1
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. f-Element Zintl Chemistry: Actinide-Mediated Dehydrocoupling of H 2Sb 1- Affords the Trithorium and Triuranium Undeca-Antimontriide Zintl Clusters [{An(Tren TIPS)} 3(μ 3-Sb 11)] (An = Th, U; Tren TIPS = {N(CH 2CH 2NSi iPr 3) 3} 3-). Inorg Chem 2024; 63:20153-20160. [PMID: 38767623 PMCID: PMC11523227 DOI: 10.1021/acs.inorgchem.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Reaction of the cesium antimonide complex [Cs(18C6)2][SbH2] (1, 18C6 = 18-crown-6 ether) with the triamidoamine actinide separated ion pairs [An(TrenTIPS)(L)][BPh4] (TrenTIPS = {N(CH2CH2NSiiPr3)3}3-; An/L = Th/DME (2Th); U/THF (2U)) affords the triactinide undeca-antimontriide Zintl clusters [{An(TrenTIPS)}3(μ3-Sb11)] (An = Th (3Th), U (3U)) by dehydrocoupling. Clusters 3Th and 3U provide two new examples of the Sb113- Zintl trianion and are unprecedented examples of molecular Sb113- being coordinated to anything since all previous reports featured isolated Sb113- Zintl trianions in separated ion quadruple formulations with noncoordinating cations. Quantum chemical calculations describe dominant ionic An-Sb interactions in 3Th and 3U, though the data suggest that the latter exhibits slightly more covalent An-Sb linkages than the former. Complexes 3Th and 3U have been characterized by single crystal X-ray diffraction, NMR, IR, and UV/vis/NIR spectroscopies, elemental analysis, and quantum chemical calculations.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Kevin Dollberg
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Carsten von Hänisch
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| |
Collapse
|
2
|
Dan X, Du J, Zhang S, Seed JA, Perfetti M, Tuna F, Wooles AJ, Liddle ST. Arene-, Chlorido-, and Imido-Uranium Bis- and Tris(boryloxide) Complexes. Inorg Chem 2024; 63:9588-9601. [PMID: 38557081 PMCID: PMC11134490 DOI: 10.1021/acs.inorgchem.3c04275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
We introduce the boryloxide ligand {(HCNDipp)2BO}- (NBODipp, Dipp = 2,6-di-isopropylphenyl) to actinide chemistry. Protonolysis of [U{N(SiMe3)2}3] with 3 equiv of NBODippH produced the uranium(III) tris(boryloxide) complex [U(NBODipp)3] (1). In contrast, treatment of UCl4 with 3 equiv of NBODippK in THF at room temperature or reflux conditions produced only [U(NBODipp)2(Cl)2(THF)2] (2) with 1 equiv of NBODippK remaining unreacted. However, refluxing the mixture of 2 and unreacted NBODippK in toluene instead of THF afforded the target complex [U(NBODipp)3(Cl)(THF)] (3). Two-electron oxidation of 1 with AdN3 (Ad = 1-adamantyl) afforded the uranium(V)-imido complex [U(NBODipp)3(NAd)] (4). The solid-state structure of 1 reveals a uranium-arene bonding motif, and structural, spectroscopic, and DFT calculations all suggest modest uranium-arene δ-back-bonding with approximately equal donation into the arene π4 and π5 δ-symmetry π* molecular orbitals. Complex 4 exhibits a short uranium(V)-imido distance, and computational modeling enabled its electronic structure to be compared to related uranium-imido and uranium-oxo complexes, revealing a substantial 5f-orbital crystal field splitting and extensive mixing of 5f |ml,ms⟩ states and mj projections. Complexes 1-4 have been variously characterized by single-crystal X-ray diffraction, 1H NMR, IR, UV/vis/NIR, and EPR spectroscopies, SQUID magnetometry, elemental analysis, and CONDON, F-shell, DFT, NLMO, and QTAIM crystal field and quantum chemical calculations.
Collapse
Affiliation(s)
- Xuhang Dan
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Jingzhen Du
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Shuhan Zhang
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Mauro Perfetti
- Department
of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Floriana Tuna
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
3
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. Thorium(IV)-antimony complexes exhibiting single, double, and triple polar covalent metal-metal bonds. Nat Chem 2024; 16:780-790. [PMID: 38378948 DOI: 10.1038/s41557-024-01448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
There is continued burgeoning interest in metal-metal multiple bonding to further our understanding of chemical bonding across the periodic table. However, although polar covalent metal-metal multiple bonding is well known for the d and p blocks, it is relatively underdeveloped for actinides. Homometallic examples are found in spectroscopic or fullerene-confined species, and heterometallic variants exhibiting a polar covalent σ bond supplemented by up to two dative π bonds are more prevalent. Hence, securing polar covalent actinide double and triple metal-metal bonds under normal experimental conditions has been a fundamental target. Here we exploit the protonolysis and dehydrocoupling chemistry of the parent dihydrogen-antimonide anion, to report one-, two- and three-fold thorium-antimony bonds, thus introducing polar covalent actinide-metal multiple bonding under normal experimental conditions between some of the heaviest ions in the periodic table with little or no bulky-substituent protection at the antimony centre. This provides fundamental insights into heavy element multiple bonding, in particular the tension between orbital-energy-driven and overlap-driven covalency for the actinides in a relativistic regime.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany.
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Lau S, Mahon MF, Webster RL. Synthesis and Characterization of a Terminal Iron(II)-PH 2 Complex and a Series of Iron(II)-PH 3 Complexes. Inorg Chem 2024; 63:6998-7006. [PMID: 38563561 PMCID: PMC11022175 DOI: 10.1021/acs.inorgchem.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Reported is the reaction of a series of iron(II) bisphosphine complexes with PH3 in the presence of NaBArF4 [where BArF4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate]. The iron(II) bisphosphine reagents bear two chlorides or a hydride and a chloride motif. We have isolated six different cationic terminal-bound PH3 complexes and undertaken rigorous characterization by NMR spectroscopy, single crystal X-ray diffraction, and mass spectrometry, where the PH3 often remains intact during the ionization process. Unusual bis- and tris-PH3 complexes are among the compounds isolated. Changing the monophosphine from PH3 to PMe3 results in the formation of an unusual Fe7 cluster, but with no PMe3 being ligated. Finally, by using an iron(0) source, we have provided a rare example of a terminally bound iron-PH2 complex.
Collapse
Affiliation(s)
- Samantha Lau
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Ruth L. Webster
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Du J, Cobb PJ, Ding J, Mills DP, Liddle ST. f-Element heavy pnictogen chemistry. Chem Sci 2023; 15:13-45. [PMID: 38131077 PMCID: PMC10732230 DOI: 10.1039/d3sc05056d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The coordination and organometallic chemistry of the f-elements, that is group 3, lanthanide, and actinide ions, supported by nitrogen ligands, e.g. amides, imides, and nitrides, has become well developed over many decades. In contrast, the corresponding f-element chemisty with the heavier pnictogen analogues phosphorus, arsenic, antimony, and bismuth has remained significantly underdeveloped, due largely to a lack of suitable synthetic methodologies and also the inherent hard(f-element)-soft(heavier pnictogen) acid-base mismatch, but has begun to flourish in recent years. Here, we review complexes containing chemical bonds between the f-elements and heavy pnictogens from phosphorus to bismuth that spans five decades of endeavour. We focus on complexes whose identity has been unambiguously established by structural authentication by single-crystal X-ray diffraction with respect to their synthesis, characterisation, bonding, and reactivity, in order to provide a representative overview of this burgeoning area. By highlighting that much has been achieved but that there is still much to do this review aims to inspire, focus and guide future efforts in this area.
Collapse
Affiliation(s)
- Jingzhen Du
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J Cobb
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Junru Ding
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - David P Mills
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
6
|
Yao YR, Zhao J, Meng Q, Hu HS, Guo M, Yan Y, Zhuang J, Yang S, Fortier S, Echegoyen L, Schwarz WHE, Li J, Chen N. Synthesis and Characterization of U≡C Triple Bonds in Fullerene Compounds. J Am Chem Soc 2023; 145:25440-25449. [PMID: 37955678 DOI: 10.1021/jacs.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.
Collapse
Affiliation(s)
- Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jing Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Min Guo
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Shangfeng Yang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis Echegoyen
- Institut Catalá d'Investigació Química, Ave. Països Catalans 16, 43007 Tarragona, Spain
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - W H Eugen Schwarz
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Du J, Hurd J, Seed JA, Balázs G, Scheer M, Adams RW, Lee D, Liddle ST. 31P Nuclear Magnetic Resonance Spectroscopy as a Probe of Thorium-Phosphorus Bond Covalency: Correlating Phosphorus Chemical Shift to Metal-Phosphorus Bond Order. J Am Chem Soc 2023; 145:21766-21784. [PMID: 37768555 PMCID: PMC10571089 DOI: 10.1021/jacs.3c02775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/29/2023]
Abstract
We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(μ-PH)] (3), and [{Th(TrenTIPS)}2(μ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (μ-P)3- > (═PH)2- > (μ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Joseph Hurd
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - John A. Seed
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
8
|
Guo Y, Li X, Liu K, Hu K, Mei L, Chai Z, Gibson JK, Yu J, Shi W. Tetravalent Uranium and Thorium Complexes: Elucidating Disparate Reactivities of An IVCl 2 (An = U, Th) Supported by a Pyridine-Decorated Dianionic Ligand. Inorg Chem 2023. [PMID: 37377407 DOI: 10.1021/acs.inorgchem.3c01145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Although synthesis, reactivity, and bonding of U(IV) and Th(IV) complexes have been extensively studied, direct comparison of fully analogous compounds is rare. Herein, we report corresponding complexes 1-U and 1-Th, in which U(IV) and Th(IV) are supported by the tetradentate pyridine-decorated dianionic ligand N2NN' (1,1,1-trimethyl-N-(2-(((pyridin-2-ylmethyl)(2-((trimethylsilyl)amino)benzyl)amino)methyl)phenyl)silanamine). Although 1-U and 1-Th are structurally very similar, they display disparate reactivities with TMS3SiK (tris(trimethylsilyl)silylpotassium). The reaction of (N2NN')UCl2 (1-U) and 1 equiv of TMS3SiK in THF unexpectedly formed [Cl(N2NN')U]2O (2-U) featuring an unusual bent U-O-U moiety. In contrast, a salt elimination reaction between (N2NN')ThCl2 (1-Th) and 1 equiv of TMS3SiK led to thorium complex 2-Th, in which the pyridyl group has undergone a 1,4-addition nucleophilic attack. Complex 2-Th serves as a synthon for preparing dimetallic bis-azide complex 3-Th by reaction with NaN3. The complexes were characterized by X-ray crystal diffraction, solution NMR, FT-IR, and elemental analysis. Computations of the formation mechanism of 2-U from 1-U suggest reduced U(III) as a key intermediate for promoting the cleavage of the C-O bonds of THF. The inaccessible nature of Th(III) as an intermediate oxidation state explains the very different reactivity of 1-Th versus 1-U. Given that reactants 1-U and 1-Th and products 2-U and 2-Th all comprise tetravalent actinides, this is an unusual case of very disparate reactivity despite no net change in the oxidation state. Complexes 2-U and 3-Th provide a basis for the synthesis of other dinuclear actinide complexes with novel reactivity and properties.
Collapse
Affiliation(s)
- Yan Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaobo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Frenette BL, Trach J, Ferguson MJ, Rivard E. Frustrated Lewis Pair Adduct of Atomic P(-1) as a Source of Phosphinidenes (PR), Diphosphorus (P 2 ), and Indium Phosphide. Angew Chem Int Ed Engl 2023; 62:e202218587. [PMID: 36625676 DOI: 10.1002/anie.202218587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
We report phosphinidenes (PR) stabilized by an intramolecular frustrated Lewis pair (FLP) chelate. These adducts include the parent phosphinidene, PH, which is accessed via thermolysis of coordinated HPCO. The reported FLP-PH species acts as a springboard to other phosphorus-containing compounds, such as FLP-adducts of diphosphorus (P2 ) and InP3 . Our new adducts participate in thermal- or light-induced phosphinidene elimination (of both PH and PR, R=organic group), transfer P2 units to an organic substrate, and yield the useful semiconductor InP at only 110 °C from solution.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Jonathan Trach
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
10
|
Du J, Balázs G, Seed JA, Cryer JD, Wooles AJ, Scheer M, Liddle ST. Actinide Pnictinidene Chemistry: A Terminal Thorium Parent-Arsinidene Complex Stabilised by a Super-Bulky Triamidoamine Ligand. Angew Chem Int Ed Engl 2022; 61:e202211627. [PMID: 36254899 PMCID: PMC10099757 DOI: 10.1002/anie.202211627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/07/2022]
Abstract
We report the direct synthesis of the terminal pnictidenes [An(TrenTCHS )(PnH)][M(2,2,2-cryptand)] (TrenTCHS ={N(CH2 CH2 NSiCy3 )3 }3- ; An/Pn/M=Th/P/Na 5, Th/As/K 6, U/P/Na 7, U/As/K 8) and their conversion to the pnictides [An(TrenTCHS )(PnH2 )] (An/Pn=Th/P 9, Th/As 10, U/P 11, U/As 12). Use of the super-bulky TrenTCHS ligand was essential to accessing complete families, and 6 is an unprecedented example of a terminal thorium-arsinidene complex and only the second structurally authenticated parent terminal arsinidene complex of any metal. Comparison of the terminal Th=AsH unit of 6 to the bridging ThAs(H)K linkage in structurally analogous [Th(TrenTIPS ){μ-As(H)K(15-crown-5)}] (TrenTIPS ={N(CH2 CH2 NSiPri 3 )3 }3- ) reveals a stronger Th-As bond in the former compared to the latter, and a large response overall to the nature of the Th=AsH bonding upon removal of the electrostatically-bound K-ion; the σ-bond changes little but the π-bond is significantly perturbed.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - John A. Seed
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Jonathan D. Cryer
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Stephen T. Liddle
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
11
|
Hood TM, Lau S, Webster RL. Taming PH 3: State of the Art and Future Directions in Synthesis. J Am Chem Soc 2022; 144:16684-16697. [PMID: 36070395 PMCID: PMC9501927 DOI: 10.1021/jacs.2c07688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Appetite for reactions
involving PH3 has grown in the
past few years. This in part is due to the ability to generate PH3 cleanly and safely via digestion of cheap metal phosphides
with acids, thus avoiding pressurized cylinders and specialized equipment.
In this perspective we highlight current trends in forming new P–C/P–OC
bonds with PH3 and discuss the challenges involved with
selectivity and product separation encumbering these reactions. We
highlight the reactivity of PH3 with main group reagents,
building on the early pioneering work with transition metal complexes
and PH3. Additionally, we highlight the recent renewal
of interest in alkali metal sources of H2P– which are proving to be useful synthons for chemistry across the
periodic table. Such MPH2 sources are being used to generate
the desired products in a more controlled fashion and are allowing
access to unexplored phosphorus-containing species.
Collapse
Affiliation(s)
- Thomas M Hood
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Samantha Lau
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Ruth L Webster
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
12
|
Perales D, Bhowmick R, Zeller M, Miro P, Vlaisavljevich B, Bart SC. Isolation of uranium(III) primary phosphido complexes. Chem Commun (Camb) 2022; 58:9630-9633. [PMID: 35950738 DOI: 10.1039/d2cc02207a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-valent uranium(III) primary phosphido complexes supported by hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) were synthesized with phosphines of varying steric and electronic profiles. Compounds were characterized by multinuclear NMR spectroscopy (1H, 11B, 31P NMR), infrared spectroscopy, electronic absorption spectroscopy, X-ray crystallography, and quantum chemical calculations.
Collapse
Affiliation(s)
- Diana Perales
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Rina Bhowmick
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | - Suzanne C Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
13
|
King DM, Atkinson BE, Chatelain L, Gregson M, Seed JA, Wooles AJ, Kaltsoyannis N, Liddle ST. Uranium-nitride chemistry: uranium-uranium electronic communication mediated by nitride bridges. Dalton Trans 2022; 51:8855-8864. [PMID: 35622422 PMCID: PMC9171730 DOI: 10.1039/d2dt00998f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of [UIV(N3)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-) with excess Li resulted in the isolation of [{UIV(μ-NLi2)(TrenTIPS)}2] (2), which exhibits a diuranium(IV) 'diamond-core' dinitride motif. Over-reduction of 1 produces [UIII(TrenTIPS)] (3), and together with known [{UV(μ-NLi)(TrenTIPS)}2] (4) an overall reduction sequence 1 → 4 → 2 → 3 is proposed. Attempts to produce an odd-electron nitride from 2 resulted in the formation of [{UIV(TrenTIPS)}2(μ-NH)(μ-NLi2)Li] (5). Use of heavier alkali metals did not result in the formation of analogues of 2, emphasising the role of the high charge-to-radius-ratio of lithium stabilising the charge build up at the nitride. Variable-temperature magnetic data for 2 and 5 reveal large low-temperature magnetic moments, suggesting doubly degenerate ground states, where the effective symmetry of the strong crystal field of the nitride dominates over the spin-orbit coupled nature of the ground multiplet of uranium(IV). Spin Hamiltonian modelling of the magnetic data for 2 and 5 suggest U⋯U anti-ferromagnetic coupling of -4.1 and -3.4 cm-1, respectively. The nature of the U⋯U electronic communication was probed computationally, revealing a borderline case where the prospect of direct uranium-uranium bonding was raised, but in-depth computational analysis reveals that if any uranium-uranium bonding is present it is weak, and instead the nitride centres dominate the mediation of U⋯U electronic communication. This highlights the importance of obtaining high-level ab initio insight when probing potential actinide-actinide electronic communication and bonding in weakly coupled systems. The computational analysis highlights analogies between the 'diamond-core' dinitride of 2 and matrix-isolated binary U2N2.
Collapse
Affiliation(s)
- David M King
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Lucile Chatelain
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Matthew Gregson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
14
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
15
|
Gray NAG, Price JS, Emslie DJH. Uranium(IV) Thio- and Selenoether Complexes: Syntheses, Structures, and Computational Investigation of U-ER 2 Interactions. Chemistry 2021; 28:e202103580. [PMID: 34875126 DOI: 10.1002/chem.202103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/07/2022]
Abstract
Rigid thioether- and selenoether-containing pincer proligands H[AS2 Ph 2 ] (1) and H[ASe2 Ph 2 ] (2) were synthesized, and deprotonation provided the potassium salts [K(AS2 Ph 2 )(dme)] (3) and [K(ASe2 Ph 2 )(dme)2 ] (4). Reaction of two equivalents of 3 or 4 with [UI4 (dioxane)2 ] afforded the uranium thioether complex [(AS2 Ph 2 )2 UI2 ] (5) and the first example of a uranium-selenoether complex, [(ASe2 Ph 2 )2 UI2 ] (6). X-ray structures revealed distorted square antiprismatic geometries in which the AE2 Ph 2 ligands are κ3 -coordinated. The nature of the U-ER2 bonding in 5 and 6, as well as methyl-free analogues of 5 and 6 and a hypothetical ether analogue, was investigated computationally (including NBO, AIM, and ELF calculations) illustrating increasing covalency from O to S to Se.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Jeffrey S Price
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
16
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
17
|
Wang S, Heng Y, Li T, Hou G, Zi G, Walter MD. Synthesis and reactivity of the uranium phosphinidene metallocene [η 5-1,3-(Me 3Si) 2C 5H 3] 2U([double bond, length as m-dash]P-2,4,6- iPr 3C 6H 2)(OPMe 3): influence of the coordinated Lewis base. Dalton Trans 2021; 50:12502-12516. [PMID: 34342314 DOI: 10.1039/d1dt02149d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper describes the synthesis and reactivity of [η5-1,3-(Me3Si)2C5H3]2U([double bond, length as m-dash]P-2,4,6-iPr3C6H2)(OPMe3) (6) which is accessible from a ligand exchange reaction between [η5-1,3-(Me3Si)2C5H3]2U([double bond, length as m-dash]P-2,4,6-iPr3C6H2)(OPPh3) (2) and Me3PO at ambient temperature. Phosphinidene 6 exhibits no reactivity towards internal alkynes, but readily reacts with various hetero-unsaturated molecules such as isothiocyanates, aldehydes, nitriles, isonitriles, and organic azides, forming uranium sulfido, oxido, imido, and uranaheterocyclic compounds. Nevertheless, with the bidentate ortho-dicyanobenzene o-C6H4(CN)2 the zwitterionic species [η5-1,3-(Me3Si)2C5H3]2U[NHC(N){C6H4CP(2,4,6-iPr3C6H2)CH2PMe2O}] (13) is isolated in good yield. Moreover, 6 converts with Ph2S2 to the uranium(iii) phenylthiolate compound [η5-1,3-(Me3Si)2C5H3]2USPh(OPMe3) (7) in good isolated yield. Furthermore, the influence of the Lewis base on the reactivity of the uranium phosphinidene metallocenes has also been evaluated.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
18
|
Tarlton ML, Fajen OJ, Kelley SP, Kerridge A, Malcomson T, Morrison TL, Shores MP, Xhani X, Walensky JR. Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorg Chem 2021; 60:10614-10630. [DOI: 10.1021/acs.inorgchem.1c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - O. Jonathan Fajen
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas L. Morrison
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Xhensila Xhani
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| |
Collapse
|
19
|
Wang S, Li T, Heng Y, Hou G, Zi G, Walter MD. Influence of the 1,3-Bis(trimethylsilyl)cyclopentadienyl Ligand on the Reactivity of the Uranium Phosphinidene [η5-1,3-(Me3Si)2C5H3]2U(═P-2,4,6-iPr3C6H2)(OPPh3). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
20
|
Revathi S, Raja P, Saha S, Eisen MS, Ghatak T. Recent developments in highly basic N-heterocyclic iminato ligands in actinide chemistry. Chem Commun (Camb) 2021; 57:5483-5502. [PMID: 34008633 DOI: 10.1039/d1cc00933h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last decade, major conceptual advances in the chemistry of actinide molecules and materials have been made to demonstrate their distinct reactivity profiles as compared to lanthanide and transition metal compounds, but some difficult questions remain concerning the intriguing stability of low-valent actinide complexes, and the importance of the 5f-orbitals in reactivity and bonding. The imidazolin-2-iminato moiety has been extensively used in ligands for the advancement of actinide chemistry owing to its unique capability of stabilizing the reactive and highly electrophilic metal ions by virtue of its strong electron donation and steric tunability. The current review article describes recent developments in the chemistry of light actinide metal ions (thorium and uranium) bearing these N-heterocyclic iminato moieties as supporting ligands. In addition, the effect of ring expansion of the N-heterocycle on the catalytic aptitude of the organoactinides is also described herein. The synthesis and reactivity of actinide complexes bearing N-heterocyclic iminato ligands are presented, and promising apposite applications are also presented. The current review focuses on addressing the catalytic behavior of actinide complexes with oxygen-containing substrates such as in the Tishchenko reaction, hydroelementation processes, and polymerization reactions. Actinide complexes have also found new catalytic applications, as demonstrated by the potent chemoselective carbonyl hydroboration and tandem proton-transfer esterification (TPTE) reaction, featuring coupling between an aldehyde and alcohol.
Collapse
Affiliation(s)
- Shanmugam Revathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
21
|
Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Boronski JT, Seed JA, Wooles AJ, Liddle ST. Fragmentation, catenation, and direct functionalisation of white phosphorus by a uranium(IV)-silyl-phosphino-carbene complex. Chem Commun (Camb) 2021; 57:5090-5093. [PMID: 33899851 DOI: 10.1039/d1cc01741a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Room temperature reaction of the uranium(iv)-carbene [U{C(SiMe3)(PPh2)}(BIPMTMS)(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5]2 (1, BIPMTMS = C(PPh2NSiMe3)2) with white phosphorus (P4) produces the organo-P5 compound [P5{C(SiMe3)(PPh2)}2][Li(TMEDA)2] (2) and the uranium(iv)-methanediide [U{BIPMTMS}{Cl}{μ-Cl}2{Li(TMEDA)}] (3). This is an unprecedented example of cooperative metal-carbene P4 activation/insertion into a metal-carbon double bond and also an actinide complex reacting with P4 to directly form an organophosphorus species. Conducting the reaction at low temperature permits the isolation of the diuranium(iv) complex [{U(BIPMTMS)([μ-η2:η2-P2]C[SiMe3][PPh2])}2] (4), which then converts to 2 and 3. Thus, surprisingly, in contrast to all other actinide P4 reactivity, although this reaction produces catenation overall it proceeds via P4 cleavage to functionalised P2 units. Hence, this work establishes a proof of concept synthetic cycle for direct fragmentation, catenation, and functionalisation of P4.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
23
|
Du J, Hunger D, Seed JA, Cryer JD, King DM, Wooles AJ, van Slageren J, Liddle ST. Dipnictogen f-Element Chemistry: A Diphosphorus Uranium Complex. J Am Chem Soc 2021; 143:5343-5348. [PMID: 33792307 DOI: 10.1021/jacs.1c02482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first isolation and structural characterization of an f-element dinitrogen complex was reported in 1988, but an f-element complex with the first heavier group 15 homologue diphosphorus has to date remained unknown. Here, we report the synthesis of a side-on bound diphosphorus complex of uranium(IV) using a 7λ3-(dimethylamino)phosphadibenzonorbornadiene-mediated P atom transfer approach. Experimental and computational characterization reveals that the diphosphorus ligand is activated to its dianionic (P2)2- form and that in-plane U-P π-bonding dominates the bonding of the U(μ-η2:η2-P2)U unit, which is supplemented by a weak U-P interaction of δ symmetry. A preliminary reactivity study demonstrates conversion of this diphosphorus complex to unprecedented uranium cyclo-P3 complexes, suggesting in situ generation of transient, reactive phosphido species.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - David Hunger
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Jonathan D Cryer
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - David M King
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
24
|
Wang D, Hou G, Zi G, Walter MD. Influence of the Lewis Base Ph3PO on the Reactivity of the Uranium Phosphinidene (η5-C5Me5)2U(═P-2,4,6-iPr3C6H2)(OPPh3). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Li B, Yu J, Liu K, Wu Q, Liu Q, Shi W. Research Progress of Actinide-Ligand Multiple Bonding Supported by Tripodal Ligands. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Wang D, Wang S, Li T, Heng Y, Hou G, Zi G, Walter MD. Reactivity studies involving a Lewis base supported terminal uranium phosphinidene metallocene [η5-1,3-(Me3C)2C5H3]2U(P-2,4,6-iPr3C6H2)(OPMe3). Dalton Trans 2021; 50:8349-8363. [DOI: 10.1039/d1dt00742d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Small variations in the phosphinidene substituents, but significant change the reactivity of the uranium phosphinidene complexes.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Shichun Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Tongyu Li
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yi Heng
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
27
|
Wang D, Ding W, Hou G, Zi G, Walter MD. Experimental and Computational Studies on a Base-Free Terminal Uranium Phosphinidene Metallocene. Chemistry 2020; 26:16888-16899. [PMID: 32744750 PMCID: PMC7756876 DOI: 10.1002/chem.202003465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/31/2020] [Indexed: 12/26/2022]
Abstract
The first stable base‐free terminal uranium phosphinidene metallocene is presented; and its structure and reactivity have been studied in detail and compared to that of the corresponding thorium derivative. Salt metathesis reaction of the methyl iodide uranium metallocene Cp’’’2U(I)Me (2, Cp’’’=η5‐1,2,4‐(Me3C)3C5H2) with Mes*PHK (Mes*=2,4,6‐(Me3C)3C6H2) in THF yields the base‐free terminal uranium phosphinidene metallocene, Cp’’’2U=PMes* (3). In addition, density functional theory (DFT) studies suggest substantial 5f orbital contributions to the bonding within the uranium phosphinidene [U]=PAr moiety, which results in a more covalent bonding between the [Cp’’’2U]2+ and [Mes*P]2− fragments than that for the related thorium derivative. This difference in bonding besides steric reasons causes different reactivity patterns for both molecules. Therefore, the uranium derivative 3 may act as a Cp’’’2U(II) synthon releasing the phosphinidene moiety (Mes*P:) when treated with alkynes or a variety of hetero‐unsaturated molecules such as imines, thiazoles, ketazines, bipy, organic azides, diazene derivatives, ketones, and carbodiimides.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
28
|
Wang D, Hou G, Zi G, Walter MD. (η5-C5Me5)2U(=P-2,4,6-tBu3C6H2)(OPMe3) Revisited—Its Intrinsic Reactivity toward Small Organic Molecules. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
29
|
Liu K, Yu JP, Wu QY, Tao XB, Kong XH, Mei L, Hu KQ, Yuan LY, Chai ZF, Shi WQ. Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s
Republic of China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xue-Bing Tao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Xiang-He Kong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
30
|
Wang D, Wang S, Hou G, Zi G, Walter MD. A Lewis Base Supported Terminal Uranium Phosphinidene Metallocene. Inorg Chem 2020; 59:14549-14563. [DOI: 10.1021/acs.inorgchem.0c02363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
31
|
Cobb PJ, Wooles AJ, Liddle ST. A Uranium(VI)-Oxo-Imido Dimer Complex Derived from a Sterically Demanding Triamidoamine. Inorg Chem 2020; 59:10034-10041. [PMID: 32602709 DOI: 10.1021/acs.inorgchem.0c01207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The reaction of [UO2(μ-Cl)4{K(18-crown-6)}2] with [{N(CH2CH2NSiPri3)3}Li3] gives [{UO(μ-NCH2CH2N[CH2CH2NSiPri3]2)}2] (1), [{(LiCl)(KCl)(18-crown-6)}2] (2), and [LiOSiPri3] (3) in a 1:2:2 ratio. The formation of the oxo-imido 1 involves the cleavage of a N-Si bond and the activation of one of the usually robust U═O bonds of uranyl(VI), resulting in the formation of uranium(VI)-imido and siloxide linkages. Notably, the uranium oxidation state remains unchanged at +6 in the starting material and product. Structural characterization suggests the dominance of a core RN═U═O group, and the dimeric formulation of 1 is supported by bridging imido linkages in a highly asymmetric U2N2 ring. Density functional theory analyses find a σ > π orbital energy ordering for the U═N and U═O bonds in 1, which is uranyl-like in nature. Complexes 1-3 were characterized variously by single crystal X-ray diffraction, multinuclear NMR, IR, Raman, and optical spectroscopies; cyclic voltammetry; and density functional theory.
Collapse
Affiliation(s)
- Philip J Cobb
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
32
|
Rottschäfer D, Neumann B, Stammler HG, Andrada DM, Ghadwal RS. Isolation of Elusive Electrophilic Phosphinidene Complexes with π-Donor N-Heterocyclic Vinyl Substituents. J Org Chem 2020; 85:14351-14359. [PMID: 32297512 DOI: 10.1021/acs.joc.0c00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphinidene complexes of the general formula RPM(CO)n (R = an alkyl or aryl group; M = a transition metal) are electrophilic and thermally unstable. Thus, the isolation of these elusive species for structural elucidations remains a challenge. Herein, we report the first terminal phosphinidene complexes [{(NHC)C(Ph)}P]Fe(CO)4 [NHC = IPr = C{(NDipp)CH}2 for 3; Me-IPr = C{(NDipp)CMe}2 for 4; Dipp = 2,6-iPr2C6H3; NHC = N-heterocyclic carbene] as red crystalline solids containing a π-donor N-heterocyclic vinyl (NHV) substituent at the phosphorus atom. Calculations reveal donor-acceptor type bonding between phosphorus and iron atoms in 3 and 4. The P → Fe donation represents ∼70% of the orbital interaction, whereas the Fe → P π-back-donation corresponds to ∼15% of the orbital interaction. The phosphorus atoms in 3 and 4 carry charges of +0.65e and +0.64e, respectively, indicating the electrophilic character of the phosphinidene {(NHC)C(Ph)}P moiety. Accordingly, 3 reacts with an NHC nucleophile (IMe4) to yield the Lewis adduct [{(NHC)C(Ph)}P(IMe4)]Fe(CO)4 (5) [IMe4 = C(NMeCMe)2]. The coordination of an electron-rich NHC (IMe4) to the phosphorus atom in 5 precludes the π-electron density transfer from the NHV to the phosphorus atom. Thus, the CIPr-Cvinyl and Cvinyl-P bonds of 5 become shorter and longer, respectively, compared to those of 3.
Collapse
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Rajendra S Ghadwal
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
33
|
Terminal uranium(V)-nitride hydrogenations involving direct addition or Frustrated Lewis Pair mechanisms. Nat Commun 2020; 11:337. [PMID: 31953390 PMCID: PMC6969212 DOI: 10.1038/s41467-019-14221-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/09/2019] [Indexed: 12/03/2022] Open
Abstract
Despite their importance as mechanistic models for heterogeneous Haber Bosch ammonia synthesis from dinitrogen and dihydrogen, homogeneous molecular terminal metal-nitrides are notoriously unreactive towards dihydrogen, and only a few electron-rich, low-coordinate variants demonstrate any hydrogenolysis chemistry. Here, we report hydrogenolysis of a terminal uranium(V)-nitride under mild conditions even though it is electron-poor and not low-coordinate. Two divergent hydrogenolysis mechanisms are found; direct 1,2-dihydrogen addition across the uranium(V)-nitride then H-atom 1,1-migratory insertion to give a uranium(III)-amide, or with trimesitylborane a Frustrated Lewis Pair (FLP) route that produces a uranium(IV)-amide with sacrificial trimesitylborane radical anion. An isostructural uranium(VI)-nitride is inert to hydrogenolysis, suggesting the 5f1 electron of the uranium(V)-nitride is not purely non-bonding. Further FLP reactivity between the uranium(IV)-amide, dihydrogen, and triphenylborane is suggested by the formation of ammonia-triphenylborane. A reactivity cycle for ammonia synthesis is demonstrated, and this work establishes a unique marriage of actinide and FLP chemistries. Despite their importance as mechanistic models for Haber Bosch ammonia synthesis from N2 and H2, high oxidation state terminal metal-nitrides are notoriously unreactive towards H2. Here, the authors report hydrogenolysis of a uranium(V)-nitride, which can occur directly or by Frustrated Lewis Pair chemistry with a borane ancillary.
Collapse
|
34
|
Magnall R, Balázs G, Lu E, Kern M, Slageren J, Tuna F, Wooles AJ, Scheer M, Liddle ST. Photolytic and Reductive Activations of 2‐Arsaethynolate in a Uranium–Triamidoamine Complex: Decarbonylative Arsenic‐Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form. Chemistry 2019; 25:14246-14252. [DOI: 10.1002/chem.201903973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michal Kern
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Joris Slageren
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
35
|
Abstract
The synthesis of tetravalent thorium and uranium complexes with the phosphaazaallene moiety, [N(tBu)C=P(C6H5)]2−, is described. The reaction of the bis(phosphido) complexes, (C5Me5)2An[P(C6H5)(SiMe3)]2, An = Th, U, with two equivalents of tBuNC produces (C5Me5)2An(CNtBu)[η2-(N,C)-N(tBu)C=P(C6H5)] with concomitant formation of P(SiMe3)2(C6H5) via silyl migration. These complexes are characterized by NMR and IR spectroscopy, as well as structurally determined using X-ray crystallography.
Collapse
|
36
|
Rosenzweig MW, Hümmer J, Scheurer A, Lamsfus CA, Heinemann FW, Maron L, Mazzanti M, Meyer K. A complete series of uranium(iv) complexes with terminal hydrochalcogenido (EH) and chalcogenido (E) ligands E = O, S, Se, Te. Dalton Trans 2019; 48:10853-10864. [PMID: 30950469 DOI: 10.1039/c9dt00530g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report the synthesis and characterization of a complete series of terminal hydrochalcogenido, U-EH, and chalcogenido uranium(iv) complexes, U≡E (with E = O, S, Se, Te), supported by the (Ad,MeArOH)3tacn (1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane) ligand system. Reaction of H2E with the trivalent precursor [((Ad,MeArO)3tacn)U] (1) yields the corresponding uranium(iv) hydrochalcogenido complexes [((Ad,MeArO)3tacn)U(EH)] (2). Subsequent deprotonation of the terminal hydrochalcogenido species with KN(SiMe3)2, in the presence of 2.2.2-cryptand, gives access to the uranium(iv) complexes with terminal chalcogenido ligands [K(2.2.2-crypt)][((Ad,MeArO)3tacn)U≡E] (3). In order to study the influence of the varying terminal chalogenido ligands on the overall molecular and electronic structure, all complexes were studied by single-crystal X-ray diffractometry, UV/vis/NIR, electronic absorption, and IR vibrational spectroscopy as well as SQUID magnetometry and computational analyses (DFT, MO, NBO).
Collapse
Affiliation(s)
- Michael W Rosenzweig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Julian Hümmer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Carlos Alvarez Lamsfus
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| |
Collapse
|
37
|
Tomson NC, Anderson NH, Tondreau AM, Scott BL, Boncella JM. Oxidation of uranium(iv) mixed imido-amido complexes with PhEEPh and to generate uranium(vi) bis(imido) dichalcogenolates, U(NR) 2(EPh) 2(L) 2. Dalton Trans 2019; 48:10865-10873. [PMID: 31049520 DOI: 10.1039/c9dt00680j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work provides new routes for the conversion of U(iv) into U(vi) bis(imido) complexes and offers new information on the manner in which the U(vi) compounds form. Many compounds from the series described by the general formula U(NR)2(EPh)2(L)2 (R = 2,6-diisopropylphenyl, tert-butyl; E = S, Se, Te; L = py, EPh) were synthesized via oxidation of an in situ generated U(iv) amido-imido species with Ph2E2. This synthetic sequence provides a general route into bis(imido) U(vi) chalcogenolate complexes, circumventing the need to perform problematic salt metathesis reactions on U(vi) iodides. Investigation into the speciation of the U(iv) complexes that form prior to oxidation found a significant dependence on the identity of the ancillary ligands, with tBu2bpy forming the isolable imido-(bis)amido complex, U(NDipp)(NHDipp)2(tBu2bpy)2. Together, these data are consistent with the view that the bis(imido) U(vi) motif - much like the uranyl ion, UO22+- is a thermodynamic sink into which simple ligand frameworks are unable to prevent uranium from falling when in the presence of a suitable retinue of imido proligands.
Collapse
Affiliation(s)
- Neil C Tomson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Nickolas H Anderson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Brian L Scott
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - James M Boncella
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
38
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2‐Phosphaethynolate in a Mixed‐Valence Diuranium–Triamidoamine Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
39
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2-Phosphaethynolate in a Mixed-Valence Diuranium-Triamidoamine Complex. Angew Chem Int Ed Engl 2019; 58:10215-10219. [PMID: 31125153 DOI: 10.1002/anie.201904676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/07/2022]
Abstract
The chemistry of 2-phosphaethynolate is burgeoning, but there remains much to learn about this ligand, for example its reduction chemistry is scarce as this promotes P-C-O fragmentations or couplings. Here, we report that reduction of [U(TrenTIPS )(OCP)] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ) with KC8 /2,2,2-cryptand gives [{U(TrenTIPS )}2 {μ-η2 (OP):η2 (CP)-OCP}][K(2,2,2-cryptand)]. The coordination mode of this trapped 2-phosphaethynolate is unique, and derives from an unprecedented highly reduced and highly bent form of this ligand with the most acute P-C-O angle in any complex to date (P-C-O ∡ ≈127°). The characterisation data support a mixed-valence diuranium(III/IV) formulation, where backbonding from uranium gives a highly reduced form of the P-C-O unit that is perhaps best described as a uranium-stabilised OCP2-. radical dianion. Quantum chemical calculations reveal that this gives unprecedented carbene character to the P-C-O unit, which engages in a weak donor-acceptor interaction with one of the uranium ions.
Collapse
Affiliation(s)
- Rosie Magnall
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Erli Lu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Stephen T Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
40
|
Rungthanaphatsophon P, Rosal ID, Ward RJ, Vilanova SP, Kelley SP, Maron L, Walensky JR. Formation of an α-Diimine from Isocyanide Coupling Using Thorium(IV) and Uranium(IV) Phosphido–Methyl Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pokpong Rungthanaphatsophon
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Iker del Rosal
- Laboratoire de Physique et Chimie de Nano-objets, Universite de Toulouse, INSA-CNRS-UPS, 135 Avenue de Ranguiel, 31077 Toulouse, France
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Laboratoire de Physique et Chimie de Nano-objets, Universite de Toulouse, INSA-CNRS-UPS, 135 Avenue de Ranguiel, 31077 Toulouse, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
41
|
Du J, King DM, Chatelain L, Lu E, Tuna F, McInnes EJL, Wooles AJ, Maron L, Liddle ST. Thorium- and uranium-azide reductions: a transient dithorium-nitride versus isolable diuranium-nitrides. Chem Sci 2019; 10:3738-3745. [PMID: 30996964 PMCID: PMC6446963 DOI: 10.1039/c8sc05473h] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/21/2019] [Indexed: 11/21/2022] Open
Abstract
Molecular uranium-nitrides are now well known, but there are no isolable molecular thorium-nitrides outside of cryogenic matrix isolation experiments. We report that treatment of [M(TrenDMBS)(I)] (M = U, 1; Th, 2; TrenDMBS = {N(CH2CH2NSiMe2Bu t )3}3-) with NaN3 or KN3, respectively, affords very rare examples of actinide molecular square and triangle complexes [{M(TrenDMBS)(μ-N3)} n ] (M = U, n = 4, 3; Th, n = 3, 4). Chemical reduction of 3 produces [{U(TrenDMBS)}2(μ-N)][K(THF)6] (5) and [{U(TrenDMBS)}2(μ-N)] (6), whereas photolysis produces exclusively 6. Complexes 5 and 6 can be reversibly inter-converted by oxidation and reduction, respectively, showing that these UNU cores are robust with no evidence for any C-H bond activations being observed. In contrast, reductions of 4 in arene or ethereal solvents gives [{Th(TrenDMBS)}2(μ-NH)] (7) or [{Th(TrenDMBS)}{Th(N[CH2CH2NSiMe2Bu t ]2CH2CH2NSi[μ-CH2]MeBu t )}(μ-NH)][K(DME)4] (8), respectively, providing evidence unprecedented outside of matrix isolation for a transient dithorium-nitride. This suggests that thorium-nitrides are intrinsically much more reactive than uranium-nitrides, since they consistently activate C-H bonds to form rare examples of Th-N(H)-Th linkages with alkyl by-products. The conversion here of a bridging thorium(iv)-nitride to imido-alkyl combination by 1,2-addition parallels the reactivity of transient terminal uranium(iv)-nitrides, but contrasts to terminal uranium(vi)-nitrides that produce alkyl-amides by 1,1-insertion, suggesting a systematic general pattern of C-H activation chemistry for metal(iv)- vs. metal(vi)-nitrides. Surprisingly, computational studies reveal a σ > π energy ordering for all these bridging nitride bonds, a phenomenon for actinides only observed before in terminal uranium nitrides and uranyl with very short U-N or U-O distances.
Collapse
Affiliation(s)
- Jingzhen Du
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - David M King
- School of Chemistry , The University of Nottingham , University Park , Nottingham , NG7 2RD , UK
| | - Lucile Chatelain
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Erli Lu
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Floriana Tuna
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Eric J L McInnes
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Ashley J Wooles
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Laurent Maron
- LPCNO , CNRS , INSA , Université Paul Sabatier , 135 Avenue de Rangueil , Toulouse 31077 , France .
| | - Stephen T Liddle
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| |
Collapse
|
42
|
Zhang C, Hou G, Zi G, Ding W, Walter MD. An Alkali-Metal Halide-Bridged Actinide Phosphinidiide Complex. Inorg Chem 2019; 58:1571-1590. [DOI: 10.1021/acs.inorgchem.8b03091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Congcong Zhang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
43
|
Zhang C, Wang Y, Hou G, Ding W, Zi G, Walter MD. Experimental and computational studies on a three-membered diphosphido thorium metallaheterocycle [η5-1,3-(Me3C)2C5H3]2Th[η2-P2(2,4,6-iPr3C6H2)2]. Dalton Trans 2019; 48:6921-6930. [DOI: 10.1039/c9dt01160a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A three-membered diphosphido thorium metallaheterocycle complex was prepared and its reactivity was investigated.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
44
|
Wang Y, Zhang C, Zi G, Ding W, Walter MD. Preparation of a potassium chloride bridged thorium phosphinidiide complex and its reactivity towards small organic molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj02269d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The steric and electronic properties of the coordinated ligands modulate the reactivity of thorium phosphinidene complexes.
Collapse
Affiliation(s)
- Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30
- Braunschweig
- Germany
| |
Collapse
|
45
|
Zhang C, Hou G, Zi G, Walter MD. A base-free terminal thorium phosphinidene metallocene and its reactivity toward selected organic molecules. Dalton Trans 2019; 48:2377-2387. [DOI: 10.1039/c9dt00012g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule activation mediated by a base-free terminal phosphinidene thorium metallocene is reported.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
46
|
Chu X, Song C, Yang Y, Zeng X. Oxidation of a phosphinidene oxide: formation of a dioxaphosphirane oxide with oxygen scrambling. Chem Commun (Camb) 2018; 55:245-248. [PMID: 30534675 DOI: 10.1039/c8cc08945k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of a prototypical phosphinidene oxide FP[double bond, length as m-dash]O has been studied in O2-doped Ar and N2 matrices at 10 K. Upon 266 nm laser irradiation, FP[double bond, length as m-dash]O combines with O2 and yields the cyclic peroxide, dioxaphosphirane oxide FP([double bond, length as m-dash]O)(O2). Unexpected oxygen scrambling occurs during the oxygenation as evidenced by the observation of a 1 : 2 mixture of FP([double bond, length as m-dash]16O)(18O18O) and FP([double bond, length as m-dash]18O)(16O18O) when 18O2 was used. Quantum chemical calculations suggest that the scrambling happens via the intermediacy of the low-lying triplet FPO3 by passing minimum energy crossing points (MECPs). In addition, inorganic dioxophosphorane FP([double bond, length as m-dash]O)2 has been also identified among the oxidation products of FP[double bond, length as m-dash]O.
Collapse
Affiliation(s)
- Xianxu Chu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | | | | | | |
Collapse
|
47
|
Vilanova SP, del Rosal I, Tarlton ML, Maron L, Walensky JR. Functionalization of Carbon Monoxide and
tert
‐Butyl Nitrile by Intramolecular Proton Transfer in a Bis(Phosphido) Thorium Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sean P. Vilanova
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Iker del Rosal
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | | - Laurent Maron
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | |
Collapse
|
48
|
Vilanova SP, del Rosal I, Tarlton ML, Maron L, Walensky JR. Functionalization of Carbon Monoxide and
tert
‐Butyl Nitrile by Intramolecular Proton Transfer in a Bis(Phosphido) Thorium Complex. Angew Chem Int Ed Engl 2018; 57:16748-16753. [DOI: 10.1002/anie.201810511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Sean P. Vilanova
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Iker del Rosal
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | | - Laurent Maron
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | |
Collapse
|
49
|
Buss JA, Hirahara M, Ueda Y, Agapie T. Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydride‐Proton Isomerism, and HER Reactivity. Angew Chem Int Ed Engl 2018; 57:16329-16333. [DOI: 10.1002/anie.201808307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/18/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Masanari Hirahara
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Yohei Ueda
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
50
|
Buss JA, Hirahara M, Ueda Y, Agapie T. Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydride‐Proton Isomerism, and HER Reactivity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Masanari Hirahara
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Yohei Ueda
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|