1
|
Zhou Q, Song M, Tian Y, Min M, Cui S, He X, Xiong C. PtCo nanoalloy embedded nitrogen-doped carbon nanotube for rechargeable Zn-air batteries. J Colloid Interface Sci 2025; 677:59-67. [PMID: 39137563 DOI: 10.1016/j.jcis.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The large-scale application of metal-air batteries strongly depends on the development of cost-effective, highly efficient, and durable bifunctional oxygen catalysts. In this work, a facile approach for preparing the monodisperse PtCo nanoalloy anchored the nitrogen-doped carbon nanotubes (PtCo/NCNT) for zinc-air batteries is reported. The nitrogen-doped carbon shell prevents PtCo nanoalloy from exfoliation, dissolution, and aggregation and enables the accessibility of electrolytes to the alloy surface and the electron transfer. Besides, the strong interaction between PtCo nanoalloy and nitrogen-doped carbon can efficiently modulate the electronic structure of the formed active sites. When used as a cathode catalyst, the constructed rechargeable zinc-air battery presents higher power density (268 mW cm-2), specific capacity (840 mAh g-1), and excellent stability. More importantly, the PtCo/NCNT catalyst allows the all-solid-state cell to exhibit remarkable flexibility and high round-trip efficiency at various bending states, demonstrating a potential possibility to replace the conventional Pt/C and RuO2 catalysts.
Collapse
Affiliation(s)
- Qiusheng Zhou
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Minmin Song
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Yuan Tian
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Min Min
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shiqiang Cui
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xianying He
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Chuanyin Xiong
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| |
Collapse
|
2
|
Alonso-Vante N. Parameters Affecting the Fuel Cell Reactions on Platinum Bimetallic Nanostructures. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Yang L, Zhu YP, Wang AJ, Weng X, Feng JJ. Simple pyrolysis of graphene-wrapped PtNi nanoparticles supported on hierarchically N-doped porous carbon for sensitive detection of carbendazim. Mikrochim Acta 2023; 190:211. [PMID: 37171649 DOI: 10.1007/s00604-023-05759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
A novel electrochemical sensor was established based on graphene-wrapped PtNi nanoparticles supported on three-dimensional (3D) N-doped porous carbon (G-PtNi/3D-NPC) for the highly sensitive and selective detection of carbendazim (CBZ). In this sensing system, the encapsulation of PtNi nanoparticles (NPs) by graphene can effectively prevent the aggregation tendency and enhance the structural stability. The hierarchically porous nanostructures have a large specific surface area to expose a large number of active sites and the resulting enhanced electrical conductivity ultimate improves the electrocatalytic activity towards CBZ. Under the optimal conditions, the prepared sensor showed excellent electrochemical responses for the determination of CBZ with a linear range of 0.5-30 μM and lower limit of detection (LOD) of 0.04 μM (S/N = 3). It also shows excellent anti-interference ability at a working potential of 0.74 V. The feasibility of the senor is demonstrated for its practical assays in diluted peach and vegetable samples with acceptable recovery (95.8-97.3 %, peach; 97.2-97.6 %, vegetable) and a relative standard deviation (RSD) below 2.3%.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yao-Ping Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xuexiang Weng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
4
|
Nie M, Xu Z, Luo L, Wang Y, Gan W, Yuan Q. One-pot synthesis of ultrafine trimetallic PtPdCu alloy nanoparticles decorated on carbon nanotubes for bifunctional catalysis of ethanol oxidation and oxygen reduction. J Colloid Interface Sci 2023; 643:26-37. [PMID: 37044011 DOI: 10.1016/j.jcis.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Bifunctional catalysts for ethanol oxidation reaction (EOR) and oxygen reduction reaction (ORR) with high noble-metal utilization are highly beneficial to direct ethanol fuel cells (DEFCs). This study developed a ternary bifunctional catalyst composed of ultrafine PtPdCu alloy nanoparticles and carbon nanotubes (CNTs) support through a facile surfactant-free solvothermal route. The carboxyl terminal groups on CNTs ensure the confined growth of PtPdCu alloys (∼5 nm) and suppress Ostwald ripening of metallic active sites during electrochemical cycling. Consequently, PtPdCu/CNTs exhibits high mass activity (1.95 A mg-1) and specific activity (4.08 mA cm-2) toward EOR, which are 7.8 and 8.9 times higher, respectively, than those of commercial Pt/C. Furthermore, PtPdCu/CNTs displays superior stability toward EOR compared with its bimetallic counterparts (PtPd/CNTs and PtCu/CNTs). In addition, PtPdCu/CNTs exhibits the highest half-wave potential of 0.888 V among all electrocatalysts, indicating high ORR activity. Density functional theory calculations reveal that Pd and Cu mediate the electronic structure of Pt, leading to enhanced catalytic activity of PtPdCu/CNTs. The excellent catalytic property of PtPdCu/CNTs can also be attributed to the bifunctional effects of Pd/Cu and the interaction between metal and the carbon support. The proposed material is a contribution to the family of efficient ternary-alloy electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Mingxing Nie
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zhengyu Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lei Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
5
|
Đukić T, Pavko L, Jovanovič P, Maselj N, Gatalo M, Hodnik N. Stability challenges of carbon-supported Pt-nanoalloys as fuel cell oxygen reduction reaction electrocatalysts. Chem Commun (Camb) 2022; 58:13832-13854. [PMID: 36472187 PMCID: PMC9753161 DOI: 10.1039/d2cc05377b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 11/14/2023]
Abstract
Carbon-supported Pt-based nanoalloys (CSPtNs) as the oxygen reduction reaction (ORR) electrocatalysts are considered state-of-the-art electrocatalysts for use in proton exchange membrane fuel cells (PEMFCs). Although their ORR activity performance is already adequate to allow lowering of the Pt loading and thus commercialisation of the fuel cell technology, their stability remains an open challenge. In this Feature Article, the recent achievements and acquired knowledge on the degradation behaviour of these electrocatalysts are overviewed and discussed.
Collapse
Affiliation(s)
- Tina Đukić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
| | - Nik Maselj
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- ReCatalyst d.o.o., Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Pulse Electrolysis Technique for Preparation of Bimetal Tin-Containing Electrocatalytic Materials. Catalysts 2022. [DOI: 10.3390/catal12111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platinum–tin-containing materials are the most popular catalysts for processes occurring in fuel cells with direct ethanol oxidation. Pulse electrolysis based on the electrochemical dispersion of platinum electrodes under the influence of alternating pulse current in an alkaline electrolyte made it possible to introduce the tin component into the catalyst in the form of a dopant, an alloy with platinum, and in the form of an oxide phase and evaluate the effect of the form in which tin is present in the catalyst on its microstructural and electrocatalytic characteristics. The introduction of tin into the catalyst generally increases the rate of ethanol electrooxidation; however, with the most prominent effect observed when tin is present in form of an oxide.
Collapse
|
7
|
Xu R, Kang L, Papanikolaou KG, Wang B, Marlow S, He Q, Zhang P, Wang J, Brett DJ, Stamatakis M, Ryan Wang F. Improving the ORR Performance by Enhancing the Pt Oxidation Resistance. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Lv R, Kou W, Guo S, Wu W, Zhang Y, Wang Y, Wang J. Preparing Two‐Dimensional Ordered Li
0.33
La
0.557
TiO
3
Crystal in Interlayer Channel of Thin Laminar Inorganic Solid‐State Electrolyte towards Ultrafast Li
+
Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruixin Lv
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Weijie Kou
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shiyuan Guo
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Wenjia Wu
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yatao Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Jingtao Wang
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China
- Henan Institute of Advanced Technology Zhengzhou University 97 Wenhua Road Zhengzhou 450003 P. R. China
| |
Collapse
|
9
|
Xiao Y, Hou S, Xing J, Liu C, Ge J, Xing W. Nickel Phosphide Coated with Ultrathin Nitrogen Doped Carbon Shell as a Highly Durable and Active Catalyst towards Hydrogen Evolution Reaction. Chem Asian J 2022; 17:e202101343. [PMID: 35080132 DOI: 10.1002/asia.202101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Indexed: 11/05/2022]
Abstract
Developing alternative catalysts to Pt towards hydrogen evolution reaction(HER) is of both high scientific and technique importance for wide spread application of water electrolysis. Herein, Ni 2 P nanoparticles coated with ultra thin N-doped carbon shell were prepared as a highly efficient HER catalysts. Ni 2 P@CN exhibits both enhanced catalytic activity and durability in comparison with the carbon supported Ni 2 P counterpart, and represents 100% faradaic yield for HER in acidic medium. The improved charge transfer of N doped graphitic carbon shells make a contribution to the increase in activity. Meanwhile, the carbon shells suppress the aggregation and exfoliation of Ni 2 P nanoparticles. As a result, the synergistic role of N doped carbon layer confer the Ni 2 P cores with boosted activity and stability.
Collapse
Affiliation(s)
- Yao Xiao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, CHINA
| | - Shuai Hou
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, No. 5625 Renmin Rd, 130022, Changchun, Jilin , China, CHINA
| | - Jiaojiao Xing
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, CHINA
| | - Changpeng Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, CHINA
| | - Junjie Ge
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, CHINA
| | - Wei Xing
- Changchun Institute of Applied Chemistry, State Key Laboratory of Electro-analytical Chemistry, 5625 Renmin Street, 130022, Changchun, CHINA
| |
Collapse
|
10
|
Guo J, Zhang M, Xu J, Fang J, Luo S, Yang C. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction. RSC Adv 2022; 12:2246-2252. [PMID: 35425232 PMCID: PMC8979267 DOI: 10.1039/d1ra07998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Pd-P@Pt-Ni core-shell nanoparticles, which consisted of a Pd-P alloy as a core and Pt-Ni thin layer as a shell, were explored as electrocatalysts for methanol oxidation reaction. The crystallographic information and the electronic properties were fully investigated by X-ray diffraction and X-ray photoelectron spectroscopy. In the methanol electrooxidation reaction, the particles showed high catalytic activity and strong resistance to the poisoning carbonaceous species in comparison with those of commercial Pt/C and the as-prepared Pt/C catalysts. The excellent durability was demonstrated by electrochemically active surface area loss and chronoamperometric measurements. These results would be due to the enhanced catalytic properties of Pt by the double synergistic effects from the core part and the nickel species in the shell part.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
11
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
12
|
Chen A, Lu J, Zhu H, Zhang H, Zeng S, Zheng L, Liang HP. Construction of highly durable electrocatalysts by pore-confinement and anchoring effect for oxygen reduction reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj06098h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing highly stable and efficient catalysts towards the oxygen reduction reaction is important for the long-term operation in proton exchange membrane fuel cells. Herein, combined with the impregnation method, the...
Collapse
|
13
|
Polagani RK, Suryawanshi PL, Sonawane SH, Chinthala M. Electrocatalytic performance of sonochemically synthesized Pt–Ni/C nanoparticles in fuel cell application. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Developing high-performance electrocatalysts using simple and controllable methods is of interest to reduce the cost of polymer electrolyte membrane fuel cells. In this study, platinum is alloyed with nickel and supported on carbon (Pt–Ni/C) via an ultrasound-assisted route. The crystallite and particle sizes of the obtained nanoparticles were smaller than the commercial carbon-supported Pt nanoparticles. The sonochemically synthesized Pt–Ni/C nanoparticles exhibited superior electrocatalytic properties than the commercial Pt/C nanoparticles in the fuel cell operation. Electrochemical measurements performed with Pt–Ni/C electrocatalyst displayed excellent oxygen reduction and higher electrochemical active surface area (EASA). Optimum fuel cell performance based on peak power density using Pt–Ni/C electrocatalyst was observed as 0.28 W/cm2 at 0.39 V.
Collapse
Affiliation(s)
- Rajesh Kumar Polagani
- Department of Chemical Engineering , Bheemanna Khandre Institute of Technology , Bhalki 585328 , Karnataka , India
- Department of Chemical Engineering , National Institute of Technology Warangal , Warangal 506004 , Telangana , India
| | - Prashant L. Suryawanshi
- Department of Chemical Engineering , National Institute of Technology Warangal , Warangal 506004 , Telangana , India
| | - Shirish H. Sonawane
- Department of Chemical Engineering , National Institute of Technology Warangal , Warangal 506004 , Telangana , India
| | - Mahendra Chinthala
- Department of Chemical Engineering, Process Intensification Laboratory , National Institute of Technology Rourkela , Rourkela 769008 , Odisha , India
| |
Collapse
|
14
|
Lv R, Kou W, Guo S, Wu W, Zhang Y, Wang Y, Wang J. Preparing Two-Dimensional Ordered Li 0.33 La 0.557 TiO 3 Crystal in Interlayer Channel of Thin Laminar Inorganic Solid-State Electrolyte towards Ultrafast Li + Transfer. Angew Chem Int Ed Engl 2021; 61:e202114220. [PMID: 34806279 DOI: 10.1002/anie.202114220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Inorganic superionic conductor holds great promise for high-performance all-solid-state lithium batteries. However, the ionic conductivity of traditional inorganic solid electrolytes (ISEs) is always unsatisfactory owing to the grain boundary resistance and large thickness. Here, a 13 μm-thick laminar framework with ≈1.3 nm interlayer channels is fabricated by self-assembling rigid, hydrophilic vermiculite (Vr) nanosheets. Then, Li0.33 La0.557 TiO3 (LLTO) precursors are impregnated in interlayer channels and afterwards in situ sintered to large-size, oriented, and defect-free LLTO crystal. We demonstrate that the confinement effect permits ordered arrangement of LLTO crystal along the c-axis (the fastest Li+ transfer direction), permitting the resultant 15 μm-thick Vr-LLTO electrolyte an ionic conductivity of 8.22×10-5 S cm-1 and conductance of 87.2 mS at 30 °C. These values are several times' higher than that of traditional LLTO-based electrolytes. Moreover, Vr-LLTO electrolyte has a compressive modulus of 1.24 GPa. Excellent cycling performance is demonstrated with all-solid-state Li/LiFePO4 battery.
Collapse
Affiliation(s)
- Ruixin Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Weijie Kou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shiyuan Guo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,Henan Institute of Advanced Technology, Zhengzhou University, 97 Wenhua Road, Zhengzhou, 450003, P. R. China
| |
Collapse
|
15
|
Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts 2021. [DOI: 10.3390/catal11091050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although oxygen reduction reaction (ORR) catalysts have been extensively investigated and developed, there is a lack of clarity on catalysts that can balance high performance and low cost. Pt-based intermetallic nanocrystals are of special interest in the commercialization of proton exchange membrane fuel cells (PEMFCs) due to their excellent ORR activity and stability. This review summarizes the wide range of applications of Pt-based intermetallic nanocrystals in cathode catalysts for PEMFCs and their unique advantages in the field of ORR. Firstly, we introduce the fundamental understanding of Pt-based intermetallic nanocrystals, and highlight the difficulties and countermeasures in their synthesis. Then, the progress of theoretical and experimental studies related to the ORR activity and stability of Pt-based intermetallic nanocrystals in recent years are reviewed, especially the integrated strategies for enhancing the stability of ORR. Finally, the challenges faced by Pt-based intermetallic nanocrystals are summarized and future research directions are proposed. In addition, numerous design ideas of Pt-based intermetallic nanocrystals as ORR catalysts are summarized, aiming to promote further development of commercialization of PEMFC catalysts while fully understanding Pt-based intermetallic nanocrystals.
Collapse
|
16
|
Observing, tracking and analysing electrochemically induced atomic-scale structural changes of an individual Pt-Co nanoparticle as a fuel cell electrocatalyst by combining modified floating electrode and identical location electron microscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Wan XK, Samjeské G, Matsui H, Chen C, Muratsugu S, Tada M. Ultrafine Pt-Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction reaction catalysis. Dalton Trans 2021; 50:6811-6822. [PMID: 33890597 DOI: 10.1039/d1dt00647a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ultrafine bimetallic Pt-Ni nanoparticles, which catalyze the oxygen reduction reaction (ORR) efficiently, were successfully prepared in hollow porous carbon spheres (HPCSs) under the assistance of organic molecules. 2,2'-Dipyridylamine (dpa) was found to be most effective in preparing homogeneous small Pt-Ni nanoparticles (2.0 ± 0.4 nm) without the phase separation of Pt and Ni during synthesis, and the assistance of the organic molecules was investigated for the alloy nanoparticle formation. The Pt-Ni nanoparticle/HPCS catalyst synthesized in the presence of dpa exhibited remarkable electrochemical performance in the ORR showing a high mass activity of 3.25 ± 0.14 A mg-1Pt at 0.9 VRHE (13.5-fold higher relative to a commercial Pt/C catalyst), a large electrochemical surface area of 105 ± 8 m2 g-1Pt, and high durability. After 60 000 cycles of accelerated durability testing, the mass activity was still 12.3 times higher than that of the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Xian-Kai Wan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Gabor Samjeské
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Hirosuke Matsui
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| | - Mizuki Tada
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan. and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
18
|
Wang Y, Yu HZ, Ying J, Tian G, Liu Y, Geng W, Hu J, Lu Y, Chang GG, Ozoemena KI, Janiak C, Yang XY. Ultimate Corrosion to Pt-Cu Electrocatalysts for Enhancing Methanol Oxidation Activity and Stability in Acidic Media. Chemistry 2021; 27:9124-9128. [PMID: 33788984 DOI: 10.1002/chem.202100754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/11/2022]
Abstract
Alloying platinum (Pt) with transition metals (M), as an established class of electrocatalysts, reduces the use of Pt and improves the electrocatalytic performance. However, the stability of transition metals in nanostructured platinum alloys is a fundamental and practical problem in electrocatalysis, due to leaching of transition metals under acidic operating condition. Here, a corrosion method has been developed for a Pt-Cu electrocatalyst with high activity (6.6 times that of commercial Pt/C) and excellent stability for the methanol oxidation reaction (MOR) under acidic operating conditions. The mechanism of formation has been studied, and possible mesostructured re-formation and atomic re-organization have been proposed. This work offers an effective strategy for the facile synthesis of a highly acid-stable PtM alloying and opens a door to high-performance design for electrocatalysts.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao-Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Jie Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yi Lu
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Gang-Gang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40204, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, USA
| |
Collapse
|
19
|
Wang L, Yang Y, Liang H, Wu N, Peng X, Wang L, Song Y. A novel N,S-rich COF and its derived hollow N,S-doped carbon@Pd nanorods for electrochemical detection of Hg 2+ and paracetamol. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124528. [PMID: 33234399 DOI: 10.1016/j.jhazmat.2020.124528] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Covalent-organic frameworks (COFs) are conjugate crystalline polymers with high porosity, controllable pores and structure as well as large specific surface area, showing great potential for electrochemical sensors. Here, a new N,S-rich COFBTT-TZT is proposed by direct amine-aldehyde dehydration condensation between 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TZT) and benzo [1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde (BTT). The COFBTT-TZT has a hexagonal hcb structure with theoretical pore of 2.2 nm and presents rod-like morphology with many small flakes on its surface. Particularly, there are lots of S and N atoms in COFBTT-TZT, which provides abundant adsorption sites for Hg2+ so that it can be used to detect Hg2+. The proposed Hg2+ sensor has a linear range of 0.54 nM-5.0 μM and a detection limit of 0.18 nM. Besides, using COFBTT-TZT as precursor and template, the hollow N,S-doped C@Pd nanorods which possesses many tiny Pd nanoparticles embedded in rods-like hollow structure are obtained. An electrochemical paracetamol sensor is also proposed based on the N,S-doped C@Pd nanorods, showing low detection limit of 11 nM and wide linear range of 33 nM-120 μM. The good results provide an important guidance for the application of COF in electrochemical sensors.
Collapse
Affiliation(s)
- Linyu Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuxi Yang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Huihui Liang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Na Wu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
20
|
Hong W, Shen X, Wang F, Feng X, Li J, Wei Z. A bimodal-pore strategy for synthesis of Pt 3Co/C electrocatalyst toward oxygen reduction reaction. Chem Commun (Camb) 2021; 57:4327-4330. [PMID: 33913988 DOI: 10.1039/d1cc00711d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A bimodal-pore strategy was developed for preparation of the Pt3Co/C catalyst with active Pt3Co nanoparticles located around the mass transfer channels rather than inside them, which leads to ca. 29% higher mass transfer efficiency and a superior single-cell performance under an ultralow Pt loading.
Collapse
Affiliation(s)
- Wei Hong
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Xinran Shen
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Fangzheng Wang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Xin Feng
- School of Materials Science and Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China
| | - Jing Li
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
21
|
Yu H, Zhang L, Gao S, Wang H, He Z, Xu Y, Huang K. In situ encapsulated ultrafine Pd nanoparticles in nitrogen-doped porous carbon derived from hyper-crosslinked polymers effectively catalyse hydrogenation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Moriau LJ, Hrnjić A, Pavlišič A, Kamšek AR, Petek U, Ruiz-Zepeda F, Šala M, Pavko L, Šelih VS, Bele M, Jovanovič P, Gatalo M, Hodnik N. Resolving the nanoparticles' structure-property relationships at the atomic level: a study of Pt-based electrocatalysts. iScience 2021; 24:102102. [PMID: 33659872 PMCID: PMC7890412 DOI: 10.1016/j.isci.2021.102102] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Achieving highly active and stable oxygen reduction reaction performance at low platinum-group-metal loadings remains one of the grand challenges in the proton-exchange membrane fuel cells community. Currently, state-of-the-art electrocatalysts are high-surface-area-carbon-supported nanoalloys of platinum with different transition metals (Cu, Ni, Fe, and Co). Despite years of focused research, the established structure-property relationships are not able to explain and predict the electrochemical performance and behavior of the real nanoparticulate systems. In the first part of this work, we reveal the complexity of commercially available platinum-based electrocatalysts and their electrochemical behavior. In the second part, we introduce a bottom-up approach where atomically resolved properties, structural changes, and strain analysis are recorded as well as analyzed on an individual nanoparticle before and after electrochemical conditions (e.g. high current density). Our methodology offers a new level of understanding of structure-stability relationships of practically viable nanoparticulate systems.
Collapse
Affiliation(s)
- Leonard Jean Moriau
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Armin Hrnjić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andraž Pavlišič
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ana Rebeka Kamšek
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Urša Petek
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vid Simon Šelih
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Mohammadi M, Sedighi M, Natarajan R, Hassan SHA, Ghasemi M. Microbial fuel cell for oilfield produced water treatment and reuse: Modelling and process optimization. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0674-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Electrochemical dispersion technique for the preparation of Sn-doped Pt particles and their use as electrocatalysts. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Wu W, Zhang Z, Lei Z, Wang X, Tan Y, Cheng N, Sun X. Encapsulating Pt Nanoparticles inside a Derived Two-Dimensional Metal-Organic Frameworks for the Enhancement of Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10359-10368. [PMID: 32019299 DOI: 10.1021/acsami.9b20781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of highly active and stable electrocatalysts toward oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is a key for commercial application of fuel cells and water splitting. Here, we report a highly active and stable Pt nanoparticles (NPs) encapsulated in ultrathin two-dimensional (2D) carbon layers derived from the ultrathin 2D metal-organic framework precursor (ZIF-67). Electrochemical tests reveal that our approach not only stabilized Pt NPs successfully but also boosted Pt activities toward ORR and HER. We found that our Pt catalysts encapsulated in ultrathin 2D carbon layers exhibited an ORR activity of 5.9 and 12 times greater than those of the commercial Pt/C and Pt/RGO without 2D carbon layer protection. Our encapsulated Pt catalysts also show more than nine times higher stability than those of Pt/C catalysts. In addition to ORR, our novel encapsulated Pt catalysts display an extraordinary stability and activity toward HER, with a lower overpotential (14.3 mV in acidic media and 37.2 mV in alkaline media) at a current density of 10 mA cm-2 than Pt/C catalysts (23.1 mV in acidic media and 92.1 mV in alkaline media). The enhanced electrochemical activities and stability of our encapsulated Pt catalysts are attributed to the synergistic effect of Pt-based NPs and ultrathin 2D carbon layers derived from ZIF-67 with enriched active sites Co-Nx. First-principles simulations reveal that the synergistic catalysis of Pt-based NPs and Co-Nx derived from ZIF-67 improves the activity for ORR and HER.
Collapse
Affiliation(s)
- Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Zeyi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Zhao Lei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyue Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
27
|
Jiang J, Ding W, Li W, Wei Z. Freestanding Single-Atom-Layer Pd-Based Catalysts: Oriented Splitting of Energy Bands for Unique Stability and Activity. Chem 2020. [DOI: 10.1016/j.chempr.2019.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Pham TV, Li Y, Luo W, Guo H, Gao X, Wang J, Liu H. Binder-Free 3D Integrated Ni@Ni 3Pt Air Electrode for Zn-Air Batteries. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900027. [PMID: 31565398 PMCID: PMC6733491 DOI: 10.1002/gch2.201900027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Indexed: 05/31/2023]
Abstract
Developing an air electrode with high efficiency and stable performance is essential to improve the energy conversion efficiency and lifetime of zinc-air battery. Herein, Ni3Pt alloy is deposited on 3D nickel foam by a pulsed laser deposition method, working as a stable binder-free air electrode for rechargeable zinc-air batteries. The polycrystalline Ni3Pt alloy possesses high oxygen-conversion catalytic activity, which is highly desirable for the charge and discharge process in zinc-air battery. Meanwhile, this sample technique constructs an integrated and stable electrode structure, which not only has a 3D architecture of high conductivity and porosity but also produces a uniform Ni3Pt strongly adhering to the substrate, favoring rapid gas and electrolyte diffusion throughout the whole energy conversion process. Employed as an air electrode in zinc-air batteries, it exhibits a small charge and discharge gap of below 0.62 V at 10 mA cm-2, with long cycle life of 478 cycles under 10 min per cycle. Furthermore, benefitting from the structural advantages, a flexible device exhibits similar electrochemical performance even under the bending state. The high performance resulting from this type of integrated electrode in this work paves the way of a promising technique to fabricate air electrodes for zinc-air batteries.
Collapse
Affiliation(s)
- Thien Viet Pham
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Yang Li
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Wen‐Bin Luo
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Hai‐Peng Guo
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Xuan‐Wen Gao
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Jia‐Zhao Wang
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Hua‐Kun Liu
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
29
|
Jyoti Borah B, Saikia H, Goswami C, Kashyap Hazarika K, Yamada Y, Bharali P. Unique Half Embedded/Exposed PdFeCu/C Interfacial Nanoalloy as High‐Performance Electrocatalyst for Oxygen Reduction Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biraj Jyoti Borah
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | - Himadri Saikia
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | - Chiranjita Goswami
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | | | - Yusuke Yamada
- Department of Applied Chemistry & Bioengineering Graduate School of EngineeringOsaka City University 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Pankaj Bharali
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| |
Collapse
|
30
|
Increasing the stability of membrane-electrode assemblies based on Aquivion® membranes under automotive fuel cell conditions by using proper catalysts and ionomers. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Garcia I, Souza V, Hellriegel C, Scholten J, Collares F. Ionic Liquid–Stabilized Titania Quantum Dots Applied in Adhesive Resin. J Dent Res 2019; 98:682-688. [DOI: 10.1177/0022034519835203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Quantum dots (QDs; 1 to 10 nm) were recently synthesized by sol-gel and used as nonagglomerated nanoparticles in adhesive resin. The sol-gel process presented a low yield and resulted in a liquid product without stability. In this study, an imidazolium ionic liquid (IL; 1- n-butyl-3-methylimidazolium tetrafluoroborate, BMI.BF4) was used as stabilizing agent to synthesize titanium dioxide QDs (TiO2QDs/BMI.BF4) via a chemical route. The product was isolated as powder after washing, centrifuging, and drying. An experimental adhesive resin was formulated by mixing methacrylate monomers and a photoinitiator system. The TiO2QDs/BMI.BF4 powder was incorporated at 2.5 (G2.5%) and 5 (G5%) wt% in the adhesive resin, and one group remained without TiO2QDs/BMI.BF4 powder as the control (Gctrl). The TiO2QDs/BMI.BF4 powder was analyzed by micro-Raman spectroscopy, thermogravimetry, and transmission electron microscopy. The dispersion of TiO2QDs/BMI.BF4 powder was analyzed in the polymerized adhesive resin with transmission electron microscopy and fluorescence microscopy. The adhesive resins were evaluated for immediate and long-term antibacterial activity, cytotoxicity, polymerization behavior, degree of conversion, softening in solvent, immediate and long-term microtensile bond strength, and fracture pattern. The TiO2QDs/BMI.BF4 powder showed peaks of anatase and rutile and 26 wt% of BMI.BF4. TiO2QDs/BMI.BF4 presented a minimum size of 1.19 nm, a maximum size of 7.11 nm, and a mean ± SD size of 3.54 ± 1.08 nm. TiO2QDs/BMI.BF4 was dispersed in the adhesive resin without agglomeration, presenting intermittent luminescence by blinking. The addition of any tested concentration of TiO2QDs/BMI.BF4 powder provided immediate and long-term antibacterial activity without cytotoxic effect against the pulp fibroblasts. Furthermore, compared with Gctrl, G2.5% showed reliable polymerization behavior and degree of conversion without differences for softening in solvent with maintenance of bond adhesion to tooth immediately and over time. Thus, the incorporation of 2.5 wt% of TiO2QDs/BMI.BF4 in adhesive resin showed reliable physical, chemical, and biological properties.
Collapse
Affiliation(s)
- I.M. Garcia
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - V.S. Souza
- Laboratory of Molecular Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - C. Hellriegel
- Carl Zeiss Microscopy Inc., Harvard Center for Biological Imaging, Cambridge, MA, USA
| | - J.D. Scholten
- Laboratory of Molecular Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - F.M. Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
32
|
Xu R, Kang L, Knossalla J, Mielby J, Wang Q, Wang B, Feng J, He G, Qin Y, Xie J, Swertz AC, He Q, Kegnæs S, Brett DJL, Schüth F, Wang FR. Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. ACS NANO 2019; 13:2463-2472. [PMID: 30649849 DOI: 10.1021/acsnano.8b09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanostructured carbons with different pore geometries are prepared with a liquid-free nanocasting method. The method uses gases instead of liquid to disperse carbon precursors, leach templates, and remove impurities, minimizing synthetic procedures and the use of chemicals. The method is universal and demonstrated by the synthesis of 12 different porous carbons with various template sources. The effects of pore geometries in catalysis can be isolated and investigated. Two of the resulted materials with different pore geometries are studied as supports for Ru clusters in the hydrogenolysis of 5-hydroxymethylfurfural (HMF) and electrochemical hydrogen evolution (HER). The porous carbon-supported Ru catalysts outperform commercial ones in both reactions. It was found that Ru on bottleneck pore carbon shows a highest yield in hydrogenolysis of HMF to 2,5-dimethylfuran (DMF) due to a better confinement effect. A wide temperature operation window from 110 to 140 °C, with over 75% yield and 98% selectivity of DMF, has been achieved. Tubular pores enable fast charge transfer in electrochemical HER, requiring only 16 mV overpotential to reach current density of 10 mA·cm-2.
Collapse
Affiliation(s)
- Ruoyu Xu
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| | - Liqun Kang
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| | - Johannes Knossalla
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Jerrik Mielby
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Qiming Wang
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| | - Bolun Wang
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| | - Junrun Feng
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| | - Guanjie He
- Department of Chemistry , University College London , 20 Gordon Street , Bloomsbury, WC1H 0AJ London , United Kingdom
| | - Yudao Qin
- Department of Chemistry , University College London , 20 Gordon Street , Bloomsbury, WC1H 0AJ London , United Kingdom
| | - Jijia Xie
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| | - Ann-Christin Swertz
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Qian He
- Cardiff Catalyst Institute, School of Chemistry , Cardiff University , CF10 3AT Cardiff , United Kingdom )
| | - Søren Kegnæs
- Department of Chemistry , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Dan J L Brett
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Feng Ryan Wang
- Department of Chemical Engineering , University College London , Torrington Place , WC1E 7JE London , United Kingdom
| |
Collapse
|
33
|
Zhao X, Takao S, Kaneko T, Iwasawa Y. Key Factors for Simultaneous Improvements of Performance and Durability of Core-Shell Pt 3 Ni/Carbon Electrocatalysts Toward Superior Polymer Electrolyte Fuel Cell. CHEM REC 2018; 19:1337-1353. [PMID: 30338915 DOI: 10.1002/tcr.201800110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
It remains a big challenge to remarkably improve both oxygen reduction reaction (ORR) activity and long-term durability of Pt-M bimetal electrocatalysts simultaneously in the harsh cathode environment toward widespread commercialization of polymer electrolyte fuel cells (PEFC). In this account we found double-promotional effects of carbon micro coil (CMC) support on ORR performance and durability of octahedral Pt3 Ni nanoparticles (Oh Pt3 Ni/CMC). The Oh Pt3 Ni/CMC displayed remarkable improvements of mass activity (MA; 13.6 and 34.1 times) and surface specific activity (SA; 31.3 and 37.0 times) compared to those of benchmark Pt/C (TEC10E20E) and Pt/C (TEC10E50E-HT), respectively. Notably, the Oh Pt3 Ni/CMC revealed a negligible MA loss after 50,000 triangular-wave 1.0-1.5 VRHE (startup/shutdown) load cycles, contrasted to MA losses of 40 % (TEC10E20E) and 21.5 % (TEC10E50E-HT) by only 10,000 load cycles. It was also found that the SA increased exponentially with the decrease in the CO stripping peak potential in a series of Pt-M/carbon (M: Ni and Co), which predicts a maximum SA at the curve asymptote. Key factors for simultaneous improvements of performance and durability of core-shell Pt3 Ni/carbon electrocatalysts toward superior PEFC is also discussed.
Collapse
Affiliation(s)
- Xiao Zhao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications Chofu, Tokyo, 182-8585, Japan
| | - Shinobu Takao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications Chofu, Tokyo, 182-8585, Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications Chofu, Tokyo, 182-8585, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
34
|
Knossalla J, Paciok P, Göhl D, Jalalpoor D, Pizzutilo E, Mingers AM, Heggen M, Dunin-Borkowski RE, Mayrhofer KJJ, Schüth F, Ledendecker M. Shape-Controlled Nanoparticles in Pore-Confined Space. J Am Chem Soc 2018; 140:15684-15689. [DOI: 10.1021/jacs.8b07868] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Johannes Knossalla
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Paul Paciok
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Daniel Göhl
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Daniel Jalalpoor
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Enrico Pizzutilo
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Andrea M. Mingers
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Karl J. J. Mayrhofer
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Marc Ledendecker
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| |
Collapse
|
35
|
Chung DY, Yoo JM, Sung YE. Highly Durable and Active Pt-Based Nanoscale Design for Fuel-Cell Oxygen-Reduction Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704123. [PMID: 29359829 DOI: 10.1002/adma.201704123] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/04/2017] [Indexed: 05/16/2023]
Abstract
Fuel cells are one of the promising energy-conversion devices due to their high efficiency and zero emission. Although recent advances in electrocatalysts have been achieved using various material designs such as alloys, core@shell structures, and shape control, many issues still remain to be resolved. Especially, material design issues for high durability and high activity are recently accentuated owing to severe instability of nanoparticles under fuel-cell operating conditions. To address these issues, fundamental understanding of functional links between activity and durability is timely urgent. Here, the activity and durability of nanoscale materials are summarized, focusing on the nanoparticle size effect. In addition to phenomenological observation, two major degradation origins, including atomic dissolution and particle size increase, are discussed related to the activity decrease. Based on the fundamental understanding of nanoparticle degradation, recent promising strategies for durable Pt-based nanoscale electrocatalysts are introduced and the role of each design for durability enhancement is discussed. Finally, short comments related to the future direction of nanoparticle issues are provided in terms of nanoparticle synthesis and analysis.
Collapse
Affiliation(s)
- Dong Young Chung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| |
Collapse
|
36
|
Shao Q, Song J, Feng Y, Zhu X, Huang X. Partially Oxidized Bimetallic Nanocrystals as Efficient Non-Noble Metal Alcohol Electrooxidation Catalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qi Shao
- College of Chemistry Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| | - Jia Song
- College of Chemistry Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| | - Yonggang Feng
- College of Chemistry Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| | - Xing Zhu
- Testing & Analysis Center; Soochow University; Jiangsu 215123 P.R. China
| | - Xiaoqing Huang
- College of Chemistry Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| |
Collapse
|
37
|
Lu Q, Wang AL, Cheng H, Gong Y, Yun Q, Yang N, Li B, Chen B, Zhang Q, Zong Y, Gu L, Zhang H. Synthesis of Hierarchical 4H/fcc Ru Nanotubes for Highly Efficient Hydrogen Evolution in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801090. [PMID: 29956483 DOI: 10.1002/smll.201801090] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/11/2018] [Indexed: 05/27/2023]
Abstract
Hierarchical metal nanostructures containing 1D nanobuilding blocks have stimulated great interest due to their abundant active sites for catalysis. Herein, hierarchical 4H/face-centered cubic (fcc) Ru nanotubes (NTs) are synthesized by a hard template-mediated method, in which 4H/fcc Au nanowires (NWs) serve as sacrificial templates which are then etched by copper ions (Cu2+ ) in dimethylformamide. The obtained hierarchical 4H/fcc Ru NTs contain ultrathin Ru shells (5-9 atomic layers) and tiny Ru nanorods with length of 4.2 ± 1.1 nm and diameter of 2.2 ± 0.5 nm vertically decorated on the surface of Ru shells. As an electrocatalyst for the hydrogen evolution reaction in alkaline media, the hierarchical 4H/fcc Ru NTs exhibit excellent electrocatalytic performance, which is better than 4H/fcc Au-Ru NWs, commercial Pt/C, Ru/C, and most of the reported electrocatalysts.
Collapse
Affiliation(s)
- Qipeng Lu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - An-Liang Wang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yue Gong
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinbai Yun
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nailiang Yang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing Li
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yun Zong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Lin Gu
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
38
|
Beckord S, Brimaud S, Behm RJ. The performance of structurally well-defined AgxPt1−x/Pt(111) surface alloys in the oxygen reduction reaction – An atomic-scale picture. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Ortatatlı Ş, Knossalla J, Schüth F, Weidenthaler C. Monitoring the formation of PtNi nanoalloys supported on hollow graphitic spheres using in situ pair distribution function analysis. Phys Chem Chem Phys 2018; 20:8466-8474. [PMID: 29349476 DOI: 10.1039/c7cp07840d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article aims to address the formation and the structural disordering/ordering phenomena of PtNi nanoalloys supported on hollow graphitic spheres (HGSs) using pair distribution function (PDF) analysis under ex situ/in situ data collection conditions. Starting from small nanoparticles (10-15 Å in diameter) embedded in HGSs, structural changes were monitored during stepwise heating and cooling of the sample using in situ PDF analysis. In order to evaluate the conventional synthesis route for the production of PtNi nanoalloys supported on HGSs, ex situ PDF experiments were performed before and after heat treatment in a furnace. The studies demonstrate that the local structure of the in situ synthesised PtNi nanoalloy differs from its ex situ synthesised counterpart. A partially ordered PtNi nanoalloy was obtained during the stepwise in situ cooling of the precursor, whereas the conventional ex situ synthesis route did not lead to the formation of an ordered crystal structure. In this study we could show that rapid heating and cooling results in a disordered PtNi alloy whereas slow heating and cooling leads to disorder-order transitions in PtNi.
Collapse
Affiliation(s)
- Ş Ortatatlı
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|
40
|
Sun X, Huang B, Cui X, E B, Feng Y, Huang X. Platinum-Copper Rhombic Dodecahedral Nanoframes with Tunable Channels as Efficient Bifunctional Electrocatalysts for Fuel-Cell Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201701768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| | - Bin Huang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices; East China University of Technology; Nanchang Jiangxi 330013 P.R. China
| | - Xiaoneng Cui
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| | - Bin E
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| | - Yonggang Feng
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Jiangsu 215123 P.R. China
| |
Collapse
|
41
|
Roy C, Knudsen BP, Pedersen CM, Velázquez-Palenzuela A, Christensen LH, Damsgaard CD, Stephens IEL, Chorkendorff I. Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and −Rare-Earth Alloys for Oxygen Reduction. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03972] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Claudie Roy
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Brian P. Knudsen
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christoffer M. Pedersen
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Center
for Nano- and Micro technology, Danish Technological Institute (DTI), Gregersenvej, DK-2630 Taastrup, Denmark
| | - Amado Velázquez-Palenzuela
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Center
for Nano- and Micro technology, Danish Technological Institute (DTI), Gregersenvej, DK-2630 Taastrup, Denmark
| | - Leif H. Christensen
- Center
for Nano- and Micro technology, Danish Technological Institute (DTI), Gregersenvej, DK-2630 Taastrup, Denmark
| | - Christian Danvad Damsgaard
- Center
for Electron Nanoscopy, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ifan E. L. Stephens
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ib Chorkendorff
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
42
|
Jovanovič P, Petek U, Hodnik N, Ruiz-Zepeda F, Gatalo M, Šala M, Šelih VS, Fellinger TP, Gaberšček M. Importance of non-intrinsic platinum dissolution in Pt/C composite fuel cell catalysts. Phys Chem Chem Phys 2018; 19:21446-21452. [PMID: 28759065 DOI: 10.1039/c7cp03192k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dissolution of different platinum-based nanoparticles deposited on a commercial high-surface area carbon (HSAC) support in thin catalyst films is investigated using a highly sensitive electrochemical flow cell (EFC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS). The previously reported particle-size-dependent dissolution of Pt is confirmed on selected industrial samples with a mean Pt particle size ranging from 1 to 4.8 nm. This trend is significantly altered when a catalyst is diluted by the addition of HSAC. This indicates that the intrinsic dissolution properties are masked by local oversaturation phenomena, the so-called confinement effect. Furthermore, by replacing the standard HSAC support with a support having an order of magnitude higher specific surface area (a micro- and mesoporous nitrogen-doped high surface area carbon, HSANDC), Pt dissolution is reduced even further. This is due to the so-called non-intrinsic confinement and entrapment effects of the (large amount of) micropores and small mesopores doped with N atoms. The observed more effective Pt re-deposition is presumably induced by local Pt oversaturation and the presence of nitrogen nucleation sites. Overall, our study demonstrates the high importance and beneficial effects of porosity, loading and N doping of the carbon support on the Pt stability in the catalyst layer.
Collapse
Affiliation(s)
- Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia. and Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Urša Petek
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia. and Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Catalysis and Chemical reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia. and Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vid Simon Šelih
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Tim Patrick Fellinger
- Max Planck Institute of Colloids and Interfaces, Colloids Department, Am Mühlenberg 1, Potsdam, Germany
| | - Miran Gaberšček
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia. and Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Zhang C, Zhang R, Gao X, Cheng C, Hou L, Li X, Chen W. Small Naked Pt Nanoparticles Confined in Mesoporous Shell of Hollow Carbon Spheres for High-Performance Nonenzymatic Sensing of H 2O 2 and Glucose. ACS OMEGA 2018; 3:96-105. [PMID: 30023768 PMCID: PMC6045407 DOI: 10.1021/acsomega.7b01549] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/18/2017] [Indexed: 05/30/2023]
Abstract
Nonenzyme direct electrochemical sensing of hydrogen peroxide and glucose by highly active nanomaterial-modified electrode has attracted considerable attention. Among the reported electrochemical sensing materials, hollow carbon sphere (HCS) is an attractive carbon support because of its large specific surface area, porous structure, and easy accessibility for target molecules. In this study, naked Pt nanoparticles with average size of 3.13 nm are confined in mesoporous shells of hollow carbon spheres (Pt/HCS) by using one-step synthesis, which can not only produce highly dispersed Pt nanoparticles with clean surface, but also avoid the relatively slow impregnation-reduction process. The surface area of the obtained Pt/HCS (566.30 m2 g-1) is larger than that of HCS, attributing to the enlarged surface area after Pt nanoparticles deposition. The average pore width of Pt/HCS (3.33 nm) is smaller than that of HCS (3.84 nm), indicating the filling of Pt nanoparticles in the mesopores of carbon shells. By using the as-synthesized Pt/HCS as nonenzymatic sensing material, H2O2 and glucose can be detected with high sensitivity and selectivity. The linear range toward H2O2 sensing is from 0.3 to 2338 μM, and the limit of detection (LOD) is 0.1 μM. For glucose sensing, Pt/HCS exhibited two linear ranges from 0.3 to 10 mM and from 10 to 50 mM with an LOD of 0.1 mM. In addition, the Pt/HCS exhibited higher electrochemical stability than commercial Pt/C in acid solution. The present study demonstrates that Pt/HCS is a promising sensing material for electrochemical detection of both H2O2 and glucose.
Collapse
Affiliation(s)
- Chunmei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun 130022, Jilin, China
- School
of Chemistry and Chemical Engineering, University
of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100039, China
| | - Ruizhong Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun 130022, Jilin, China
- School
of Chemistry and Chemical Engineering, University
of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100039, China
| | - Xiaohui Gao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun 130022, Jilin, China
- School
of Chemistry and Chemical Engineering, University
of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100039, China
| | - Chunfeng Cheng
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun 130022, Jilin, China
- School
of Chemistry and Chemical Engineering, University
of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100039, China
| | - Lin Hou
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun 130022, Jilin, China
- College
of Chemistry & Materials Science, Northwest
University, 1 Xuefu Avenue,
Guodu Education and Hi-Tech Industries Zone, Chang’an
District, Xi’an 710069, China
| | - Xiaokun Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun 130022, Jilin, China
| | - Wei Chen
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun 130022, Jilin, China
| |
Collapse
|
44
|
Labrador NY, Songcuan EL, De Silva C, Chen H, Kurdziel SJ, Ramachandran RK, Detavernier C, Esposito DV. Hydrogen Evolution at the Buried Interface between Pt Thin Films and Silicon Oxide Nanomembranes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02668] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Natalie Y. Labrador
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Eva L. Songcuan
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Chathuranga De Silva
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Han Chen
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Sophia J. Kurdziel
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Ranjith K. Ramachandran
- Ghent University, Department of Solid State Sciences,
CoCooN, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Christophe Detavernier
- Ghent University, Department of Solid State Sciences,
CoCooN, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Daniel V. Esposito
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| |
Collapse
|
45
|
Asset T, Job N, Busby Y, Crisci A, Martin V, Stergiopoulos V, Bonnaud C, Serov A, Atanassov P, Chattot R, Dubau L, Maillard F. Porous Hollow PtNi/C Electrocatalysts: Carbon Support Considerations To Meet Performance and Stability Requirements. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03539] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tristan Asset
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Univ.
Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
- University of Liège, Department of Chemical
Engineering-Nanomaterials, Catalysis, Electrochemistry, B6a, Sart-Tilman, 4000 Liège, Belgium
| | - Nathalie Job
- University of Liège, Department of Chemical
Engineering-Nanomaterials, Catalysis, Electrochemistry, B6a, Sart-Tilman, 4000 Liège, Belgium
| | - Yan Busby
- University of Namur ASBL, Department of Physics, Research
Center in Physics of Matter and Radiation (PMR), LISE Laboratory, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Alexandre Crisci
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 38000 Grenoble, France
| | - Vincent Martin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Univ.
Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| | - Vaios Stergiopoulos
- University of Liège, Department of Chemical
Engineering-Nanomaterials, Catalysis, Electrochemistry, B6a, Sart-Tilman, 4000 Liège, Belgium
| | - Céline Bonnaud
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Univ.
Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| | - Alexey Serov
- Pajarito Powder LLC, Albuquerque, New Mexico 87109, United States
- Center for
Micro-Engineered Materials and Department of Chemical and Biological
Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Plamen Atanassov
- Center for
Micro-Engineered Materials and Department of Chemical and Biological
Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Raphaël Chattot
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Univ.
Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Univ.
Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Univ.
Savoie Mont Blanc, LEPMI, 38000 Grenoble, France
| |
Collapse
|
46
|
Hydrogenation of diesters on copper catalyst anchored on ordered hierarchical porous silica: Pore size effect. J Catal 2018. [DOI: 10.1016/j.jcat.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Chen H, Zhang X, Zhang J, Wang Q. Tuning the decarboxylation selectivity for deoxygenation of vegetable oil over Pt–Ni bimetal catalysts via surface engineering. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02440a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alloy and bimetal structures are particularly important in developing highly active catalysts for energy conversion.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiangwen Zhang
- Key Laboratory of Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Junfeng Zhang
- State Key Laboratory of Engines
- School of Mechanical Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Qingfa Wang
- Key Laboratory of Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
48
|
Nakatsuka K, Yoshii T, Kuwahara Y, Mori K, Yamashita H. Controlled Pyrolysis of Ni-MOF-74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size-Selective Hydrogenation. Chemistry 2017; 24:898-905. [DOI: 10.1002/chem.201704341] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Kazuki Nakatsuka
- Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Takeharu Yoshii
- Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB); Kyoto University; Katsura, Kyoto 615-8520 Japan
| | - Kohsuke Mori
- Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB); Kyoto University; Katsura, Kyoto 615-8520 Japan
- JST; PRESTO; 4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan
| | - Hiromi Yamashita
- Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB); Kyoto University; Katsura, Kyoto 615-8520 Japan
| |
Collapse
|
49
|
Zhang C, Zhang R, Li X, Chen W. PtNi Nanocrystals Supported on Hollow Carbon Spheres: Enhancing the Electrocatalytic Performance through High-Temperature Annealing and Electrochemical CO Stripping Treatments. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29623-29632. [PMID: 28813593 DOI: 10.1021/acsami.7b04489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PtNi nanoparticles have been proved to be a type of highly efficient electrocatalyst for the oxygen reduction reaction (ORR) among the Pt-based nanomaterials. However, how to improve the surface catalytic activity and stability of polymer-stabilized Pt-based nanocrystals is still a critical issue for their application in fuel cells. In this work, a one-step solvothermal process was used to synthesize PVP-stabilized PtNi nanocubes supported on hollow carbon spheres. With optimized metal precursor ratio (Pt/Ni = 1:1) and solvothermal temperature (130 °C), PtNi nanocrystals with uniform size and cubic shape can be synthesized and highly dispersed on hollow carbon spheres. To improve the electrocatalytic activity of the PtNi nanocrystals, the synthesized composite was treated by a heating annealing at 300 °C and a subsequent electrochemical CO stripping process. It was found that the two-step treatment can significantly enhance the catalytic activity of the PtNi nanocrystals for ORR with high durability. In addition, the prepared PtNi composite also showed higher catalytic activity and stability for methanol oxidation. The obtained peak current density on the present catalyst can reach 3.89 A/mgPt, which is 9 times as high as commercial Pt/C (0.43 A/mgPt). The present study not only demonstrates a general method to synthesize hollow carbon sphere-supported nanoparticle catalysts but also provides an efficient strategy to active the surface activity of nanoparticles.
Collapse
Affiliation(s)
- Chunmei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Ruizhong Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Xiaokun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
50
|
Chen H, Zhang X, Wang Q. Hydroconversion of C18 fatty acids using PtNi/Al2O3: Insight in the role of hydroxyl groups in Al2O3. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|