed: 11/15/2022]
Abstract
Liquid fermentations of the fungus Stereum rameale (N° 2511) yielded extracts with antibacterial activity. The antibacterial activity reached its peak after 216 h of stirring. Bioassay-guided fractionation methods were employed for the isolation of the bioactive metabolites. Three known compounds were identified: MS-3 (1), vibralactone (2) and vibralactone B (3). The three compounds showed antibacterial activity as a function of their concentration. Minimal bactericidal concentrations (MBC) of compound 1 against Gram-positive bacteria were as follows: Bacillus cereus (50 μg/mL), Bacillus subtilis (10 μg/mL) and Staphylococcus aureus (100 μg/mL). Compounds 2 and 3 were active only against Gram-negative bacteria. The MBC of compound 2 against Escherichia coli was 200 μg/mL. Compound 3 inhibited significantly the growth of E. coli and Pseudomonas aeruginosa, with MBC values of 50 and 100 μg/mL, respectively.
Collapse
|
12
|
Groll M, Korotkov VS, Huber EM, de Meijere A, Ludwig A. Ein minimales β-Lacton-Gerüst für selektive β5c- oder β5i-Proteasominhibitoren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Wei K, Wang GQ, Bai X, Niu YF, Chen HP, Wen CN, Li ZH, Dong ZJ, Zuo ZL, Xiong WY, Liu JK. Structure-Based Optimization and Biological Evaluation of Pancreatic Lipase Inhibitors as Novel Potential Antiobesity Agents. NATURAL PRODUCTS AND BIOPROSPECTING 2015; 5:129-157. [PMID: 26085282 PMCID: PMC4488150 DOI: 10.1007/s13659-015-0062-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/20/2015] [Indexed: 05/06/2023]
Abstract
The unusual fused β-lactone vibralactone was isolated from cultures of the basidiomycete Boreostereum vibrans and has been shown to significantly inhibit pancreatic lipase. In this study, a structure-based lead optimization of vibralactone resulted in three series of 104 analogs, among which compound C1 exhibited the most potent inhibition of pancreatic lipase, with an IC50 value of 14 nM. This activity is more than 3000-fold higher than that of vibralactone. The effect of compound C1 on obesity was investigated using high-fat diet (HFD)-induced C57BL/6 J obese mice. Treatment with compound C1 at a dose of 100 mg/kg significantly decreased HFD-induced obesity, primarily through the improvement of metabolic parameters, such as triglyceride levels.
Collapse
Affiliation(s)
- Kun Wei
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Gang-Qiang Wang
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- />School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100 China
| | - Xue Bai
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Yan-Fen Niu
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - He-Ping Chen
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Chun-Nan Wen
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Zheng-Hui Li
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Ze-Jun Dong
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Zhi-Li Zuo
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Wen-Yong Xiong
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Ji-Kai Liu
- />State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
14
|
Groll M, Korotkov VS, Huber EM, de Meijere A, Ludwig A. A Minimal β-Lactone Fragment for Selective β5c or β5i Proteasome Inhibitors. Angew Chem Int Ed Engl 2015; 54:7810-4. [PMID: 25973989 DOI: 10.1002/anie.201502931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/09/2022]
Abstract
Broad-spectrum proteasome inhibitors are applied as anticancer drugs, whereas selective blockage of the immunoproteasome represents a promising therapeutic rationale for autoimmune diseases. We here aimed at identifying minimal structural elements that confer β5c or β5i selectivity on proteasome inhibitors. Based on the natural product belactosin C, we synthesized two β-lactones featuring a dimethoxybenzyl moiety and either a methylpropyl (pseudo-isoleucin) or an isopropyl (pseudo-valine) P1 side chain. Although the two compounds differ only by one methyl group, the isoleucine analogue is six times more potent for β5i (IC50=14 nM) than the valine counterpart. Cell culture experiments demonstrate the cell-permeability of the compounds and X-ray crystallography data highlight them as minimal fragments that occupy primed and non-primed pockets of the active sites of the proteasome. Together, these results qualify β-lactones as a promising lead-structure motif for potent nonpeptidic proteasome inhibitors with diverse pharmaceutical applications.
Collapse
Affiliation(s)
- Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany).
| | - Vadim S Korotkov
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany)
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany)
| | - Armin de Meijere
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany)
| | - Antje Ludwig
- Charité Universitätsmedizin Berlin CCM, Medizinische Klinik für Kardiologie und Angiologie, Charitéplatz 1, 10117 Berlin (Germany).
| |
Collapse
|
15
|
Scotti A, Trapella C, Ferretti V, Gallerani E, Gavioli R, Marastoni M. Studies of C-terminal naphthoquinone dipeptides as 20S proteasome inhibitors. J Enzyme Inhib Med Chem 2015; 31:456-63. [PMID: 25942361 DOI: 10.3109/14756366.2015.1037749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin proteasome pathway is crucial in regulating many processes in the cell. Modulation of proteasome activities has emerged as a powerful strategy for potential therapies against much important pathologies. In particular, specific inhibitors may represent a useful tool for the treatment of tumors. Here, we report studies of a new series of peptide-based analogues bearing a naphthoquinone pharmacophoric unit at the C-terminal position. Some derivatives showed inhibition in the µM range of the post-acidic-like and chymotrypsin-like active sites of the proteasome.
Collapse
Affiliation(s)
| | | | | | - Eleonora Gallerani
- b Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | - Riccardo Gavioli
- b Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | | |
Collapse
|
16
|
Reductive Cyclization and Petasis-Like Reaction for the Synthesis of Functionalized γ-Lactams. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Adachi S, Cognetta AB, Niphakis MJ, He Z, Zajdlik A, St Denis JD, Scully CCG, Cravatt BF, Yudin AK. Facile synthesis of borofragments and their evaluation in activity-based protein profiling. Chem Commun (Camb) 2015; 51:3608-11. [PMID: 25633248 PMCID: PMC4330092 DOI: 10.1039/c4cc09107h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery of enzyme inhibitors relies on synthetic methods that enable rapid and modular construction of small molecules. Heterocyclic fragments designed to maximize enthalpic interactions with their protein targets represent a particularly desirable class of molecules. Here we describe a reagent that enables straightforward construction of "borofragments", in which a heterocycle is separated from the boron center by two or three rotatable bonds. The stability of these molecules depends on the MIDA group which likely acts as a slow-release element under biological conditions. Borofragments can be used to discover inhibitors of enzymes that use catalytic oxygen nucleophiles. We have employed this method to identify inhibitors of ABHD10 and the predicted carboxypeptidase CPVL. This technique should be applicable to other classes of targets.
Collapse
Affiliation(s)
- Shinya Adachi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S3H6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huber E, Heinemeyer W, Groll M. Bortezomib-Resistant Mutant Proteasomes: Structural and Biochemical Evaluation with Carfilzomib and ONX 0914. Structure 2015; 23:407-17. [DOI: 10.1016/j.str.2014.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 11/15/2022]
|
19
|
Beck P, Lansdell TA, Hewlett NM, Tepe JJ, Groll M. Indolo-Phakelline als β5-spezifische nichtkovalente Proteasom-Inhibitoren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Beck P, Lansdell TA, Hewlett NM, Tepe JJ, Groll M. Indolo-Phakellins as β5-Specific Noncovalent Proteasome Inhibitors. Angew Chem Int Ed Engl 2015; 54:2830-3. [DOI: 10.1002/anie.201410168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 11/08/2022]
|
21
|
Lajkiewicz NJ, Cognetta A, Niphakis MJ, Cravatt BF, Porco JA. Remodeling natural products: chemistry and serine hydrolase activity of a rocaglate-derived β-lactone. J Am Chem Soc 2014; 136:2659-64. [PMID: 24447064 PMCID: PMC3978386 DOI: 10.1021/ja412431g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 12/22/2022]
Abstract
Flavaglines are a class of natural products with potent insecticidal and anticancer activities. β-Lactones are a privileged structural motif found in both therapeutic agents and chemical probes. Herein, we report the synthesis, unexpected light-driven di-epimerization, and activity-based protein profiling of a novel rocaglate-derived β-lactone. In addition to in vitro inhibition of the serine hydrolases ABHD10 and ACOT1/2, the most potent β-lactone enantiomer was also found to inhibit these enzymes, as well as the serine peptidases CTSA and SCPEP1, in PC3 cells.
Collapse
Affiliation(s)
- Neil J. Lajkiewicz
- Department
of Chemistry, Center for Chemical Methodology and Library Development
(CMLD-BU), Boston University, 590 Commonwealth Avenue Boston, Massachusetts 02215, United States
| | - Armand
B. Cognetta
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Micah J. Niphakis
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - John A. Porco
- Department
of Chemistry, Center for Chemical Methodology and Library Development
(CMLD-BU), Boston University, 590 Commonwealth Avenue Boston, Massachusetts 02215, United States
| |
Collapse
|