1
|
Damalanka VC, Banas V, De Bona P, Kashipathy MM, Battaile K, Lovell S, Janetka JW. Mechanism-Based Macrocyclic Inhibitors of Serine Proteases. J Med Chem 2024; 67:4833-4854. [PMID: 38477709 PMCID: PMC11584989 DOI: 10.1021/acs.jmedchem.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Protease inhibitor drug discovery is challenged by the lack of cellular and oral permeability, selectivity, metabolic stability, and rapid clearance of peptides. Here, we describe the rational design, synthesis, and evaluation of peptidomimetic side-chain-cyclized macrocycles which we converted into covalent serine protease inhibitors with the addition of an electrophilic ketone warhead. We have identified potent and selective inhibitors of TMPRSS2, matriptase, hepsin, and HGFA and demonstrated their improved protease selectivity, metabolic stability, and pharmacokinetic (PK) properties. We obtained an X-ray crystal structure of phenyl ether-cyclized tripeptide VD4162 (8b) bound to matriptase, revealing an unexpected binding conformation. Cyclic biphenyl ether VD5123 (11) displayed the best PK properties in mice with a half-life of 4.5 h and compound exposure beyond 24 h. These new cyclic tripeptide scaffolds can be used as easily modifiable templates providing a new strategy to overcoming the obstacles presented by linear acyclic peptides in protease inhibitor drug discovery.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Victoria Banas
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Paolo De Bona
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin Battaile
- New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
2
|
Lei T, Cheng YY, Han X, Zhou C, Yang B, Fan XW, Chen B, Tung CH, Wu LZ. Lewis Acid-Relayed Singlet Oxygen Reaction with Enamines: Selective Dimerization of Enamines to Pyrrolin-4-ones. J Am Chem Soc 2022; 144:16667-16675. [PMID: 36047993 DOI: 10.1021/jacs.2c07450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Singlet oxygen (1O2)-mediated oxidation represents an attractive strategy for incorporation of oxygen atoms from air under mild and environmentally benign conditions. However, the 1O2 reaction with enamine suffers from fragmentation, leading to very unsuccessful transformation. Here, Lewis acid is introduced to intercept [2 + 2] or "ene" reaction intermediates of the 1O2 reaction and enables oxidative dimerization of enamines to produce pyrrolin-4-ones in good to excellent yields. Mechanistic studies reveal the formation of the imino ketone intermediate from the interaction of 1O2 and enamine, which is able to interact with Lewis acid, relaying the 1O2 reaction in enamine chemistry. For the first time, selective cross-dimerization of two different enamines is achieved. Due to the advantages of mild conditions, high chemoselectivity, and up to 99% yield, a promising strategy has been developed for synthesizing aza-heterocycles under ambient conditions, which can be further applied for the synthesis of imidazolone, quinoxaline, and highly functionalized imine.
Collapse
Affiliation(s)
- Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xu Han
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiu-Wei Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
3
|
Lee MJ, Bhattarai D, Jang H, Baek A, Yeo IJ, Lee S, Miller Z, Lee S, Hong JT, Kim DE, Lee W, Kim KB. Macrocyclic Immunoproteasome Inhibitors as a Potential Therapy for Alzheimer's Disease. J Med Chem 2021; 64:10934-10950. [PMID: 34309393 PMCID: PMC10913540 DOI: 10.1021/acs.jmedchem.1c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we reported that immunoproteasome (iP)-targeting linear peptide epoxyketones improve cognitive function in mouse models of Alzheimer's disease (AD) in a manner independent of amyloid β. However, these compounds' clinical prospect for AD is limited due to potential issues, such as poor brain penetration and metabolic instability. Here, we report the development of iP-selective macrocyclic peptide epoxyketones prepared by a ring-closing metathesis reaction between two terminal alkenes attached at the P2 and P3/P4 positions of linear counterparts. We show that a lead macrocyclic compound DB-60 (20) effectively inhibits the catalytic activity of iP in ABCB1-overexpressing cells (IC50: 105 nM) and has metabolic stability superior to its linear counterpart. DB-60 (20) also lowered the serum levels of IL-1α and ameliorated cognitive deficits in Tg2576 mice. The results collectively suggest that macrocyclic peptide epoxyketones have improved CNS drug properties than their linear counterparts and offer promising potential as an AD drug candidate.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Hyeryung Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ahreum Baek
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Seongsoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Zachary Miller
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| |
Collapse
|
4
|
Horsfall AJ, Dunning KR, Keeling KL, Scanlon DB, Wegener KL, Abell AD. A Bimane‐Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. Chembiochem 2020; 21:3423-3432. [DOI: 10.1002/cbic.202000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aimee J. Horsfall
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kylie R. Dunning
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Robinson Research Institute, Adelaide Medical School The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kelly L. Keeling
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Denis B. Scanlon
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kate L. Wegener
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- School of Biological Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| |
Collapse
|
5
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
6
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Schumann NC, Bruning J, Marshall AC, Abell AD. The role of N-terminal heterocycles in hydrogen bonding to α-chymotrypsin. Bioorg Med Chem Lett 2019; 29:396-399. [PMID: 30579793 DOI: 10.1016/j.bmcl.2018.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023]
Abstract
A series of dipeptide aldehydes containing different N-terminal heterocycles was prepared and assayed in vitro against α-chymotrypsin to ascertain the importance of the heterocycle in maintaining a β-strand geometry while also providing a hydrogen bond donor equivalent to the backbone amide nitrogen of the surrogate amino acid. The dipeptide containing a pyrrole constraint (10) was the most potent inhibitor, with >30-fold improved activity over dipeptides which lacked a nitrogen hydrogen bond donor (namely thiophene 11, furan 12 and pyridine 13). Molecular docking studies of 10 bound to α-chymotrypsin demonstrates a hydrogen bond between the pyrrole nitrogen donor and the backbone carbonyl of Gly216 located in the S3 pocket which is proposed to be critical for overall binding.
Collapse
Affiliation(s)
- Nicholas C Schumann
- School of Chemistry & Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - John Bruning
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew C Marshall
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- School of Chemistry & Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
8
|
Abstract
Chymotrypsin is a protease that is commonly used as a standard for protein crystallization and as a model system for studying serine proteases. Unliganded bovine α-chymotrypsin was crystallized at neutral pH using ammonium sulphate as the precipitant, resulting in crystals that conform to P65 symmetry with unit cell parameters that have not been reported previously. Inspection of crystallographic interfaces revealed that the major interface between any two molecules in the crystal lattice represents the interface of the biological dimer, as previously observed for crystals of unliganded α-chymotrypsin grown at low pH in space group P21.
Collapse
|
9
|
Li D, Zhang X, Ma X, Xu L, Yu J, Gao L, Hu X, Zhang J, Dong X, Li J, Liu T, Zhou Y, Hu Y. Development of Macrocyclic Peptides Containing Epoxyketone with Oral Availability as Proteasome Inhibitors. J Med Chem 2018; 61:9177-9204. [PMID: 30265557 DOI: 10.1021/acs.jmedchem.8b00819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Macrocyclization has been frequently utilized for optimizing peptide or peptidomimetic-based compounds. In an attempt to obtain potent, metabolically stable, and orally available proteasome inhibitors, 30 oprozomib-derived macrocyclic peptides with structural diversity in their N-terminus and linker were successively designed and synthesized for structure-activity relationship (SAR) studies. As a consequence, the macrocyclic peptides with N-methyl-pyrazole (24p, 24x), imidazole (24t), and pyrazole (24v) as their respective N-termini exhibited favorable in vitro activity and metabolic stability, which translated into their potent in vivo proteasome inhibitory activity after oral administration. In particular, compound 24v, as the most distinguished one among this series, displayed excellent chymotrypsin-like (ChT-L, β5) inhibitory potency (IC50 = 16 nM), low nanomolar antiproliferative activity against all three of the tested cell lines, and superior metabolic stability in mouse liver microsome (MLM), as well as favorable inhibition against ChT-L compared to that of oprozomib in BABL/c mice following po administration at a comparatively low dose, thereby representing a promising candidate for further development.
Collapse
Affiliation(s)
- Daqiang Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , 310058 , People's Republic of China
| | - Xiaotuan Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,Graduate School , University of Chinese Academy of Sciences , No. 19A Yuquan Road , 100049 Beijing , China
| | - Xiaodong Ma
- Department of Medicinal Chemistry, School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai , 201203 , China.,Graduate School , University of Chinese Academy of Sciences , No. 19A Yuquan Road , 100049 Beijing , China
| | - Jianjun Yu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , 310058 , People's Republic of China
| | - Lixin Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xiaobei Hu
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jiankang Zhang
- Zhejiang University City College , Hangzhou 310015 , Zhejiang China
| | - Xiaowu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , 310058 , People's Republic of China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , 310058 , People's Republic of China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , 310058 , People's Republic of China
| |
Collapse
|
10
|
Köcher S, Rey J, Bongard J, Tiaden AN, Meltzer M, Richards PJ, Ehrmann M, Kaiser M. Maßgeschneiderte Ahp-Cyclodepsipeptide als potente, nicht-kovalente Serinprotease-Inhibitoren. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steffen Köcher
- Chemische Biologie, ZMB, Fakultät für Biologie; Universität Duisburg-Essen; Universitätsstraße 2 45117 Essen Deutschland
| | - Juliana Rey
- Mikrobiologie, ZMB, Fakultät für Biologie; Universität Duisburg-Essen; Deutschland
| | - Jens Bongard
- Mikrobiologie, ZMB, Fakultät für Biologie; Universität Duisburg-Essen; Deutschland
| | - André N. Tiaden
- Bone and Stem Cell Research Group, CABMM; Universität Zürich; Schweiz
| | - Michael Meltzer
- Mikrobiologie, ZMB, Fakultät für Biologie; Universität Duisburg-Essen; Deutschland
| | - Peter J. Richards
- Bone and Stem Cell Research Group, CABMM; Universität Zürich; Schweiz
- Zurich Center for Integrative Human Physiology (ZIHP); Universität Zürich; Schweiz
| | - Michael Ehrmann
- Mikrobiologie, ZMB, Fakultät für Biologie; Universität Duisburg-Essen; Deutschland
- School of Biosciences; Cardiff University; Großbritannien
| | - Markus Kaiser
- Chemische Biologie, ZMB, Fakultät für Biologie; Universität Duisburg-Essen; Universitätsstraße 2 45117 Essen Deutschland
| |
Collapse
|
11
|
Köcher S, Rey J, Bongard J, Tiaden AN, Meltzer M, Richards PJ, Ehrmann M, Kaiser M. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors. Angew Chem Int Ed Engl 2017; 56:8555-8558. [PMID: 28514117 DOI: 10.1002/anie.201701771] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 11/08/2022]
Abstract
The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors.
Collapse
Affiliation(s)
- Steffen Köcher
- Chemical Biology, ZMB, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Juliana Rey
- Microbiology, ZMB, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Jens Bongard
- Microbiology, ZMB, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - André N Tiaden
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Winterthurerstr. 190, 8057, Zürich, Switzerland
| | - Michael Meltzer
- Microbiology, ZMB, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Peter J Richards
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Winterthurerstr. 190, 8057, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstr. 190, 8057, Zürich, Switzerland
| | - Michael Ehrmann
- Microbiology, ZMB, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany.,School of Biosciences, Cardiff University, Cardiff, CF10 3US, UK
| | - Markus Kaiser
- Chemical Biology, ZMB, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| |
Collapse
|
12
|
Gunasekaran P, Lee SR, Jeong SM, Kwon JW, Takei T, Asahina Y, Bang G, Kim S, Ahn M, Ryu EK, Kim HN, Nam KY, Shin SY, Hojo H, Namgoong S, Kim NH, Bang JK. Pyrrole-Based Macrocyclic Small-Molecule Inhibitors That Target Oocyte Maturation. ChemMedChem 2017; 12:580-589. [PMID: 28296169 DOI: 10.1002/cmdc.201700048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/13/2017] [Indexed: 11/08/2022]
Abstract
Polo-like kinase 1 (PLK1) plays crucial roles in various stages of oocyte maturation. Recently, we reported that the peptidomimetic compound AB103-8, which targets the polo box domain (PBD) of PLK1, affects oocyte meiotic maturation and the resumption of meiosis. However, to overcome the drawbacks of peptidic compounds, we designed and synthesized a series of pyrrole-based small-molecule inhibitors and tested them for their effects on the rates of porcine oocyte maturation. Among them, the macrocyclic compound (E/Z)-3-(2,16-dioxo-19-(4-phenylbutyl)-3,19-diazabicyclo[15.2.1]icosa-1(20),6,17-trien-3-yl)propyl dihydrogen phosphate (4) showed the highest inhibitory activity with enhanced inhibition against embryonic blastocyst formation. Furthermore, the addition of this compound to culture media efficiently blocked the maturation of porcine and mouse oocytes, indicating its ability to penetrate the zona pellucida and cell membrane. We investigated mouse oocytes treated with compound 4, and the resulting impairment of spindle formation confirmed PLK1 inhibition. Finally, molecular modeling studies with PLK1 PBD also confirmed the presence of significant interactions between compound 4 and PLK1 PBD binding pocket residues, including those in the phosphate, tyrosine-rich, and pyrrolidine binding pockets. Collectively, these results suggest that the macrocyclic compound 4 may serve as a promising template for the development of novel contraceptive agents.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - So-Rim Lee
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Seung-Min Jeong
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Jeong-Woo Kwon
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuya Asahina
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Seongnyeon Kim
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Eun Kyung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Ki-Yub Nam
- Pharos I&BT Co. Ltd., Gyeonggi-do, 14059, Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Suk Namgoong
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
- Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
13
|
Andersson CD, Martinez N, Zeller D, Rondahl SH, Koza MM, Frick B, Ekström F, Peters J, Linusson A. Changes in dynamics of α-chymotrypsin due to covalent inhibitors investigated by elastic incoherent neutron scattering. Phys Chem Chem Phys 2017; 19:25369-25379. [DOI: 10.1039/c7cp04041e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of chymotrypsin increases when bound to two different covalent inhibitors. These effects were analyzed by univariate and multivariate methods.
Collapse
Affiliation(s)
| | - N. Martinez
- Institut Laue Langevin
- F-38042 Grenoble Cedex 9
- France
- Univ. Grenoble Alpes
- IBS and LiPhy
| | - D. Zeller
- Institut Laue Langevin
- F-38042 Grenoble Cedex 9
- France
- Univ. Grenoble Alpes
- IBS and LiPhy
| | - S. H. Rondahl
- CBRN Defence and Security
- Swedish Defence Research Agency
- SE-90621 Umeå
- Sweden
| | - M. M. Koza
- Institut Laue Langevin
- F-38042 Grenoble Cedex 9
- France
| | - B. Frick
- Institut Laue Langevin
- F-38042 Grenoble Cedex 9
- France
| | - F. Ekström
- CBRN Defence and Security
- Swedish Defence Research Agency
- SE-90621 Umeå
- Sweden
| | - J. Peters
- Institut Laue Langevin
- F-38042 Grenoble Cedex 9
- France
- Univ. Grenoble Alpes
- IBS and LiPhy
| | - A. Linusson
- Department of Chemistry
- Umeå University
- SE-90187 Umeå
- Sweden
| |
Collapse
|
14
|
Pehere AD, Zhang X, Abell AD. Macrocyclic Peptidomimetics Prepared by Ring-Closing Metathesis and Azide–Alkyne Cycloaddition. Aust J Chem 2017. [DOI: 10.1071/ch16532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrocycles are finding increasing use as a means to define the backbone geometries of peptides and peptidomimetics. Ring-closing metathesis and CuI-catalyzed azide–alkyne cycloaddition are particularly useful for introducing such rings and they do so in high yield and with a good functional group tolerance and compatibility. Here, we present an overview of the use of these two methods, with reference to selected examples and particular reference to β-strand peptidomimetics for use as protease inhibitors.
Collapse
|
15
|
Yu J, Horsley JR, Abell AD. A controllable mechanistic transition of charge transfer in helical peptides: from hopping to superexchange. RSC Adv 2017. [DOI: 10.1039/c7ra07753j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A controllable mechanistic transition of charge transfer in helical peptides is demonstrated as a direct result of side-bridge gating.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
16
|
Zhao D, Zhou J. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes. Phys Chem Chem Phys 2017; 19:986-995. [DOI: 10.1039/c6cp04962a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.
Collapse
Affiliation(s)
- Daohui Zhao
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
17
|
Zhang X, Adwal A, Turner AG, Callen DF, Abell AD. New Peptidomimetic Boronates for Selective Inhibition of the Chymotrypsin-like Activity of the 26S Proteasome. ACS Med Chem Lett 2016; 7:1039-1043. [PMID: 27994734 DOI: 10.1021/acsmedchemlett.6b00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Proteasome is a large proteinase complex that degrades proteins via its three catalytic activities. Among these activities, the "chymotrypsin-like" activity has emerged as the focus of drug discovery in cancer therapy. Here, we report new peptidomimetic boronates that are highly specific for the chymotrypsin-like catalytic activity of the proteasome. These new specific proteasome inhibitors were demonstrated to have higher in vitro potency and selective cytotoxicity for cancer cells compared to benchmark proteasome inhibitors: bortezomib and carfilzomib. In breast cancer cell lines, treatment with 1a or 2a induced accumulation of the high molecular weight polyubiqutinated proteins at similar levels observed for bortezomib and carfilzomib, indicating that cancer cell death caused by 1a/2a is chiefly due to proteasome inhibition.
Collapse
Affiliation(s)
- Xiaozhou Zhang
- Department
of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- Centre
for Personalised Cancer Medicine, Discipline of Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Alaknanda Adwal
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics
and Advanced Sensing, Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew G. Turner
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics
and Advanced Sensing, Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David F. Callen
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics
and Advanced Sensing, Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Department
of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- Centre
for Personalised Cancer Medicine, Discipline of Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| |
Collapse
|
18
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhang X, Bruning JB, George JH, Abell AD. A mechanistic study on the inhibition of α-chymotrypsin by a macrocyclic peptidomimetic aldehyde. Org Biomol Chem 2016; 14:6970-8. [DOI: 10.1039/c6ob01159d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR and X-ray crystallography reveals covalent attachment of the macrocyclic aldehyde to serine195 of α-chymotrypsin and that its backbone binds as a β-strand.
Collapse
Affiliation(s)
- X. Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute for Photonics and Advanced Sensing
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - J. B. Bruning
- School of Biological Sciences
- The University of Adelaide
- Adelaide
- Australia
| | - J. H. George
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - A. D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute for Photonics and Advanced Sensing
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
20
|
Zhang X, Heng S, Abell AD. Photoregulation of α-Chymotrypsin Activity by Spiropyran-Based Inhibitors in Solution and Attached to an Optical Fiber. Chemistry 2015; 21:10703-13. [PMID: 26100654 DOI: 10.1002/chem.201501488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/10/2022]
Abstract
Here the synthesis and characterization of a new class of spiropyran-based protease inhibitor is reported that can be reversibly photoswitched between an active spiropyran (SP) isomer and a less active merocyanine (MC) isomer upon irradiation with UV and visible light, respectively, both in solution and on a surface of a microstructured optical fiber (MOF). The most potent inhibitor in the series (SP-3 b) has a C-terminal phenylalanyl-based α-ketoester group and inhibits α-chymotrypsin with a Ki of 115 nM. An analogue containing a C-terminal Weinreb amide (SP-2 d) demonstrated excellent stability and photoswitching in solution and was attached to the surface of a MOF. The SP isomer of Weinreb amide 2 d is a competitive reversible inhibitor in solution and also on fiber, while the corresponding MC isomer was significantly less active in both media. The ability of this new class of spiropyran-based protease inhibitor to modulate enzyme activity on a MOF paves the way for sensing applications.
Collapse
Affiliation(s)
- Xiaozhou Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing and Department of Chemistry, The University of Adelaide, South Australia, 5005 (Australia)
| | - Sabrina Heng
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing and Department of Chemistry, The University of Adelaide, South Australia, 5005 (Australia)
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute for Photonics and Advanced Sensing and Department of Chemistry, The University of Adelaide, South Australia, 5005 (Australia).
| |
Collapse
|
21
|
Rose TE, Lawson KV, Harran PG. Large ring-forming alkylations provide facile access to composite macrocycles. Chem Sci 2015; 6:2219-2223. [PMID: 28694951 PMCID: PMC5485560 DOI: 10.1039/c4sc03848g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/05/2015] [Indexed: 11/21/2022] Open
Abstract
Macrocyclic compounds have potential to enable drug discovery for protein targets with extended, solvent-exposed binding sites. Crystallographic structures of peptides bound at such sites show strong surface complementarity and frequent aromatic side-chain contacts. In an effort to capture these features in stabilized small molecules, we describe a method to convert linear peptides into constrained macrocycles based upon their aromatic content. Designed templates initiate the venerable Friedel-Crafts alkylation to form large rings efficiently at room temperature - routinely within minutes - and unimpeded by polar functional groups. No protecting groups, metals, or air-free techniques are required. Regiochemistry can be tuned electronically to explore diverse macrocycle connectivities. Templates with additional reaction capabilities can further manipulate macrocycle structure. The chemistry lays a foundation to extend studies of how the size, shape and constitution of peptidyl macrocycles correlate with their pharmacological properties.
Collapse
Affiliation(s)
- Tristan E Rose
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| | - Kenneth V Lawson
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| | - Patrick G Harran
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| |
Collapse
|