1
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
2
|
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 2024; 15:1992. [PMID: 38443388 PMCID: PMC10914786 DOI: 10.1038/s41467-024-46221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
Collapse
Affiliation(s)
- Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Centre for Advanced Materials Application, Slovak Academy of Sciences, 845 11, Bratislava, Slovakia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Riccardo Rigo
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131, Padova, Italy
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Israel Serrano-Chacón
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Carlos González
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Laboratoire d'Optique & Biosciences, Institut Polytechnique de Paris, Inserm, CNRS, Ecole Polytechnique, Palaiseau, 91120, France
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Ben‐Ishay Y, Barak Y, Feintuch A, Ouari O, Pierro A, Mileo E, Su X, Goldfarb D. Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy. Protein Sci 2024; 33:e4903. [PMID: 38358137 PMCID: PMC10868451 DOI: 10.1002/pro.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.
Collapse
Affiliation(s)
- Yasmin Ben‐Ishay
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Barak
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Akiva Feintuch
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Olivier Ouari
- CNRS, ICR, Institut de Chimie RadicalaireAix‐Marseille UniversitéMarseilleFrance
| | - Annalisa Pierro
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
- Present address:
Konstanz Research School Chemical Biology, Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Elisabetta Mileo
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento‐organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of Chemistry, Nankai UniversityTianjinChina
| | - Daniella Goldfarb
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Beck M, Covino R, Hänelt I, Müller-McNicoll M. Understanding the cell: Future views of structural biology. Cell 2024; 187:545-562. [PMID: 38306981 DOI: 10.1016/j.cell.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.
Collapse
Affiliation(s)
- Martin Beck
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Frankfurt, Germany.
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Inga Hänelt
- Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
5
|
Beriashvili D, Yao R, D'Amico F, Krafčíková M, Gurinov A, Safeer A, Cai X, Mulder MPC, Liu Y, Folkers GE, Baldus M. A high-field cellular DNP-supported solid-state NMR approach to study proteins with sub-cellular specificity. Chem Sci 2023; 14:9892-9899. [PMID: 37736634 PMCID: PMC10510770 DOI: 10.1039/d3sc02117c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Studying the structural aspects of proteins within sub-cellular compartments is of growing interest. Dynamic nuclear polarization supported solid-state NMR (DNP-ssNMR) is uniquely suited to provide such information, but critically lacks the desired sensitivity and resolution. Here we utilize SNAPol-1, a novel biradical, to conduct DNP-ssNMR at high-magnetic fields (800 MHz/527 GHz) inside HeLa cells and isolated cell nuclei electroporated with [13C,15N] labeled ubiquitin. We report that SNAPol-1 passively diffuses and homogenously distributes within whole cells and cell nuclei providing ubiquitin spectra of high sensitivity and remarkably improved spectral resolution. For cell nuclei, physical enrichment facilitates a further 4-fold decrease in measurement time and provides an exclusive structural view of the nuclear ubiquitin pool. Taken together, these advancements enable atomic interrogation of protein conformational plasticity at atomic resolution and with sub-cellular specificity.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Francesca D'Amico
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Michaela Krafčíková
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Andrei Gurinov
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
6
|
Abstract
There are over 100 computational predictors of intrinsic disorder. These methods predict amino acid-level propensities for disorder directly from protein sequences. The propensities can be used to annotate putative disordered residues and regions. This unit provides a practical and holistic introduction to the sequence-based intrinsic disorder prediction. We define intrinsic disorder, explain the format of computational prediction of disorder, and identify and describe several accurate predictors. We also introduce recently released databases of intrinsic disorder predictions and use an illustrative example to provide insights into how predictions should be interpreted and combined. Lastly, we summarize key experimental methods that can be used to validate computational predictions. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Zhu W, Guseman AJ, Bhinderwala F, Lu M, Su XC, Gronenborn AM. Visualizing Proteins in Mammalian Cells by 19 F NMR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202201097. [PMID: 35278268 PMCID: PMC9156538 DOI: 10.1002/anie.202201097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/20/2022]
Abstract
In-cell NMR spectroscopy is a powerful tool to investigate protein behavior in physiologically relevant environments. Although proven valuable for disordered proteins, we show that in commonly used 1 H-15 N HSQC spectra of globular proteins, interactions with cellular components often broaden resonances beyond detection. This contrasts 19 F spectra in mammalian cells, in which signals are readily observed. Using several proteins, we demonstrate that surface charges and interaction with cellular binding partners modulate linewidths and resonance frequencies. Importantly, we establish that 19 F paramagnetic relaxation enhancements using stable, rigid Ln(III) chelate pendants, attached via non-reducible thioether bonds, provide an effective means to obtain accurate distances for assessing protein conformations in the cellular milieu.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Alex J Guseman
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Fatema Bhinderwala
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Manman Lu
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
11
|
Gronenborn AM, Zhu W, Guseman AJ, Bhinderwala F, Lu M, Su XC. Visualizing Proteins in Mammalian Cells by 19F NMR spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Angela M Gronenborn
- University of Pittsburgh, School of Medicine Department of Structural Biology 3501 Fifth AvenueBiomedical Science Tower 3 15260 Pittsburgh UNITED STATES
| | - Wenkai Zhu
- University of Pittsburgh School of Medicine Department of Structural Biology 3501 Fifth AvenueBiomedical Science Tower 3 15260 Pittsburgh UNITED STATES
| | - Alex J Guseman
- University of Pittsburgh School of Medicine Department of Structural Biology 3501 Fifth AvenueBiomedical Science Tower 3 15260 Pittsburgh UNITED STATES
| | - Fatema Bhinderwala
- University of Pittsburgh School of Medicine Department of Structural Biology UNITED STATES
| | - Manman Lu
- University of Pittsburgh School of Medicine Department of Structural Biology 3501 Fifth AvenueBiomedical Science Tower 3 15260 Pittsburgh UNITED STATES
| | - Xun-Cheng Su
- Nankai University College of Chemistry State Key Laboratory of Elemento-Organic Chemistry 300071 Tianjin CHINA
| |
Collapse
|
12
|
Ghosh R, Dumarieh R, Xiao Y, Frederick KK. Stability of the nitroxide biradical AMUPol in intact and lysed mammalian cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107150. [PMID: 35151975 PMCID: PMC8961433 DOI: 10.1016/j.jmr.2022.107150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Dynamic Nuclear Polarization (DNP) enhanced solid state NMR increases experimental sensitivity, potentially enabling detection of biomolecules at their physiological concentrations. The sensitivity of DNP experiments is due to the transfer of polarization from electron spins of free radicals to the nuclear spins of interest. Here, we investigate the reduction of AMUPol in both lysed and intact HEK293 cells. We find that nitroxide radicals are reduced with first order reduction kinetics by cell lysates at a rate of ∼ 12% of the added nitroxide radical concentration per hour. We also found that electroporation delivered a consistent amount of AMUPol to intact cells and that nitroxide radicals are reduced just slightly more rapidly (∼15% per hour) by intact cells than by cell lysates. The two nitroxide radicals of AMUPol are reduced independently and this leads to considerable accumulation of the DNP-silent monoradical form of AMUPol, particularly in preparations of intact cells where nearly half of the AMUPol is already reduced to the DNP silent monoradical form at the earliest experimental time points. This confirms that the loss of the DNP-active biradical form of AMUPol is faster than the nitroxide reduction rate. Finally, we investigate the effect of adding N-ethyl maleimide, a well-known inhibitor of thiol (-SH) group-based reduction of nitroxide biradicals in cells, on AMUPol reduction, cellular viability, and DNP performance. Although pre-treatment of cells with NEM effectively inhibited the reduction of AMUPol, exposure to NEM compromised cellular viability and, surprisingly, did not improve DNP performance. Collectively, these results indicate that, currently, the most effective strategy to obtain high DNP enhancements for DNP-assisted in-cell NMR is to minimize room temperature contact times with cellular constituents and suggest that the development of bio-resistant polarization agents for DNP could considerably increase the sensitivity of DNP-assisted in-cell NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, 75390-8816, United States; Center for Neurodegenerative and Alzheimer's Disease, UT Southwestern Medical Center, Dallas 75390, United States.
| |
Collapse
|
13
|
Biocompatible surface functionalization architecture for a diamond quantum sensor. Proc Natl Acad Sci U S A 2022; 119:2114186119. [PMID: 35193961 PMCID: PMC8872777 DOI: 10.1073/pnas.2114186119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 01/02/2023] Open
Abstract
Diamond-based quantum sensing enables nanoscale measurements of biological systems with unprecedented sensitivity. Potential applications of this emerging technology range from the investigation of fundamental biological processes to the development of next-generation medical diagnostics devices. One of the main challenges faced by bioquantum sensing is the need to interface quantum sensors with biological target systems. Specifically, such an interface needs to maintain the highly fragile quantum states of our sensor and at the same time be able to fish intact biomolecules out of solution and immobilize them on our quantum sensor surface. Our work overcomes these challenges by combining tools from quantum engineering, single-molecule biophysics, and material processing. Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.
Collapse
|
14
|
Ghosh R, Xiao Y, Kragelj J, Frederick KK. In-Cell Sensitivity-Enhanced NMR of Intact Viable Mammalian Cells. J Am Chem Soc 2021; 143:18454-18466. [PMID: 34724614 DOI: 10.1021/jacs.1c06680] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NMR has the resolution and specificity to determine atomic-level protein structures of isotopically labeled proteins in complex environments, and with the sensitivity gains conferred by dynamic nuclear polarization (DNP), NMR has the sensitivity to detect proteins at their endogenous concentrations. However, DNP sensitivity enhancements are critically dependent on experimental conditions and sample composition. While some of these conditions are theoretically compatible with cellular viability, the effects of others on cellular sample integrity are unknown. Uncertainty about the integrity of cellular samples limits the utility of experimental outputs of in-cell experiments. Using several measures, we establish conditions that support DNP enhancements that can enable detection of micromolar concentrations of proteins in experimentally tractable times that are compatible with cellular viability. Taken together, we establish DNP-assisted MAS NMR as a technique for structural investigations of biomolecules in intact viable cells that can be phenotyped both before and after NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States.,Center for Alzheimer's and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
15
|
Rajput S, Sani MA, Keizer DW, Separovic F. Utilizing magnetic resonance techniques to study membrane interactions of amyloid peptides. Biochem Soc Trans 2021; 49:1457-1465. [PMID: 34156433 PMCID: PMC8286822 DOI: 10.1042/bst20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative condition that involves the extracellular accumulation of amyloid plaques predominantly consisting of Aβ peptide aggregates. The amyloid plaques and soluble oligomeric species of Aβ are believed to be the major cause of synaptic dysfunction in AD brain and their cytotoxic mechanisms have been proposed to involve interactions with cell membranes. In this review, we discuss our solid-state nuclear magnetic resonance (ssNMR) studies of Aβ interactions with model membranes.
Collapse
Affiliation(s)
- Sunnia Rajput
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marc-Antoine Sani
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David W. Keizer
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
16
|
Krafčík D, Ištvánková E, Džatko Š, Víšková P, Foldynová-Trantírková S, Trantírek L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int J Mol Sci 2021; 22:6042. [PMID: 34205000 PMCID: PMC8199861 DOI: 10.3390/ijms22116042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
Collapse
Affiliation(s)
- Daniel Krafčík
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
| |
Collapse
|
17
|
Kaplan M, Nicolas WJ, Zhao W, Carter SD, Metskas LA, Chreifi G, Ghosal D, Jensen GJ. In Situ Imaging and Structure Determination of Biomolecular Complexes Using Electron Cryo-Tomography. Methods Mol Biol 2021; 2215:83-111. [PMID: 33368000 DOI: 10.1007/978-1-0716-0966-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electron cryo-tomography (cryo-ET) is a technique that allows the investigation of intact macromolecular complexes while they are in their cellular milieu. Over the years, cryo-ET has had a huge impact on our understanding of how large biomolecular complexes look like, how they assemble, disassemble, function, and evolve(d). Recent hardware and software developments and combining cryo-ET with other techniques, e.g., focused ion beam milling (FIB-milling) and cryo-light microscopy, has extended the realm of cryo-ET to include transient molecular complexes embedded deep in thick samples (like eukaryotic cells) and enhanced the resolution of structures obtained by cryo-ET. In this chapter, we will present an outline of how to perform cryo-ET studies on a wide variety of biological samples including prokaryotic and eukaryotic cells and biological plant tissues. This outline will include sample preparation, data collection, and data processing as well as hybrid approaches like FIB-milling, cryosectioning, and cryo-correlated light and electron microscopy (cryo-CLEM).
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Wei Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lauren Ann Metskas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Georges Chreifi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
18
|
Miao Q, Zurlo E, de Bruin D, Wondergem JAJ, Timmer M, Blok A, Heinrich D, Overhand M, Huber M, Ubbink M. A Two-Armed Probe for In-Cell DEER Measurements on Proteins*. Chemistry 2020; 26:17128-17133. [PMID: 33200852 PMCID: PMC7839491 DOI: 10.1002/chem.202002743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022]
Abstract
The application of double electron‐electron resonance (DEER) with site‐directed spin labeling (SDSL) to measure distances in proteins and protein complexes in living cells puts rigorous restraints on the spin‐label. The linkage and paramagnetic centers need to resist the reducing conditions of the cell. Rigid attachment of the probe to the protein improves precision of the measured distances. Here, three two‐armed GdIII complexes, GdIII‐CLaNP13a/b/c were synthesized. Rather than the disulfide linkage of most other CLaNP molecules, a thioether linkage was used to avoid reductive dissociation of the linker. The doubly GdIII labeled N55C/V57C/K147C/T151C variants of T4Lysozyme were measured by 95 GHz DEER. The constructs were measured in vitro, in cell lysate and in Dictyostelium discoideum cells. Measured distances were 4.5 nm, consistent with results from paramagnetic NMR. A narrow distance distribution and typical modulation depth, also in cell, indicate complete and durable labeling and probe rigidity due to the dual attachment sites.
Collapse
Affiliation(s)
- Qing Miao
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Enrico Zurlo
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Donny de Bruin
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Joeri A J Wondergem
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Anneloes Blok
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Doris Heinrich
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands.,Fraunhofer Institute for Silicate Research ISC, 97082, Würzburg, Germany
| | - Mark Overhand
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| |
Collapse
|
19
|
Sánchez‐López C, Labadie N, Lombardo VA, Biglione FA, Manta B, Jacob RS, Gladyshev VN, Abdelilah‐Seyfried S, Selenko P, Binolfi A. An NMR‐Based Biosensor to Measure Stereospecific Methionine Sulfoxide Reductase Activities in Vitro and in Vivo**. Chemistry 2020; 26:14838-14843. [DOI: 10.1002/chem.202002645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Carolina Sánchez‐López
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
| | - Natalia Labadie
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
| | - Verónica A. Lombardo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
- Centro de Estudios Interdisciplinarios (CEI) Universidad Nacional de Rosario 2000 Rosario Argentina
| | - Franco A. Biglione
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
| | - Bruno Manta
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
- Facultad de Medicina Departamento de Bioquímica and Centro de Investigaciones Biomédicas Universidad de la República CP 11800 Montevideo Uruguay
| | - Reeba Susan Jacob
- Department of Biological Regulation Weizmann Institute of Science 234 Herzl Street 761000 Rehovot Israel
| | - Vadim N. Gladyshev
- Division of Genetics Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Salim Abdelilah‐Seyfried
- Institute of Biochemistry and Biology Potsdam University 14476 Potsdam Germany
- Institute of Molecular Biology Hannover Medical School 30625 Hannover Germany
| | - Philipp Selenko
- Department of Biological Regulation Weizmann Institute of Science 234 Herzl Street 761000 Rehovot Israel
| | - Andres Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR) Ocampo y Esmeralda 2000 Rosario Argentina
- Plataforma Argentina de Biología EstructuralyMetabolómica (PLABEM) Ocampo y Esmeralda 2000 Rosario Argentina
| |
Collapse
|
20
|
Bao HL, Masuzawa T, Oyoshi T, Xu Y. Oligonucleotides DNA containing 8-trifluoromethyl-2'-deoxyguanosine for observing Z-DNA structure. Nucleic Acids Res 2020; 48:7041-7051. [PMID: 32678885 PMCID: PMC7367190 DOI: 10.1093/nar/gkaa505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
Z-DNA is known to be a left-handed alternative form of DNA and has important biological roles as well as being related to cancer and other genetic diseases. It is therefore important to investigate Z-DNA structure and related biological events in living cells. However, the development of molecular probes for the observation of Z-DNA structures inside living cells has not yet been realized. Here, we have succeeded in developing site-specific trifluoromethyl oligonucleotide DNA by incorporation of 8-trifluoromethyl-2′-deoxyguanosine (FG). 2D NMR strongly suggested that FG adopted a syn conformation. Trifluoromethyl oligonucleotides dramatically stabilized Z-DNA, even under physiological salt concentrations. Furthermore, the trifluoromethyl DNA can be used to directly observe Z-form DNA structure and interaction of DNA with proteins in vitro, as well as in living human cells by19F NMR spectroscopy for the first time. These results provide valuable information to allow understanding of the structure and function of Z-DNA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuki Masuzawa
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
21
|
K A, Kathirvelu V. Electron spin relaxation time of Ni(II) ion in hexapyrazole zinc(II) dinitrate at 300 K. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:329-333. [PMID: 32017195 DOI: 10.1002/mrc.5007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Understanding the electron spin relaxation properties of paramagnetic species is a fundamental requirement to use them as a probe to measure distances between sites in biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Even though Ni(II) ion is an essential trace element for many species, relaxation properties are not well understood. Herein, the polycrystalline sample of Ni(II) ion magnetically diluted in Zn(Pyrazole)6 (NO3 )2 (Ni/ZPN) has been studied in detail by EPR spectroscopy to explore the electron spin relaxation time. Progressive continuous-wave (CW) EPR power saturation study on Ni/ZPN at 300 K yielded 907 mW as the P1/2 value. The cavity constant (KQ ) has been calculated using tempol in PVA-BA glass matrix and the product of electron spin-lattice relaxation time (T1 ) and spin-spin relaxation time (T2 ) for Ni/ZPN at 300 K has been reported for the first time.
Collapse
Affiliation(s)
- Amrutha K
- Department of Applied Sciences, National Institute of Technology Goa, Ponda, India
| | - Velavan Kathirvelu
- Department of Applied Sciences, National Institute of Technology Goa, Ponda, India
| |
Collapse
|
22
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|
23
|
Recent progress of in-cell NMR of nucleic acids in living human cells. Biophys Rev 2020; 12:411-417. [PMID: 32144741 DOI: 10.1007/s12551-020-00664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The inside of living cells is highly crowded with biological macromolecules. It has long been considered that the properties of nucleic acids and proteins, such as their structures, dynamics, interactions, and enzymatic activities, in intracellular environments are different from those under in vitro dilute conditions. In-cell NMR is a robust and powerful method used in the direct measurement of those properties in living cells. However, until 2 years ago, in-cell NMR was limited to Xenopus laevis oocytes due to technical challenges of incorporating exogenous nucleic acids. In the last 2 years, in-cell NMR spectra of nucleic acid introduced into living human cells have been reported. By use of the in-cell NMR spectra of nucleic acids in living human cells, the formation of hairpin structures with Watson-Crick base pairs, and i-motif and G-quadruplex structures with non-Watson-Crick base pairs was demonstrated. Others investigated the mRNA-antisense drug interactions and DNA-small compound interactions. In this article, we review these studies to underscore the potential of in-cell NMR for addressing the structures, dynamics, and interactions of nucleic acids in living human cells.
Collapse
|
24
|
Juliusson HY, Sigurdsson ST. Reduction Resistant and Rigid Nitroxide Spin-Labels for DNA and RNA. J Org Chem 2020; 85:4036-4046. [PMID: 32103670 DOI: 10.1021/acs.joc.9b02988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy, coupled with site-directed spin labeling (SDSL), is a useful method for studying conformational changes of biomolecules in cells. To employ in-cell EPR using nitroxide-based spin labels, the structure of the nitroxides must confer reduction resistance to withstand the reductive environment within cells. Here, we report the synthesis of two new spin labels, EÇ and EÇm, both of which possess the rigidity and the reduction resistance needed for extracting detailed structural information by EPR spectroscopy. EÇ and EÇm were incorporated into DNA and RNA, respectively, by oligonucleotide synthesis. Both labels were shown to be nonperturbing of the duplex structure. The partial reduction of EÇm during RNA synthesis was circumvented by the protection of the nitroxide as a benzoylated hydroxylamine.
Collapse
Affiliation(s)
- Haraldur Y Juliusson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
25
|
Bao HL, Liu HS, Xu Y. Hybrid-type and two-tetrad antiparallel telomere DNA G-quadruplex structures in living human cells. Nucleic Acids Res 2019; 47:4940-4947. [PMID: 30976813 PMCID: PMC6547409 DOI: 10.1093/nar/gkz276] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Although the telomeric sequence has been reported to form various G-quadruplex topologies in vitro and in Xenopus laevis oocytes, in living human cells, the topology of telomeric DNA G-quadruplex remains a challenge. To investigate the human telomeric DNA G-quadruplex in a more realistic human cell environment, in the present study, we demonstrated that the telomeric DNA sequence can form two hybrid-type and two-tetrad antiparallel G-quadruplex structures by in-cell 19F NMR in living human cells (HELA CELLS). This result provides valuable information for understanding the structures of human telomeric DNA in living human cells and for the design of new drugs that target telomeric DNA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hong-Shan Liu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
26
|
Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, Godt A, Jeschke G. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106560. [PMID: 31377151 DOI: 10.1016/j.jmr.2019.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Katharina Keller
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Daniel Klose
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Maxim Yulikov
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Gunnar Jeschke
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| |
Collapse
|
27
|
Zheng W, Zhang Z, Ye Y, Wu Q, Liu M, Li C. Phosphorylation dependent α-synuclein degradation monitored by in-cell NMR. Chem Commun (Camb) 2019; 55:11215-11218. [PMID: 31469130 DOI: 10.1039/c9cc05662a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the dephosphorylation and proteolysis of phosphorylated α-synuclein, a Parkinson's disease-related protein, in living cells in a time resolved manner using in-cell NMR.
Collapse
Affiliation(s)
- Wenwen Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | | | | | |
Collapse
|
28
|
Arthanari H, Takeuchi K, Dubey A, Wagner G. Emerging solution NMR methods to illuminate the structural and dynamic properties of proteins. Curr Opin Struct Biol 2019; 58:294-304. [PMID: 31327528 PMCID: PMC6778509 DOI: 10.1016/j.sbi.2019.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
The first recognition of protein breathing was more than 50 years ago. Today, we are able to detect the multitude of interaction modes, structural polymorphisms, and binding-induced changes in protein structure that direct function. Solution-state NMR spectroscopy has proved to be a powerful technique, not only to obtain high-resolution structures of proteins, but also to provide unique insights into the functional dynamics of proteins. Here, we summarize recent technical landmarks in solution NMR that have enabled characterization of key biological macromolecular systems. These methods have been fundamental to atomic resolution structure determination and quantitative analysis of dynamics over a wide range of time scales by NMR. The ability of NMR to detect lowly populated protein conformations and transiently formed complexes plays a critical role in its ability to elucidate functionally important structural features of proteins and their dynamics.
Collapse
Affiliation(s)
- Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 135-0064 Tokyo, Japan.
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
29
|
Bonucci A, Ouari O, Guigliarelli B, Belle V, Mileo E. In‐Cell EPR: Progress towards Structural Studies Inside Cells. Chembiochem 2019; 21:451-460. [DOI: 10.1002/cbic.201900291] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alessio Bonucci
- Magnetic Resonance CenterCERMUniversity of Florence 50019 Sesto Fiorentino Italy
| | - Olivier Ouari
- Aix Marseille UnivCNRSICRInstitut de Chimie Radicalaire 13013 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| |
Collapse
|
30
|
Narasimhan S, Scherpe S, Lucini Paioni A, van der Zwan J, Folkers GE, Ovaa H, Baldus M. DNP-Supported Solid-State NMR Spectroscopy of Proteins Inside Mammalian Cells. Angew Chem Int Ed Engl 2019; 58:12969-12973. [PMID: 31233270 PMCID: PMC6772113 DOI: 10.1002/anie.201903246] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/25/2022]
Abstract
Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid-state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high-sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in-cell solution-state NMR spectroscopy due to molecular size limitations.
Collapse
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Stephan Scherpe
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| |
Collapse
|
31
|
Gao Y, Li G, Qin Y, Ji Y, Mai B, An T. New theoretical insight into indirect photochemical transformation of fragrance nitro-musks: Mechanisms, eco-toxicity and health effects. ENVIRONMENT INTERNATIONAL 2019; 129:68-75. [PMID: 31121517 DOI: 10.1016/j.envint.2019.05.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The ubiquitous presence of fragrance-associated synthetic musk is cause for serious concern due to their transformation and environmental impacts. In particular, nitro-musks are frequently detected in various matrices, including water, even though they were restricted because of carcinogenicity. Thus, using musk xylene as a model compound, the mechanism, eco-toxicity and health effects during OH-initiated transformation process were systematically studied using quantum chemistry and computational toxicology. Results indicate that musk xylene can be exclusively transformed via H-abstraction pathways from its methyl group, with total rate constants of 5.65 × 108-8.79 × 109 M-1 s-1, while the contribution of other pathways, including single-electron transfer and OH-addition pathways, were insignificant. The subsequent dehydrogenation intermediates (MX(H)) could further transform into cyclic, aldehyde and demethylation products. Based on toxicity assessments, all the transformation products exhibited decreased aquatic toxicity to fish in comparison with the parent musk xylene but they were still classified at toxic or very toxic levels, especially the cyclic products. More importantly, these products still exhibited carcinogenic activity during OH-initiated transformation and increased carcinogenicity relative to the parent musk xylene. This is the first time that the transformation mechanism and environmental impacts of nitro-musks have been explored through theoretical calculations.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaxin Qin
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
32
|
Narasimhan S, Scherpe S, Lucini Paioni A, van der Zwan J, Folkers GE, Ovaa H, Baldus M. DNP‐Supported Solid‐State NMR Spectroscopy of Proteins Inside Mammalian Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Stephan Scherpe
- Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Marc Baldus
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
33
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
34
|
Karunanithy G, Wheeler RJ, Tear LR, Farrer NJ, Faulkner S, Baldwin AJ. INDIANA: An in-cell diffusion method to characterize the size, abundance and permeability of cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:1-13. [PMID: 30904779 PMCID: PMC7611012 DOI: 10.1016/j.jmr.2018.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 05/13/2023]
Abstract
NMR and MRI diffusion experiments contain information describing the shape, size, abundance, and membrane permeability of cells although extracting this information can be challenging. Here we present the INDIANA (IN-cell DIffusion ANAlysis) method to simultaneously and non-invasively measure cell abundance, effective radius, permeability and intrinsic relaxation rates and diffusion coefficients within the inter- and intra-cellular populations. The method couples an experimental dataset comprising stimulated-echo diffusion measurements, varying both the gradient strength and the diffusion delay, together with software to fit a model based on the Kärger equations to robustly extract the relevant parameters. A detailed error analysis is presented by comparing the results from fitting simulated data from Monte Carlo simulations, establishing its effectiveness. We note that for parameters typical of mammalian cells the approach is particularly effective, and the shape of the underlying cells does not unduly affect the results. Finally, we demonstrate the performance of the experiment on systems of suspended yeast and mammalian cells. The extracted parameters describing cell abundance, size, permeability and relaxation are independently validated.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Louise R Tear
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nicola J Farrer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephen Faulkner
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrew J Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| |
Collapse
|
35
|
In Cell NMR Spectroscopy: Investigation of G-Quadruplex Structures Inside Living Xenopus laevis Oocytes. Methods Mol Biol 2019; 2035:397-405. [PMID: 31444765 DOI: 10.1007/978-1-4939-9666-7_25] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes are inherently polymorphic nucleic acid structures. Their folding topology depends on the nucleic acid primary sequence and on physical-chemical environmental factors. Hence, it remains unclear if a G-quadruplex topology determined in the test tube (in vitro) will also form in vivo. Characterization of G-quadruplexes in their native environment has been proposed as an efficient strategy to tackle this issue. So far, characterization of G-quadruplex structures in living cells has relied exclusively on the use of Xenopus laevis oocytes as a eukaryotic cell model system. Here, we describe the protocol for the preparation of X. laevis oocytes for studies of G-quadruplexes as well as other nucleic acids motifs under native conditions using in-cell NMR spectroscopy.
Collapse
|
36
|
Kumari P, Frey L, Sobol A, Lakomek NA, Riek R. 15N transverse relaxation measurements for the characterization of µs-ms dynamics are deteriorated by the deuterium isotope effect on 15N resulting from solvent exchange. JOURNAL OF BIOMOLECULAR NMR 2018; 72:125-137. [PMID: 30306288 DOI: 10.1007/s10858-018-0211-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
15N R2 relaxation measurements are key for the elucidation of the dynamics of both folded and intrinsically disordered proteins (IDPs). Here we show, on the example of the intrinsically disordered protein α-synuclein and the folded domain PDZ2, that at physiological pH and near physiological temperatures amide-water exchange can severely skew Hahn-echo based 15N R2 relaxation measurements as well as low frequency data points in CPMG relaxation dispersion experiments. The nature thereof is the solvent exchange with deuterium in the sample buffer, which modulates the 15N chemical shift tensor via the deuterium isotope effect, adding to the apparent relaxation decay which leads to systematic errors in the relaxation data. This results in an artificial increase of the measured apparent 15N R2 rate constants-which should not be mistaken with protein inherent chemical exchange contributions, Rex, to 15N R2. For measurements of 15N R2 rate constants of IDPs and folded proteins at physiological temperatures and pH, we recommend therefore the use of a very low D2O molar fraction in the sample buffer, as low as 1%, or the use of an external D2O reference along with a modified 15N R2 Hahn-echo based experiment. This combination allows for the measurement of Rex contributions to 15N R2 originating from conformational exchange in a time window from µs to ms.
Collapse
Affiliation(s)
- Pratibha Kumari
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Alexander Sobol
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Nils-Alexander Lakomek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
37
|
Viskova P, Krafcik D, Trantirek L, Foldynova-Trantirkova S. In-Cell NMR Spectroscopy of Nucleic Acids in Human Cells. ACTA ACUST UNITED AC 2018; 76:e71. [PMID: 30489693 DOI: 10.1002/cpnc.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In-cell NMR spectroscopy is a unique tool that enables the study of the structure and dynamics of biomolecules as well as their interactions in the complex environment of living cells at near-to-atomic resolution. In this article, detailed instructions are described for setting up an in-cell NMR experiment for monitoring structures of DNA oligonucleotides introduced into nuclei of living human cells via tailored electroporation. Detailed step-by-step protocols for both the preparation of an in-cell NMR sample as well as protocols for conducting essential control experiments including flow cytometry and confocal microscopy are described. The strengths and limitations of in-cell NMR experiments are discussed. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pavlina Viskova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Daniel Krafcik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Silvie Foldynova-Trantirkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Institute of Biophysics, v.v.i., Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
38
|
Manna S, Srivatsan SG. Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Adv 2018; 8:25673-25694. [PMID: 30210793 PMCID: PMC6130854 DOI: 10.1039/c8ra03708f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Biophysical and biochemical investigations provide compelling evidence connecting the four-stranded G-quadruplex (GQ) structure with its role in regulating multiple cellular processes. Hence, modulating the function of GQs by using small molecule binders is being actively pursued as a strategy to develop new chemotherapeutic agents. However, sequence diversity and structural polymorphism of GQs have posed immense challenges in terms of understanding what conformation a G-rich sequence adopts inside the cell and how to specifically target a GQ motif amidst several other GQ-forming sequences. In this context, here we review recent developments in the applications of biophysical tools that use fluorescence readout to probe the GQ structure and recognition in cell-free and cellular environments. First, we provide a detailed discussion on the utility of covalently labeled environment-sensitive fluorescent nucleoside analogs in assessing the subtle difference in GQ structures and their ligand binding abilities. Furthermore, a detailed discussion on structure-specific antibodies and small molecule probes used to visualize and confirm the existence of DNA and RNA GQs in cells is provided. We also highlight the open challenges in the study of tetraplexes (GQ and i-motif structures) and how addressing these challenges by developing new tools and techniques will have a profound impact on tetraplex-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| |
Collapse
|
39
|
Hancock R. Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus. BIOCHEMISTRY (MOSCOW) 2018; 83:326-337. [PMID: 29626920 DOI: 10.1134/s0006297918040041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.
Collapse
Affiliation(s)
- R Hancock
- Biosystems Group, Biotechnology Centre, Silesian University of Technology, Poland and Laval University Cancer Research Centre, Québec, G1R2J6, Canada.
| |
Collapse
|
40
|
Giassa IC, Rynes J, Fessl T, Foldynova-Trantirkova S, Trantirek L. Advances in the cellular structural biology of nucleic acids. FEBS Lett 2018; 592:1997-2011. [PMID: 29679394 DOI: 10.1002/1873-3468.13054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023]
Abstract
Conventional biophysical and chemical biology approaches for delineating relationships between the structure and biological function of nucleic acids (NAs) abstract NAs from their native biological context. However, cumulative experimental observations have revealed that the structure, dynamics and interactions of NAs might be strongly influenced by a broad spectrum of specific and nonspecific physical-chemical environmental factors. This consideration has recently sparked interest in the development of novel tools for structural characterization of NAs in the native cellular context. Here, we review the individual methods currently being employed for structural characterization of NA structure in a native cellular environment with a focus on recent advances and developments in the emerging fields of in-cell NMR and electron paramagnetic resonance spectroscopy and in-cell single-molecule FRET of NAs.
Collapse
Affiliation(s)
- Ilektra-Chara Giassa
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Rynes
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Silvie Foldynova-Trantirkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
41
|
Cattani J, Subramaniam V, Drescher M. Room-temperature in-cell EPR spectroscopy: alpha-Synuclein disease variants remain intrinsically disordered in the cell. Phys Chem Chem Phys 2018; 19:18147-18151. [PMID: 28696461 DOI: 10.1039/c7cp03432f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human alpha-Synuclein (aS), implicated in Parkinson's disease, adopts a rich variety of different conformations depending on the macromolecular context. In order to unravel its pathophysiological role, monitoring its intracellular conformational state and identifying differences for the disease variants is crucial. Here, we present an intracellular spectroscopy approach based on a systematic spin-labeling site-scan in combination with intracellular electron paramagnetic resonance spectroscopy determining conformations on a molecular scale. A quantitative and model-based data analysis revealed that the vast majority of aS, be it wild-type or disease variants A30P or A53T, exists in the monomeric intrinsically disordered form in the cell.
Collapse
Affiliation(s)
- Julia Cattani
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | |
Collapse
|
42
|
Chen JL, Zhao Y, Gong YJ, Pan BB, Wang X, Su XC. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2018; 70:77-92. [PMID: 29224182 DOI: 10.1007/s10858-017-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
43
|
Pan BB, Yang F, Ye Y, Wu Q, Li C, Huber T, Su XC. 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chem Commun (Camb) 2018; 52:10237-40. [PMID: 27470136 DOI: 10.1039/c6cc05490k] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determining the three-dimensional structure of a protein in living cells remains particularly challenging. We demonstrated that the integration of site-specific tagging proteins and GPS-Rosetta calculations provides a fast and effective way of determining the structures of proteins in living cells, and in principle the interactions and dynamics of protein-ligand complexes.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory and Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| | - Feng Yang
- State Key Laboratory and Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| | - Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| | - Xun-Cheng Su
- State Key Laboratory and Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
44
|
Nawrocki G, Wang PH, Yu I, Sugita Y, Feig M. Slow-Down in Diffusion in Crowded Protein Solutions Correlates with Transient Cluster Formation. J Phys Chem B 2017; 121:11072-11084. [PMID: 29151345 PMCID: PMC5951686 DOI: 10.1021/acs.jpcb.7b08785] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For a long time, the effect of a crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse more slowly in a living cell than in a diluted solution, and further studies suggest that the diffusion depends on the local surroundings. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin headpiece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. Although internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.
Collapse
Affiliation(s)
- Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Po-hung Wang
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Isseki Yu
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN iTHES, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN iTHES, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minaotojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minaotojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
45
|
Manna S, Panse CH, Sontakke VA, Sangamesh S, Srivatsan SG. Probing Human Telomeric DNA and RNA Topology and Ligand Binding in a Cellular Model by Using Responsive Fluorescent Nucleoside Probes. Chembiochem 2017; 18:1604-1615. [PMID: 28569423 PMCID: PMC5724660 DOI: 10.1002/cbic.201700283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 01/03/2023]
Abstract
The development of biophysical systems that enable an understanding of the structure and ligand-binding properties of G-quadruplex (GQ)-forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ-directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H-Telo) DNA and RNA repeats in a cell-like confined environment by using conformation-sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2-ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2'-deoxy and ribonucleoside probes, composed of a 5-benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H-Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H-Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy-to-handle RMs could provide new opportunities to study and devise screening-compatible assays in a cell-like environment to discover GQ binders of clinical potential.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Cornelia H. Panse
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Vyankat A. Sontakke
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Sarangamath Sangamesh
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Seergazhi G. Srivatsan
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| |
Collapse
|
46
|
Rogawski R, McDermott AE. New NMR tools for protein structure and function: Spin tags for dynamic nuclear polarization solid state NMR. Arch Biochem Biophys 2017; 628:102-113. [PMID: 28623034 PMCID: PMC5815514 DOI: 10.1016/j.abb.2017.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
Magic angle spinning solid state NMR studies of biological macromolecules [1-3] have enabled exciting studies of membrane proteins [4,5], amyloid fibrils [6], viruses, and large macromolecular assemblies [7]. Dynamic nuclear polarization (DNP) provides a means to enhance detection sensitivity for NMR, particularly for solid state NMR, with many recent biological applications and considerable contemporary efforts towards elaboration and optimization of the DNP experiment. This review explores precedents and innovations in biological DNP experiments, especially highlighting novel chemical biology approaches to introduce the radicals that serve as a source of polarization in DNP experiments.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Chemistry, Columbia University, NY, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, NY, NY 10027, United States.
| |
Collapse
|
47
|
Feig M, Yu I, Wang PH, Nawrocki G, Sugita Y. Crowding in Cellular Environments at an Atomistic Level from Computer Simulations. J Phys Chem B 2017; 121:8009-8025. [PMID: 28666087 PMCID: PMC5582368 DOI: 10.1021/acs.jpcb.7b03570] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The
effects of crowding in biological environments on biomolecular
structure, dynamics, and function remain not well understood. Computer
simulations of atomistic models of concentrated peptide and protein
systems at different levels of complexity are beginning to provide
new insights. Crowding, weak interactions with other macromolecules
and metabolites, and altered solvent properties within cellular environments
appear to remodel the energy landscape of peptides and proteins in
significant ways including the possibility of native state destabilization.
Crowding is also seen to affect dynamic properties, both conformational
dynamics and diffusional properties of macromolecules. Recent simulations
that address these questions are reviewed here and discussed in the
context of relevant experiments.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States.,Quantitative Biology Center, RIKEN , Kobe, Japan
| | - Isseki Yu
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan
| | - Po-Hung Wang
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan
| | - Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States
| | - Yuji Sugita
- Quantitative Biology Center, RIKEN , Kobe, Japan.,Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan.,Advanced Institute for Computational Science, RIKEN , Kobe, Japan
| |
Collapse
|
48
|
Seebald LM, DeMott CM, Ranganathan S, Asare-Okai PN, Glazunova A, Chen A, Shekhtman A, Royzen M. Cobalt-based paramagnetic probe to study RNA-protein interactions by NMR. J Inorg Biochem 2017; 170:202-208. [PMID: 28260679 PMCID: PMC5956527 DOI: 10.1016/j.jinorgbio.2017.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/16/2016] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
Paramagnetic resonance enhancement (PRE) is an NMR technique that allows studying three-dimensional structures of RNA-protein complexes in solution. RNA strands are typically spin labeled using nitroxide reagents, which provide minimal perturbation to the native structure. The current work describes an alternative approach, which is based on a Co2+-based probe that can be covalently attached to RNA in the vicinity of the protein's binding site using 'click' chemistry. Similar to nitroxide spin labels, the transition metal based probe is capable of attenuating NMR signal intensities from protein residues localized <40Å away. The extent of attenuation is related to the probe's distance, thus allowing for construction of the protein's contact surface map. This new paradigm has been applied to study binding of HIV-1 nucleocapsid protein 7, NCp7, to a model RNA pentanucleotide.
Collapse
Affiliation(s)
- Leah M Seebald
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States
| | - Christopher M DeMott
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States
| | - Srivathsan Ranganathan
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States
| | - Papa Nii Asare-Okai
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States
| | - Anastasia Glazunova
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States
| | - Alan Chen
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States
| | - Maksim Royzen
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave. Albany, NY 12222, United States.
| |
Collapse
|
49
|
Pastore A, Temussi PA. The Emperor's new clothes: Myths and truths of in-cell NMR. Arch Biochem Biophys 2017; 628:114-122. [PMID: 28259514 DOI: 10.1016/j.abb.2017.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
In-cell NMR is a technique developed to study the structure and dynamical behavior of biological macromolecules in their natural environment, circumventing all isolation and purification steps. In principle, the potentialities of the technique are enormous, not only for the possibility of bypassing all purification steps but, even more importantly, for the wealth of information that can be gained from directly monitoring interactions among biological macromolecules in a natural cell. Here, we review critically the promises, successes and limits of this technique as it stands now. Interestingly, many of the problems of NMR in bacterial cells stem from the artificially high concentration of the protein under study whose overexpression is anyway necessary to select it from the background. This has, as a consequence, that when overexpressed, most globular proteins, do not show an NMR spectrum, limiting the applicability of the technique to intrinsically unfolded or specifically behaving proteins. The outlook for in-cell NMR of eukaryotic cells is more promising and is possibly the most attracting aspect for the future.
Collapse
Affiliation(s)
- Annalisa Pastore
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; University of Pavia, Department of Molecular Medicine, Pavia, Italy.
| | - Piero Andrea Temussi
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; University of Naples "Federico II", Department of Chemical Sciences, Naples, Italy
| |
Collapse
|
50
|
Towards understanding cellular structure biology: In-cell NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:547-557. [PMID: 28257994 DOI: 10.1016/j.bbapap.2017.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
To watch biological macromolecules perform their functions inside the living cells is the dream of any biologists. In-cell nuclear magnetic resonance is a branch of biomolecular NMR spectroscopy that can be used to observe the structures, interactions and dynamics of these molecules in the living cells at atomic level. In principle, in-cell NMR can be applied to different cellular systems to achieve biologically relevant structural and functional information. In this review, we summarize the existing approaches in this field and discuss its applications in protein interactions, folding, stability and post-translational modifications. We hope this review will emphasize the effectiveness of in-cell NMR for studies of intricate biological processes and for structural analysis in cellular environments.
Collapse
|