1
|
Lan L, Zhang H. Maneuverability and Processability of Molecular Crystals. Angew Chem Int Ed Engl 2024; 63:e202411405. [PMID: 38988192 DOI: 10.1002/anie.202411405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Crystal adaptronics, a burgeoning field at the intersection of materials science and engineering, focuses on harnessing the unique properties of organic molecular crystals to achieve unprecedented levels of maneuverability and processability in various applications. Increasingly, ordered stacks of crystalline materials are being endowed with fascinating mechanical compliance changes in response to external environments. Understanding how these crystals can be manipulated and tailored for specific functions has become paramount in the pursuit of advanced materials with customizable properties. Simultaneously, the processability of organic molecular crystals plays a pivotal role in shaping their utility in real-world applications. From growth methodologies to fabrication techniques, the ability to precisely machine these crystals opens new avenues for engineering materials with enhanced functionality. These processing methods enhance the versatility of organic crystals, allowing their integration into various devices and technologies, and further expanding the potential applications. This review aims to provide a concise overview of the current landscape in the study of dynamic organic molecular crystals, with an emphasis on the interconnected themes of operability and processability.
Collapse
Affiliation(s)
- Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Feng X, Lin R, Yang S, Xu Y, Zhang T, Chen S, Ji Y, Wang Z, Chen S, Zhu C, Gao Z, Zhao YS. Spatially Resolved Organic Whispering-Gallery-Mode Hetero-Microrings for High-Security Photonic Barcodes. Angew Chem Int Ed Engl 2023; 62:e202310263. [PMID: 37604784 DOI: 10.1002/anie.202310263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Whispering-gallery-mode (WGM) microcavities featuring distinguishable sharp peaks in a broadband exhibit enormous advantages in the field of miniaturized photonic barcodes. However, such kind of barcodes developed hitherto are primarily based on microcavities wherein multiple gain medias were blended into a single matrix, thus resulting in the limited and indistinguishable coding elements. Here, a surface tension assisted heterogeneous assembly strategy is proposed to construct the spatially resolved WGM hetero-microrings with multiple spatial colors along its circular direction. Through precisely regulating the charge-transfer (CT) strength, full-color microrings covering the entire visible range were effectively acquired, which exhibit a series of sharp and recognizable peaks and allow for the effective construction of high-quality photonic barcodes. Notably, the spatially resolved WGM hetero-microrings with multiple coding elements were finally acquired through heterogeneous nucleation and growth controlled by the directional diffusion between the hetero-emulsion droplets, thus remarkably promoting the security strength and coding capacity of the barcodes. The results would be useful to fabricate new types of organic hierarchical hybrid WGM heterostructures for optical information recording and security labels.
Collapse
Affiliation(s)
- Xingwei Feng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Ru Lin
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yuyu Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Tongjin Zhang
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yingke Ji
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shiwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Chaofeng Zhu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Li Y, Chen P, Zhang X, Yan Z, Xu T, Xie Z, Xiu X, Chen D, Zhao H, Shi Y, Zhang R, Zheng Y. The Study on the Lasing Modes Modulated by the Dislocation Distribution in the GaN-Based Microrod Cavities. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2228. [PMID: 37570546 PMCID: PMC10421333 DOI: 10.3390/nano13152228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Low-threshold lasing under pulsed optical pumping is demonstrated in GaN-based microrod cavities at room temperature, which are fabricated on the patterned sapphire substrates (PSS). Because the distribution of threading dislocations (TDs) is different at different locations, a confocal micro-photoluminescence spectroscopy (μ-PL) was performed to analyze the lasing properties of the different diameter microrods at the top of the triangle islands and between the triangle islands of the PSS substrates, respectively. The μ-PL results show that the 2 μm-diameter microrod cavity has a minimum threshold of about 0.3 kW/cm2. Whispering gallery modes (WGMs) in the microrod cavities are investigated by finite-difference time-domain simulation. Combined with the dislocation distribution in the GaN on the PSS substrates, it is found that the distribution of the strongest lasing WGMs always moves to the region with fewer TDs. This work reveals the connection between the lasing modes and the dislocation distribution, and can contribute to the development of low-threshold and high-efficiency GaN-based micro-lasers.
Collapse
Affiliation(s)
| | - Peng Chen
- Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (Y.L.); (X.Z.); (Z.Y.); (T.X.); (Z.X.); (X.X.); (D.C.); (H.Z.); (Y.S.); (R.Z.); (Y.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Xu CF, Liu YP, Yu Y, Meng XY, Zong H, Lv Q, Xia XY, Wang XD, Liao LS. Two-Dimensional Optical Waveguides at Telecom Wavelengths Based on Organic Single-Crystal Microsheets of a Charge Transfer Complex. J Phys Chem Lett 2023; 14:3047-3056. [PMID: 36946651 DOI: 10.1021/acs.jpclett.3c00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic charge transfer (CT) cocrystals open a new door for the exploitation of low-dimensional near-infrared (NIR) emitters by a convenient self-assembly approach. However, research about the fabrication of sheet-like NIR-emitting microstructures that are significant for structural construction and integrated application is limited by the unidirectional molecular packing mode. Herein, via regulation of the biaxial intermolecular CT interaction, single-crystalline microsheets with remarkable NIR emission from 720 to 960 nm were synthesized via the solution self-assembly process of dithieno[3,2-b:2',3'-d]thiophene and 7,7,8,8-tetracyanoquinodimethane. The expected sheet-like structure is conducive to achieving a two-dimensional (2D) optical waveguide with an ultralow optical loss rate of 0.250 dB/μm at 860 nm. More significantly, these as-prepared organic microsheets with tunable thicknesses (h) from 100 to 1100 nm exhibit thickness-dependent NIR optical transportation performance. These findings could pave the way to a new class of low-dimensional NIR emitters for 2D photonics at telecom wavelengths.
Collapse
Affiliation(s)
- Chao-Fei Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yan-Ping Liu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yue Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xin-Yue Meng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hao Zong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qiang Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xing-Yu Xia
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
5
|
Lin HT, Ma YX, Chen S, Wang XD. Hierarchical Integration of Organic Core/Shell Microwires for Advanced Photonics. Angew Chem Int Ed Engl 2023; 62:e202214214. [PMID: 36351872 DOI: 10.1002/anie.202214214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/11/2022]
Abstract
The combination of multiple components or structures into integrated micro/nanostructures for practical application has been pursued for many years. Herein, a series of hierarchical organic microwires with branch, core/shell (C/S), and branch C/S structures are successfully constructed based on organic charge transfer (CT) cocrystals with structural similarity and physicochemical tunability. By regulating the intermolecular CT interaction, single microwires and branch microstructures can be integrated into the C/S and branch C/S structures, respectively. Significantly, the integrated branch C/S microwires, with multicolor waveguide behavior and branch structure multichannel waveguide output characteristics, can function as an optical logic gate with multiple encoding features. This work provides useful insights for creating completely new types of organic microstructures for integrated optoelectronics.
Collapse
Affiliation(s)
- Hong-Tao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Ying-Xin Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
6
|
Yan C, Liu Y, Yang W, Wu J, Wang X, Liao L. Excited‐State Intramolecular Proton Transfer Parent Core Engineering for Six‐Level System Lasing Toward 900 nm. Angew Chem Int Ed Engl 2022; 61:e202210422. [DOI: 10.1002/anie.202210422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Chang‐Cun Yan
- Institute of Functional Nano & Soft Materials Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yan‐Ping Liu
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 Zhejiang P. R. China
| | - Wan‐Ying Yang
- Institute of Functional Nano & Soft Materials Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Jun‐Jie Wu
- Institute of Functional Nano & Soft Materials Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR P. R. China
| |
Collapse
|
7
|
Lv Q, Zheng M, Wang XD, Liao LS. Low-Dimensional Organic Crystals: From Precise Synthesis to Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203961. [PMID: 36057992 DOI: 10.1002/smll.202203961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional organic crystals (LOCs) have attracted increasing attention recently for their potential applications in miniaturized optoelectronics and integrated photonics. Such applications are possible owing to their tunable physicochemical properties and excellent charge/photon transport features. As a result, the precise synthesis of LOCs has been examined in terms of morphology modulation, large-area pattern arrays, and complex architectures, and this has led to a series of appealing structure-dependent properties for future optoelectronic applications. This review summarizes the recent advances in the precise synthesis of LOCs in addition to discussing their structure-property relationships in the context of optoelectronic applications. It also presents the current challenges related to organic crystals with specific structures and desired performances, and the outlook regarding their use in next-generation integrated optoelectronic applications.
Collapse
Affiliation(s)
- Qiang Lv
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
8
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating Unexpected High Charge-Carrier Mobility and Low-Threshold Lasing Action in an Organic Semiconductor. Angew Chem Int Ed Engl 2022; 61:e202200791. [PMID: 35298062 DOI: 10.1002/anie.202200791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Integrating high charge-carrier mobility and low-threshold lasing action in an organic semiconductor is crucial for the realization of an electrically pumped laser, but remains a great challenge. Herein, we present an organic semiconductor, named as 2,7-di(2-naphthyl)-9H-fluorene (LD-2), which shows an unexpected high charge-carrier mobility of 2.7 cm2 V-1 s-1 and low-threshold lasing characteristic of 9.43 μJ cm-2 and 9.93 μJ cm-2 and high-quality factor (Q) of 2131 and 1684 at emission peaks of 420 and 443 nm, respectively. Detailed theoretical calculations and photophysical data analysis demonstrate that a large intermolecular transfer integral of 10.36-45.16 meV together with a fast radiative transition rate of 8.0×108 s-1 are responsible for the achievement of the superior integrated optoelectronic properties in the LD-2 crystal. These optoelectronic performances of LD-2 are among the highest reported low-threshold lasing organic semiconductors with efficient charge transport, suggesting its promise for research of electrically pumped organic lasers (EPOLs).
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianxin Wu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenguang Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yingshuang Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Ziyi Xie
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xinfeng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Lv Q, Wang XD. Low-dimensional organic structures with hierarchical components for advanced photonics. Sci Bull (Beijing) 2022; 67:991-994. [PMID: 36546254 DOI: 10.1016/j.scib.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qiang Lv
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou 215123, China; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating unexpected high charge‐carrier mobility and low‐threshold lasing action in an organic semiconductor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Liu
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of organic solids CHINA
| | - Xianxin Wu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Can Gao
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Chenguang Li
- Henan University Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering ,Collaborative Innovation Centre of Nano Functional Materials and Applications CHINA
| | - yingshuang Zheng
- tian jin da xue: Tianjin University Tian jin Key Laboratory of Molecular Optoelectronic Department of Chemistry, Insititue of Molecular Aggregation Science CHINA
| | - Yang Li
- Shenyang University Normal College CHINA
| | - Ziyi Xie
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Deyang Ji
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectrinic Sciences, Department of Chemistry, Institute of Molecular Aggregation Sciencs CHINA
| | - Xinfeng Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechlolgy CHINA
| | - Xiaotao Zhang
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry,Institute of Molecular Aggregation Science CHINA
| | - Liqiang Li
- Tianjin University Tianjin Key Laboratory of Mecular Optoelectronic Sciences,Deportment of Chemistry, Institute of Melecular Aggregation Science CHINA
| | - Qian Peng
- University of Chinese Academy of Sciences School of Computer and Control Engineering: University of the Chinese Academy of Sciences School of Computer Science and Technology School of Chemical Science CHINA
| | - Wenping Hu
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University &Collaborative Innovation Center od Chemical Science and Enginering CHINA
| | - Huanli Dong
- Institute of Chemistry, Chinese Academy of Sciences Key laboratory of organic solids zhongguancun 100190 Beijing CHINA
| |
Collapse
|
11
|
Chen Y, Liu Z, Qiu X, Liu X. Individual concave twin ZnO microdisks with optical resonances. Chem Commun (Camb) 2021; 58:116-119. [PMID: 34881753 DOI: 10.1039/d1cc05332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized concave twin ZnO microdisks, whose outer surfaces are entirely enclosed by high-energy facets. Different from hexagonal planar WGM microdisks, individual concave twin ZnO microdisks show Fabry-Pérot resonances and anisotropic photoluminescence properties at room temperature.
Collapse
Affiliation(s)
- Yumin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Liu D, Liao Q, Peng Q, Gao H, Sun Q, De J, Gao C, Miao Z, Qin Z, Yang J, Fu H, Shuai Z, Dong H, Hu W. High Mobility Organic Lasing Semiconductor with Crystallization‐Enhanced Emission for Light‐Emitting Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Qian Peng
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haikuo Gao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Sun
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jianbo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Can Gao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhagen Miao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhengsheng Qin
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiaxin Yang
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Zhigang Shuai
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Huanli Dong
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences Tianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
13
|
Liu D, Liao Q, Peng Q, Gao H, Sun Q, De J, Gao C, Miao Z, Qin Z, Yang J, Fu H, Shuai Z, Dong H, Hu W. High Mobility Organic Lasing Semiconductor with Crystallization-Enhanced Emission for Light-Emitting Transistors. Angew Chem Int Ed Engl 2021; 60:20274-20279. [PMID: 34278668 DOI: 10.1002/anie.202108224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/12/2022]
Abstract
The development of high mobility organic laser semiconductors with strong emission is of great scientific and technical importance, but challenging. Herein, we present a high mobility organic laser semiconductor, 2,7-diphenyl-9H-fluorene (LD-1) showing unique crystallization-enhanced emission guided by elaborately modulating its crystal growth process. The obtained one-dimensional nanowires of LD-1 show outstanding integrated properties including: high absolute photoluminescence quantum yield (PLQY) approaching 80 %, high charge carrier mobility of 0.08 cm2 V-1 s-1 , Fabry-Perot lasing characters with a low threshold of 86 μJ cm-2 and a high-quality factor of ≈2400. Furthermore, electrically induced emission was obtained from an individual LD-1 crystal nanowire-based light-emitting transistor due to the recombination of holes and electrons simultaneously injected into the nanowire, which provides a good platform for the study of electrically pumped organic lasers and other related ultrasmall integrated electrical-driven photonic devices.
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikuo Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jianbo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhagen Miao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengsheng Qin
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Yang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhigang Shuai
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
14
|
Dong H, Zhang C, Shu FJ, Zou CL, Yan Y, Yao J, Zhao YS. Superkinetic Growth of Oval Organic Semiconductor Microcrystals for Chaotic Lasing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100484. [PMID: 33783062 DOI: 10.1002/adma.202100484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Synthesis of novel mesoscopic semiconductor architectures continually generates new photonic knowledge and applications. However, it remains a great challenge to synthesize semiconductor microcrystals with smoothly curved surfaces owing to the crystal growth anisotropy. Here, a superkinetic crystal growth method is developed to synthesize 2D oval organic semiconductor microcrystals. The solid source dispersion induces an exceptionally large molecular supersaturation for vapor deposition, which breaks the crystal growth anisotropy. The synthesized stadium-shaped organic semiconductor microcrystals naturally constitute fully chaotic optical microresonators. They support low-threshold lasing on high-quality-factor scar modes localized near the stadium boundary and directional laser emission assisted by the chaotic modes. These results will reshape the understanding of the crystal growth theory and provide valuable guidance for crystalline photonic materials design.
Collapse
Affiliation(s)
- Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fang-Jie Shu
- Engineering Research Center for Photoelectric Intelligent Sensing, Department of Physics, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chang-Ling Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Zhang Y, Zhang C, Fan Y, Liu Z, Hu F, Zhao YS. Smart Protein-Based Biolasers: An Alternative Way to Protein Conformation Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19187-19192. [PMID: 33871261 DOI: 10.1021/acsami.0c22270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detecting conformational changes in protein is imperative due to its major role in neurodegenerative disorders. Here, we propose an alternative strategy for monitoring the structural change of proteins based on biological microlasers. Smart responsive protein-based microscale biolasers were constructed by incorporating organic gain medium into the microspheres of silk fibroin via emulsion-solvent evaporation. The lasing characteristic of the biolasers exhibited a sensitive response to the structural transformation of the silk fibroin. With narrowed linewidth, the as-prepared biolasers as sensing signals enable highly sensitive protein conformation detection. These results offer an effective approach to monitoring the protein conformational changes and provide valuable guidance for a better understanding of the relationship between bio-microstructures and their photonic properties.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuqing Fan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fengqin Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Zhang D, De J, Lei Y, Fu H. Organic multicomponent microparticle libraries. Nat Commun 2021; 12:1838. [PMID: 33758192 PMCID: PMC7988115 DOI: 10.1038/s41467-021-22060-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Multimetallic nanostructures can be synthesized by integrating up to seven or eight metallic elements into a single nanoparticle, which represent a great advance in developing complex multicomponent nanoparticle libraries. Contrary, organic micro- and nanoparticles beyond three π-conjugated components have not been explored because of the diversity and structural complexity of molecular assemblies. Here, we report a library of microparticles composed of an arbitrary combination of four luminescent organic semiconductors. We demonstrate that the composition and emission color of each domain as well as its spatial distribution can be rationally modulated. Unary, binary, ternary, and quaternary microparticles are thus realized in a predictable manner based on the miscibility of the components, resulting in mixed-composition phases or alloyed or phase separated heterostructures. This work reports a simple yet available synthetic methodology for rational modulation of organic multicomponent microparticles with complex architectures, which can be used to direct the design of functional microparticles. The synthesis of alloyed complex multicomponent micro- and nanoparticles composed of organic molecules is challenging. Here, the authors demonstrate a library of mixed composition organic microparticles in comprising up to four compounds in their structure.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China
| | - Jianbo De
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China
| | - Yilong Lei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China.
| | - Hongbing Fu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China. .,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, P. R. China.
| |
Collapse
|
17
|
Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules 2021; 26:molecules26040958. [PMID: 33670286 PMCID: PMC7918292 DOI: 10.3390/molecules26040958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Organic semiconductor micro/nanocrystals (OSMCs) have attracted great attention due to their numerous advantages such us free grain boundaries, minimal defects and traps, molecular diversity, low cost, flexibility and solution processability. Due to all these characteristics, they are strong candidates for the next generation of electronic and optoelectronic devices. In this review, we present a comprehensive overview of these OSMCs, discussing molecular packing, the methods to control crystallization and their applications to the area of organic solid-state lasers. Special emphasis is given to OSMC lasers which self-assemble into geometrically defined optical resonators owing to their attractive prospects for tuning/control of light emission properties through geometrical resonator design. The most recent developments together with novel strategies for light emission tuning and effective light extraction are presented.
Collapse
|
18
|
Zhou Z, Qiao C, Wang K, Wang L, Liang J, Peng Q, Wei Z, Dong H, Zhang C, Shuai Z, Yan Y, Zhao YS. Experimentally Observed Reverse Intersystem Crossing‐Boosted Lasing. Angew Chem Int Ed Engl 2020; 59:21677-21682. [DOI: 10.1002/anie.202008940] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Zhonghao Zhou
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chan Qiao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kang Wang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Lu Wang
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Jie Liang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Peng
- Key Laboratory of Organic Solids and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhiyou Wei
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haiyun Dong
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chuang Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhigang Shuai
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Yongli Yan
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Zhou Z, Qiao C, Wang K, Wang L, Liang J, Peng Q, Wei Z, Dong H, Zhang C, Shuai Z, Yan Y, Zhao YS. Experimentally Observed Reverse Intersystem Crossing‐Boosted Lasing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhonghao Zhou
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chan Qiao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kang Wang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Lu Wang
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Jie Liang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Peng
- Key Laboratory of Organic Solids and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhiyou Wei
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haiyun Dong
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chuang Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhigang Shuai
- Department of Chemistry and MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering Tsinghua University Beijing 100084 China
| | - Yongli Yan
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Qiao C, Zhang C, Zhou Z, Dong H, Du Y, Yao J, Zhao YS. A Photoisomerization‐Activated Intramolecular Charge‐Transfer Process for Broadband‐Tunable Single‐Mode Microlasers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chan Qiao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haiyun Dong
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yuxiang Du
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
21
|
Gao H, Song X, Yang X, Yang D. Revealing and comparing different excited‐state intramolecular proton transfer processes for 3‐(
4‐dimethylamino
‐phenyl)‐1‐(4‐fluoro‐2‐hydroxy‐phenyl)‐propenone and 3‐(
4‐dimethylamino
‐phenyl)‐1‐(4‐fluoro‐2‐hydroxy‐phenyl)‐3‐hydroxy‐propenon. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haiyan Gao
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
| | - Xiaoyan Song
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
| | - Xiaohui Yang
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
| | - Dapeng Yang
- School of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou PR China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian PR China
| |
Collapse
|
22
|
Qiao C, Zhang C, Zhou Z, Dong H, Du Y, Yao J, Zhao YS. A Photoisomerization-Activated Intramolecular Charge-Transfer Process for Broadband-Tunable Single-Mode Microlasers. Angew Chem Int Ed Engl 2020; 59:15992-15996. [PMID: 32519468 DOI: 10.1002/anie.202007361] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 01/14/2023]
Abstract
Miniaturized lasers with high spectral purity and wide wavelength tunability are crucial for various photonic applications. Here we propose a strategy to realize broadband-tunable single-mode lasing based on a photoisomerization-activated intramolecular charge-transfer (ICT) process in coupled polymer microdisk cavities. The photoisomerizable molecules doped in the polymer microdisks can be quantitatively transformed into a kind of laser dye with strong ICT character by photoexcitation. The gain region was tailored over a wide range through the self-modulation of the optically activated ICT isomers. Meanwhile, the resonant modes shifted with the photoisomerization because of a change in the effective refractive index of the polymer microdisk cavity. Based on the synergetic modulation of the optical gain and microcavity, we realized the broadband tuning of the single-mode laser. These results offer a promising route to fabricate broadband-tunable microlasers towards practical photonic integrations.
Collapse
Affiliation(s)
- Chan Qiao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxiang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Mechanophotonics: Flexible Single‐Crystal Organic Waveguides and Circuits. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003820] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mari Annadhasan
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| | - Abhijeet R. Agrawal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Surojit Bhunia
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
- Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Vuppu Vinay Pradeep
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| | - Sanjio S. Zade
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
- Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Rajadurai Chandrasekar
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| |
Collapse
|
24
|
Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Mechanophotonics: Flexible Single-Crystal Organic Waveguides and Circuits. Angew Chem Int Ed Engl 2020; 59:13852-13858. [PMID: 32392396 DOI: 10.1002/anie.202003820] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Indexed: 01/23/2023]
Abstract
We present the one-dimensional optical-waveguiding crystal dithieno[3,2-a:2',3'-c]phenazine with a high aspect ratio, high mechanical flexibility, and selective self-absorbance of the blue part of its fluorescence (FL). While macrocrystals exhibit elasticity, microcrystals deposited at a glass surface behave more like plastic crystals due to significant surface adherence, making them suitable for constructing photonic circuits via micromechanical operation with an atomic-force-microscopy cantilever tip. The flexible crystalline waveguides display optical-path-dependent FL signals at the output termini in both straight and bent configurations, making them appropriate for wavelength-division multiplexing technologies. A reconfigurable 2×2-directional coupler fabricated via micromanipulation by combining two arc-shaped crystals splits the optical signal via evanescent coupling and delivers the signals at two output terminals with different splitting ratios. The presented mechanical micromanipulation technique could also be effectively extended to other flexible crystals.
Collapse
Affiliation(s)
- Mari Annadhasan
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Abhijeet R Agrawal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Surojit Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Vuppu Vinay Pradeep
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Rajadurai Chandrasekar
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| |
Collapse
|
25
|
Liu D, De J, Gao H, Ma S, Ou Q, Li S, Qin Z, Dong H, Liao Q, Xu B, Peng Q, Shuai Z, Tian W, Fu H, Zhang X, Zhen Y, Hu W. Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. J Am Chem Soc 2020; 142:6332-6339. [PMID: 32186872 DOI: 10.1021/jacs.0c00871] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Here, we design and synthesize an organic laser molecule, 2,7-diphenyl-9H-fluorene (LD-1), which has state-of-the-art integrated optoelectronic properties with a high mobility of 0.25 cm2 V-1 s-1, a high photoluminescence quantum yield of 60.3%, and superior deep-blue laser characteristics (low threshold of Pth = 71 μJ cm-2 and Pth = 53 μJ cm-2 and high quality factor (Q) of ∼3100 and ∼2700 at emission peaks of 390 and 410 nm, respectively). Organic light-emitting transistors based on LD-1 are for the first time demonstrated with obvious electroluminescent emission and gate tunable features. This work opens the door for a new class of organic semiconductor laser molecules and is critical for deep-blue optical and laser applications.
Collapse
Affiliation(s)
- Dan Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Haikuo Gao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suqian Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Qi Ou
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuai Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Qian Peng
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhigang Shuai
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yonggang Zhen
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
26
|
Liu Y, Hu H, Xu L, Qiu B, Liang J, Ding F, Wang K, Chu M, Zhang W, Ma M, Chen B, Yang X, Zhao YS. Orientation‐Controlled 2D Anisotropic and Isotropic Photon Transport in Co‐crystal Polymorph Microplates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Liu
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Huiping Hu
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Ling Xu
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Bing Qiu
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jie Liang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Fang Ding
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Kang Wang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Manman Chu
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Wei Zhang
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Xinzheng Yang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yong Sheng Zhao
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
27
|
Liu Y, Hu H, Xu L, Qiu B, Liang J, Ding F, Wang K, Chu M, Zhang W, Ma M, Chen B, Yang X, Zhao YS. Orientation‐Controlled 2D Anisotropic and Isotropic Photon Transport in Co‐crystal Polymorph Microplates. Angew Chem Int Ed Engl 2020; 59:4456-4463. [DOI: 10.1002/anie.201913441] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/17/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Yong Liu
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Huiping Hu
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Ling Xu
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Bing Qiu
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jie Liang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Fang Ding
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Kang Wang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Manman Chu
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Wei Zhang
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, andKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), andKey Laboratory of the Assembly and Application of, Organic Functional Molecules of Hunan ProvinceHunan Normal University Changsha 410081 China
| | - Xinzheng Yang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yong Sheng Zhao
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
28
|
Schmidt D, Stolte M, Süß J, Liess A, Stepanenko V, Würthner F. Protein-like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material. Angew Chem Int Ed Engl 2019; 58:13385-13389. [PMID: 31329325 PMCID: PMC6772080 DOI: 10.1002/anie.201907618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Strongly emissive solid-state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer-like absorption and emission profiles as well as fluorescence quantum yields over 90 % in its crystalline solid state. The material was synthesized by attaching two bulky tris(4-tert-butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments.
Collapse
Affiliation(s)
- David Schmidt
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Stolte
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Jasmin Süß
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Liess
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Vladimir Stepanenko
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
29
|
Ding H, Yue Y, Han C, Chen C, Li X. Nanoparticle self-assembled technique applied to a whispering-gallery-mode laser. OPTICS LETTERS 2019; 44:4247-4250. [PMID: 31465374 DOI: 10.1364/ol.44.004247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The low threshold microlaser is the fundamental component of integrated optical circuits. The fabrication method of the microcavity determines the dimension and threshold of lasers, while the doping method limits the available gain materials and emitted wavelength. Here we propose a silica nanoparticles self-assembly technique to fabricate a microlaser with a radius of ∼100 um and Q factor of 2000. The aggregation state of gain molecules is investigated to be J-type dimers with high fluorescence to support the laser generation. The laser can emit a ∼600 nm waveband multimode laser with a low threshold of ∼12 μJ. Such a laser is promising as a coherent light source integrated on the photonic microchips and opens up a new orientation in material science.
Collapse
|
30
|
Schmidt D, Stolte M, Süß J, Liess A, Stepanenko V, Würthner F. Protein‐like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Schmidt
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jasmin Süß
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Liess
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
31
|
Ngara ZS, Okada D, Oki O, Yamamoto Y. Energy Transfer-Assisted Whispering Gallery Mode Lasing in Conjugated Polymer/Europium Hybrid Microsphere Resonators. Chem Asian J 2019; 14:1637-1641. [PMID: 30302941 DOI: 10.1002/asia.201801219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/13/2018] [Indexed: 11/11/2022]
Abstract
Lanthanide metal complexes display luminescence with narrow bandwidth. Here, we present coupling of the luminescence from europium ion (Eu3+ ) with whispering gallery modes (WGMs) in conjugated polymer microsphere resonators. Self-assembly of fluorene-terpyridine alternating copolymer, coordinated by Eu3+ (F8tpy-Eu3+ ), forms well-defined microspheres with an average diameter of 3.2 μm. Upon focused laser excitation, a microsphere of F8tpy copolymer displays WGM photoluminescence (PL) at a wide spectral range from 420 to 680 nm. In contrast, F8tpy-Eu3+ hybrid microspheres exhibit sharp WGM PL at a narrow spectral range of 615-630 nm, which is characteristic of luminescence from Eu3+ . The PL behavior indicates that photoinduced energy transfer from F8tpy to Eu3+ occurs efficiently. Furthermore, the intensity of the PL peak increases nonlinearly upon strong pumping, indicating that a lasing action appears with the threshold of 1.85 mJ cm-2 . These results will pave the way for developing microlasers and photonic devices from soft organic materials.
Collapse
Affiliation(s)
- Zakarias S Ngara
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.,Department of Physics, Faculty of Science and Engineering, Nusa Cendana University, Adisucipto street, Penfui Kupang, NTT, 85001, Indonesia
| | - Daichi Okada
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Osamu Oki
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yohei Yamamoto
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.,Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
32
|
Wei GQ, Tao YC, Wu JJ, Li ZZ, Zhuo MP, Wang XD, Liao LS. Low-Threshold Organic Lasers Based on Single-Crystalline Microribbons of Aggregation-Induced Emission Luminogens. J Phys Chem Lett 2019; 10:679-684. [PMID: 30682884 DOI: 10.1021/acs.jpclett.9b00037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solid-state lasers (SSLs) play an important role in developing optoelectronic devices, optical communication, and modern medicine fields. As compared with inorganic SSLs, the electrically pumped organic SSLs (OSSLs) still remain unrealized because of the high lasing threshold and low carrier mobility. Herein, we first demonstrate the laser action at ∼520 nm based on the self-assembled single-crystalline organic microribbons of the aggregation-induced emission (AIE) molecules of 1,4-bis(( E)-4-(1,2,2-triphenylvinyl)styryl)-2,5-dimethoxybenzene (TPDSB). Moreover, these as-prepared organic microribbons exhibit an effective optical waveguide with a low optical loss of 0.012 dB μm-1, indicating good light confinement for laser resonator feedback. Impressively, the multiple mode and the single mode lasing are both achieved from individual organic microribbons, whose lasing threshold is as low as 653 nJ cm-2. These "bottom-up" synthesized organic microribbons based on AIE-active molecules offer a new strategy for the realization of the ultralow threshold OSSLs, which would eventually contribute to the realization of electrically pumped OSSLs.
Collapse
Affiliation(s)
- Guo-Qing Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Yi-Chen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Jun-Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Zhi-Zhou Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Ming-Peng Zhuo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
- Institute of Organic Optoelectronics , Jiangsu Industrial Technology Research Institute (JITRI) , Wujiang, Suzhou , Jiangsu 215211 , P. R. China
| |
Collapse
|
33
|
Zhuo MP, Fei XY, Tao YC, Fan J, Wang XD, Xie WF, Liao LS. In Situ Construction of One-Dimensional Component-Interchange Organic Core/Shell Microrods for Multicolor Continuous-Variable Optical Waveguide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5298-5305. [PMID: 30640427 DOI: 10.1021/acsami.8b22317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The core/shell micro-/nanostructures with versatility, tunability, stability, dispersibility, and biocompatibility are widely applied in optics, biomedicine, catalysis, and energy. Organic micro-/nanocrystals have significant applications in miniaturized optoelectronics because of their controllable self-assembly behavior, tunable optical properties, and tailor-made molecular structure. Nevertheless, the advanced organic core/shell micro-/nanostructures, which possess multifunctionality, flexibility, and higher compatibility, are rarely demonstrated because of the dynamic nature of molecular self-assembly and the complex epitaxial relationship of material combination. Herein, we demonstrate the one-dimensional organic core/shell micro-/nanostructures with component interchange, which originates from the 4,4'-((1 E,1' E)-(2,5-dimethoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (DPEpe) single-crystal microrods or the DPEpe-HCl single-crystal microrods after a reversible protonation or deprotonation process. Notably, the DPEpe/DPEpe-HCl core/shell microrods display vivid visualizations of tunable emission color via an efficient energy-transfer process during the stepwise formation of a shell layer. More significantly, these DPEpe/DPEpe-HCl and DPEpe-HCl/DPEpe core/shell microrods cooperatively demonstrate the multicolor optical waveguide properties continuously adjusted from green [CIE (0.326, 0.570)], to yellow [CIE (0.516, 0.465)], and to red [CIE (0.614, 0.374)]. Our investigation provides a new strategy to fabricate the organic core/shell micro-/nanostructures, which can eventually contribute to the advanced organic optoelectronics at the micro-/nanoscale.
Collapse
Affiliation(s)
- Ming-Peng Zhuo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Xi-Yu Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Yi-Chen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
- Institute of Organic Optoelectronics , Jiangsu Industrial Technology Research Institute (JITRI) , Wujiang, Suzhou , Jiangsu 215211 , P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Wan-Feng Xie
- School of Electronics & Information Engineering , Qingdao University , Qingdao 266071 , China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
- Institute of Organic Optoelectronics , Jiangsu Industrial Technology Research Institute (JITRI) , Wujiang, Suzhou , Jiangsu 215211 , P. R. China
| |
Collapse
|
34
|
Zhuo MP, Tao YC, Wang XD, Wu Y, Chen S, Liao LS, Jiang L. 2D Organic Photonics: An Asymmetric Optical Waveguide in Self-Assembled Halogen-Bonded Cocrystals. Angew Chem Int Ed Engl 2018; 57:11300-11304. [DOI: 10.1002/anie.201806149] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ming-Peng Zhuo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
| | - Yi-Chen Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
| | - Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Shuo Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering; Shenzhen University; Shenzhen 518060 P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
- Institute of Organic Optoelectronics, JITRI; Wujiang; Suzhou Jiangsu 215211 China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
35
|
Zhuo MP, Tao YC, Wang XD, Wu Y, Chen S, Liao LS, Jiang L. 2D Organic Photonics: An Asymmetric Optical Waveguide in Self-Assembled Halogen-Bonded Cocrystals. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806149] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ming-Peng Zhuo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
| | - Yi-Chen Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
| | - Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Shuo Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering; Shenzhen University; Shenzhen 518060 P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou Jiangsu 215123 China
- Institute of Organic Optoelectronics, JITRI; Wujiang; Suzhou Jiangsu 215211 China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
36
|
Liao Q, Wang XG, Lv S, Xu Z, Zhang Y, Fu H. Cluster-Mediated Nucleation and Growth of J- and H-Type Polymorphs of Difluoroboron Avobenzone for Organic Microribbon Lasers. ACS NANO 2018; 12:5359-5367. [PMID: 29697963 DOI: 10.1021/acsnano.8b00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlled fabrication of organic polymorphisms with well-defined dimensions and tunable luminescent properties plays an important role in developing optoelectronic devices, sensors, and biolabeling agents but remains a challenge due to the weak intermolecular interactions among organic molecules. Herein, we developed a two-step solution self-assembly method for the controlled preparation of blue-emissive or green-emissive microribbons (MRs) of difluoroboron avobenzone (BF2AVB) by adjusting the cluster-mediated nucleation and subsequent one-dimensional growth processes. We found that blue-emissive MRs belong to the monoclinic phase, in which BF2AVB molecules form slipped π-stacks, resulting in J-aggregates with the solid-state photoluminescence efficiency φ = 68%. Meanwhile, green-emissive MRs are ascribed to the orthorhombic phase and exhibit cofacial π-stacks, which lead to H-aggregates with φ = 24%. Furthermore, these as-prepared MRs can both act as polymorph-dependent Fabry-Pérot resonators for lasing oscillators. The strategy described here might offer significant promise for the coherent light source of optoelectronic devices.
Collapse
Affiliation(s)
- Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Xin Guo Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Shaokai Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Yi Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences , Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , People's Republic of China
| |
Collapse
|
37
|
Liang Z, Yang Z, Huang Z, Qi J, Chen M, Zhang W, Zheng H, Sun J, Cao R. Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.186] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Zhuo MP, Zhang YX, Li ZZ, Shi YL, Wang XD, Liao LS. Controlled synthesis of organic single-crystalline nanowires via the synergy approach of the bottom-up/top-down processes. NANOSCALE 2018; 10:5140-5147. [PMID: 29488987 DOI: 10.1039/c7nr08931g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The controlled fabrication of organic single-crystalline nanowires (OSCNWs) with a uniform diameter in the nanoscale via the bottom-up approach, which is just based on weak intermolecular interaction, is a great challenge. Herein, we utilize the synergy approach of the bottom-up and the top-down processes to fabricate OSCNWs with diameters of 120 ± 10 nm through stepwise evolution processes. Specifically, the evolution processes vary from the self-assembled organic micro-rods with a quadrangular pyramid-like end-structure bounded with {111}s and {11-1}s crystal planes to the "top-down" synthesized organic micro-rods with the flat cross-sectional {002}s plane, to the organic micro-tubes with a wall thickness of ∼115 nm, and finally to the organic nanowires. Notably, the anisotropic etching process caused by the protic solvent molecules (such as ethanol) is crucial for the evolution of the morphology throughout the whole top-down process. Therefore, our demonstration opens a new avenue for the controlled-fabrication of organic nanowires, and also contributes to the development of nanowire-based organic optoelectronics such as organic nanowire lasers.
Collapse
Affiliation(s)
- Ming-Peng Zhuo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | |
Collapse
|
39
|
Dong H, Zhang C, Liu Y, Yan Y, Hu F, Zhao YS. Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Haiyun Dong
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuan Liu
- College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Yongli Yan
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Fengqin Hu
- College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
40
|
Dong H, Zhang C, Liu Y, Yan Y, Hu F, Zhao YS. Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle. Angew Chem Int Ed Engl 2018; 57:3108-3112. [DOI: 10.1002/anie.201712524] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyun Dong
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuan Liu
- College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Yongli Yan
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Fengqin Hu
- College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
41
|
Tao YC, Li ZZ, Wang XD, Xiao L, Fu H, Liao LS. Fluorescence/phosphorescence-conversion in self-assembled organic microcrystals. Chem Commun (Camb) 2018; 54:5895-5898. [DOI: 10.1039/c8cc01791c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Self-assembled fluorescent organic microcrystals of 4-(2,2-difluoro-6-(4-iodophenyl)-2H-1′,3,2′-dioxaborinin-4-yl)benzonitrile (DIDB) can be modulated to phosphorescent microcrystals by doping into the 4-iodobenzonitrile matrix.
Collapse
Affiliation(s)
- Yi-Chen Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Zhi-Zhou Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Lu Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| |
Collapse
|
42
|
Li ZZ, Liao LS, Wang XD. Controllable Synthesis of Organic Microcrystals with Tunable Emission Color and Morphology Based on Molecular Packing Mode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702952. [PMID: 29149540 DOI: 10.1002/smll.201702952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Organic microcrystals are of essential importance for high fluorescence efficiency, ordered molecular packing mode, minimized defects, and smooth shapes, which are extensively applied in organic optoelectronics. The molecular packing mode significantly influences the optical/electrical properties of organic microcrystals, which makes the controllable preparation of organic microcrystals with desired molecular packing mode extremely important. In the study, yellow-emissive α phase organic microcrystals with rectangular morphology and green-emissive β phase perylene microcrystals with rhombic morphology are separately prepared by simply controlling the solution concentration. The distinct molecular staking modes of the H/J-aggregate are found in these two types of perylene microcrystals, which contribute to the different emission color, morphology, and radiative decay rate. What is more interesting, the α-doped β phase and the β-doped α phase organic microcrystals can also be fabricated by modulating the evaporation rate from 100 to 10 µL min-1 . The findings can contribute to the future development of organic optoelectronics at the microscale.
Collapse
Affiliation(s)
- Zhi-Zhou Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), Wujiang, Suzhou, Jiangsu, 215211, P. R. China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
43
|
Xu Z, Zhang Z, Jin X, Liao Q, Fu H. Polymorph-Dependent Green, Yellow, and Red Emissions of Organic Crystals for Laser Applications. Chem Asian J 2017; 12:2985-2990. [DOI: 10.1002/asia.201701207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/27/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices; Department of Chemistry; Capital Normal University; Beijing 100048 People's Republic of China
| | - Zhiwei Zhang
- Beijing Key Laboratory for Optical Materials and Photonic Devices; Department of Chemistry; Capital Normal University; Beijing 100048 People's Republic of China
| | - Xue Jin
- Beijing Key Laboratory for Optical Materials and Photonic Devices; Department of Chemistry; Capital Normal University; Beijing 100048 People's Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Sciences; Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 People's Republic of China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices; Department of Chemistry; Capital Normal University; Beijing 100048 People's Republic of China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices; Department of Chemistry; Capital Normal University; Beijing 100048 People's Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Sciences; Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 People's Republic of China
| |
Collapse
|
44
|
Sun Y, Lei Y, Liao L, Hu W. Competition between Arene-Perfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanqiu Sun
- Institute of Chemistry; Chinese Academy of Sciences (ICCAS); Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Yilong Lei
- Institute of Molecular Functional Materials; Department of Chemistry and Institute of Advanced Materials; Hong Kong Baptist University; Waterloo Road Hong Kong P.R. China
| | - Liangsheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices; Institute of Functional Nano and Soft Materials (FUNSOM); Soochow University, Suzhou; Jiangsu 215123 P.R. China
| | - Wenping Hu
- Institute of Chemistry; Chinese Academy of Sciences (ICCAS); Beijing 100190 P.R. China
- Key Laboratory of Molecular Optoelectronic Sciences; School of Science; Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 P.R. China
| |
Collapse
|
45
|
Sun Y, Lei Y, Liao L, Hu W. Competition between Arene-Perfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. Angew Chem Int Ed Engl 2017; 56:10352-10356. [DOI: 10.1002/anie.201702084] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/23/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yanqiu Sun
- Institute of Chemistry; Chinese Academy of Sciences (ICCAS); Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Yilong Lei
- Institute of Molecular Functional Materials; Department of Chemistry and Institute of Advanced Materials; Hong Kong Baptist University; Waterloo Road Hong Kong P.R. China
| | - Liangsheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices; Institute of Functional Nano and Soft Materials (FUNSOM); Soochow University, Suzhou; Jiangsu 215123 P.R. China
| | - Wenping Hu
- Institute of Chemistry; Chinese Academy of Sciences (ICCAS); Beijing 100190 P.R. China
- Key Laboratory of Molecular Optoelectronic Sciences; School of Science; Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 P.R. China
| |
Collapse
|
46
|
Li ZZ, Liang F, Zhuo MP, Shi YL, Wang XD, Liao LS. White-Emissive Self-Assembled Organic Microcrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604110. [PMID: 28296188 DOI: 10.1002/smll.201604110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/01/2017] [Indexed: 05/22/2023]
Abstract
Organic semiconductor micro-/nanocrystals with regular shapes have been demonstrated for many applications, such as organic field-effect transistors, organic waveguide devices, organic solid-state lasers, and therefore are inherently ideal building blocks for the key circuits in the next generation of miniaturized optoelectronics. In the study, blue-emissive organic molecules of 1,4-bis(2-methylstyryl)benzene (o-MSB) can assemble into rectangular microcrystals at a large scale via the room-temperature solution-exchange method. Because of the Förster resonance energy transfer, the energy of the absorbed photons by the host matrix organic molecules of o-MSB can directly transfer to the dopant organic molecules of tetracene or 1,2:8,9-dibenzopentacene (DBP), which then emit visible photons in different colors from blue to green, and to yellow. More impressively, by modulating the doping molar ratios of DBP to o-MSB, bright white-emissive organic microcrystals with well-preserved rectangular morphology can be successfully achieved with a low doping ratio of 1.5%. These self-assembled organic semiconductor microcrystals with multicolor emissions can be the white-light sources for the integrated optical circuits at micro-/nanoscale.
Collapse
Affiliation(s)
- Zhi Zhou Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Feng Liang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ming Peng Zhuo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ying Li Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xue Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
47
|
Zhang Y, Liao Q, Wang X, Yao J, Fu H. Lattice-Matched Epitaxial Growth of Organic Heterostructures for Integrated Optoelectronic Application. Angew Chem Int Ed Engl 2017; 56:3616-3620. [PMID: 28233948 DOI: 10.1002/anie.201700447] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Indexed: 11/08/2022]
Abstract
Development of nanowire photonics requires integration of different nanowire components into highly ordered functional heterostructures. Herein, we report a sequential self-assembly of binary molecular components into branched nanowire heterostructures (BNHs) via lattice-matched epitaxial growth, in which the microribbon backbone of 2,5-Bis(5-tert-butyl-2-benzoxazolyl)thiophene (BBOT) functions as blue-emitting microlaser source to pump the nanowire branches of BODIPY. By constructing Au electrodes on both branch sides and measuring the photocurrent in them, we successfully realize the integration of an organic laser and a power meter in a single device. This work provides a new insight into the integration of 1D organic nanostructures into BNHs for realizing organic multifunctional photonic devices.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Xinguo Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| |
Collapse
|
48
|
Zhang Y, Liao Q, Wang X, Yao J, Fu H. Lattice‐Matched Epitaxial Growth of Organic Heterostructures for Integrated Optoelectronic Application. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 P.R. China
| | - Xinguo Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 P.R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 P.R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P.R. China
| |
Collapse
|
49
|
Chen J, Chen Y, Wu Y, Wang X, Yu Z, Xiao L, Liu Y, Tian H, Yao J, Fu H. Modulated emission from dark triplet excitons in aza-acene compounds: fluorescence versus phosphorescence. NEW J CHEM 2017. [DOI: 10.1039/c6nj02747d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The enhanced charge-transfer interaction from DBP to TBP leads to higher energy triplet states, which reinforces reverse intersystem crossing.
Collapse
|
50
|
Yu Z, Wu Y, Zhang H, Wang X, Chen J, Yao J, Fu H. Self-Assembled 1D-Nanowire Lasers of Perylenediimides. Chemphyschem 2016; 17:3160-3164. [DOI: 10.1002/cphc.201600741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenyi Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yishi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Haihua Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Xuedong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jianwei Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing Key Laboratory for Optical Materials and Photonic Devices; Department of Chemistry Capital Normal University; Beijing 100048 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 People's Republic of China
| | - Hongbing Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing Key Laboratory for Optical Materials and Photonic Devices; Department of Chemistry Capital Normal University; Beijing 100048 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 People's Republic of China
| |
Collapse
|