1
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
2
|
Jager J, Rasker S, Arrizabalaga-Larrañaga A, Boerrigter-Eenling R, Rapallini M, Blokland M. Rapid identification of antibiotic residues in bovine kidney using coated blade spray-mass spectrometry. Anal Bioanal Chem 2024:10.1007/s00216-024-05605-1. [PMID: 39438354 DOI: 10.1007/s00216-024-05605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The use of certain antibiotics in food-producing animals is allowed in Europe following Regulation (EU) 2017/625. However, use could result in antibiotic residues in foodstuffs of animal origin. Maximum residue limits (MRLs) are in place to protect consumers. For monitoring purposes, animal matrices are tested to verify their compliance with these MRLs. Initially, matrices of (slaughtered) food animals are screened, often using a microbiological assay. Faster screening tests for antibiotics would be an advantage for control laboratories. Therefore, the present study describes, for the first time, the use of coated blade spray (CBS) followed by direct mass spectrometry (MS) analysis for the screening of tetracyclines, sulfonamides, quinolones, and macrolides residues from the renal area of intact bovine kidneys. An optimized workflow using two different desorption/ionization solutions per blade allowed screening of target compounds within 1 min per sample. The proof-of-principle of the CBS-MS method is validated according to (EU) 2021/808, presenting CCβ screening values of 0.1 × MRL for 43 analytes, 0.5 × MRL for 4 analytes, and 2.5 µg kg-1 for the prohibited substance dapsone, respectively. The developed method was successfully applied to seven official control samples of bovine kidneys. One of these samples was found to be positive using the CBS-MS method, which was confirmed as a true positive by LC-MSMS analysis. The developed method demonstrates that CBS devices can directly extract and analyze kidney samples for food safety testing.
Collapse
Affiliation(s)
- Josha Jager
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands.
| | - Sjors Rasker
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Ane Arrizabalaga-Larrañaga
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Rita Boerrigter-Eenling
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Michel Rapallini
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6700 AE, Wageningen, The Netherlands
| |
Collapse
|
3
|
Zhou W, Lan Q, Dutt M, Pawliszyn J. 3D Printed Coated Blade Spray-Mass Spectrometry Devices. Anal Chem 2024; 96:16520-16524. [PMID: 39395199 DOI: 10.1021/acs.analchem.4c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Coated blade spray-mass spectrometry (CBS-MS) has emerged as a powerful tool for the rapid screening of target compounds at trace levels in complex biological matrices. Despite its potential, the broader adoption of CBS-MS technology has been hindered by the lack of commercially available, user-friendly MS interfaces and extraction devices. In this work, we present comprehensive CBS-MS solutions developed using 3D printing, including a versatile MS interface and two extraction devices tailored to different analytical needs: one is compatible with LC vials for large-volume samples, while the other is optimized for single-drop blood analysis. The MS interface features a novel design that separates the immobilization station from the blade holder, significantly simplifying the operational workflow and minimizing the contamination risks and hazards associated with manual blade handling. The first extraction cartridge can process 48 samples simultaneously with an average sample preparation time of less than 20 s, while the second extraction device enables extraction from 8 single-drop blood samples via on-blade extraction. The developed devices were successfully tested for the rapid screening of seven drugs in both urine and single-drop blood samples, demonstrating a promising analytical performance. Additionally, potential contamination issues related to the use of 3D-printed materials as extraction phases were examined, emphasizing the importance of ensuring that 3D-printed materials do not leach contaminants into samples or solvents and contaminate the MS.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qizhen Lan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Malvika Dutt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Millán-Santiago J, Calero-Cañuelo C, Lucena R, Cárdenas S. Coupling microextraction techniques with substrate spray mass spectrometry, towards a faster analysis of biological samples. J Pharm Biomed Anal 2024; 253:116535. [PMID: 39454545 DOI: 10.1016/j.jpba.2024.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Direct coupling sample preparation with mass spectrometry has risen as a reliable analytical strategy in bioanalysis as it provides a high sample throughput. This approach avoids an exhaustive separation step, thus being cost-effective compared to the traditional analytical workflow. The selectivity and sensitivity levels rely on the mass spectrometric analysis and the appropriate selection of the sample preparation. Miniaturized extraction techniques have demonstrated particular utility in this coupling thanks to their ability to pre-concentrate the target analytes while removing many of the matrix components. This article reviews the main developments in combining microextraction techniques with mass spectrometry based on electrospray ionization, a consolidated ionization technique in bioanalysis. The article aims to provide an overview of the potential of these techniques by describing the most significant examples. The different approaches are classified according to the materials or devices used to perform the extraction and analysis.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Carlos Calero-Cañuelo
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| |
Collapse
|
5
|
Gu H, Li J. Mathematical model of ion chronogram from in-tube solid-phase microextraction device coupled with mass spectrometry and optimization framework. J Chromatogr A 2024; 1731:465167. [PMID: 39033707 DOI: 10.1016/j.chroma.2024.465167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
A mathematical description and experimental outputs exhibited that an ion chronogram from an in-tube solid-phase microextraction (SPME) device linked with mass spectrometry (in-tube-SPME-MS) generally appears as a right-skew unimodal signal with a heavy right tail. Analogous to liquid chromatography coupled with mass spectrometry (LC-MS), in-tube-SPME-MS can utilize the area under its produced ion chronogram for regression analysis and has been shown to be a potential approach for fast quantification of analyte. Different level of unimodity of signal in the ion chronogram could positively or negatively affect the choice of the area used for quantification and finally impact on analysis sensitivity and time efficiency of in-tube-SPME-MS. In the paper, we showed that different in-tube SPME design choices and elution experimental setups produce ion chronograms with controllable varying unimodal peak shape patterns. An improved mathematical model was built based on the plate theory of chromatography and the Van Deemter equation to quantitatively describe the elution process from in-tube-SPME device. A computer simulation was implemented to predict ion chronograms and the results were compared with experimental ion chronograms to show the effectiveness of the model. An optimization framework was further presented based on the model to identify optimal device designs (length and diameter of device) and experimental parameters (flow rate) to track targeted ion chronograms with "desired" peak shape patterns. Empirical elution experiments with the in-tube SPME devices adopting optimized geometric parameters and optimal experimental setups confirmed the consistency between the experimental ion chronograms and the numerical simulations to a certain level.
Collapse
Affiliation(s)
- Hao Gu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiwen Li
- Hanbot Institute, Yovole Networks Inc., Shanghai 200433, China.
| |
Collapse
|
6
|
Zhong C, Deng J, Yang Y, Zeng H, Feng L, Luan T. Rapid and sensitive determination of legacy and emerging per- and poly-fluoroalkyl substances with solid-phase microextraction probe coupled with mass spectrometry. Talanta 2024; 276:126233. [PMID: 38739954 DOI: 10.1016/j.talanta.2024.126233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study was designed to develop a rapid and sensitive method for quantifying legacy and emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples with solid-phase microextraction (SPME) coupled with mass spectrometry (MS). An innovative SPME probe was fabricated via in situ polymerization, and the probe coating was optimized with response surface methodology to maximize the fluorine-fluorine interactions and electrostatic properties and ensure high selectivity for the target PFASs with enrichment factors of 48-491. The coupled SPME and MS provided a rapid and sensitive method for analyses of PFASs, with excellent linearity (r ≥ 0.9962) over the concentration range 0.001-1 μg/L and remarkably low detection limits of 0.1-13.0 ng/L. This method was used to analyze trace PFASs in tap water, river water, and wastewater samples and proved to be a simple and efficient analytical method for selective enrichment and detection of contaminants in the environment.
Collapse
Affiliation(s)
- Chunfei Zhong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Haishen Zeng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Longkuan Feng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
7
|
Zhang M, Shang R, Zhang H, Hong Z, Yu K, Kan G, Xiong H, Song D, Jiang Y, Jiang J. Microsyringe-based slug-flow microextraction for rapid and accurate determination of antibiotics in highly saline seawater. Anal Chim Acta 2024; 1313:342790. [PMID: 38862205 DOI: 10.1016/j.aca.2024.342790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Extensive use of antibiotics leads to widespread environmental pollution, endangering ecosystems, and human health. It is particularly concerning, posing global threats requiring urgent attention and action. In this regard, the shift to mass spectrometry in determining antibiotics is highly desirable. Significant progress has been made in analyzing and optimizing the sensitivity of high-salt samples. However, the persistence of cumbersome operational procedures presents a significant challenge to this shift. Thus, the persistence of complex operational procedures needs to be addressed. RESULTS In this study, a rapid and direct method for determining antibiotics in highly saline environmental water samples using microsyringe-based slug-flow microextraction (MSFME)-droplet spray ionization (DSI) mass spectrometry (MS) has been described. The proposed method successfully detected clarithromycin, ofloxacin, and sulfadimidine in seawater within a linear range of 1-1200 ng mL-1, with low limits of detection of 0.19 ng mL-1, 0.17 ng mL-1, and 0.20 ng mL-1, respectively (Signal/Noise = 3). Additionally, spiked real seawater samples of all three antibiotics demonstrated satisfactory recoveries (95.1-107.5%) and precision (RSD≤8.8%). The MSFME-treated high-salt sample (3.5 wt%) showed a mass spectral response intensity 4-5 orders of magnitude higher than the untreated medium-salt sample (0.35 wt%). Furthermore, exploration of the applicability of MSFME showed that it is suitable not only for high-salinity (3.5 wt%) samples but also for salt-free or low-salt and hard water samples rich in calcium and magnesium ions. SIGNIFICANCE Comparisons with other methods, complex laboratory setups for sample processing are now simplified to a single step, completing the entire process, including desalination and detection, MSFME-DSI-MS provides faster results in less than 1 min while maintaining sensitivity comparable to that of other detection methods. In conclusion, this advancement provides an exceptionally simplified protocol for the rapid, highly sensitive, and quantitative determination of antibiotics in environmental water samples.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Ruonan Shang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China
| | - Ziying Hong
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China
| | - Huixia Xiong
- Shanxi Provincial Center for Disease Control and Prevention, Xiaonan Guan Street 8, Taiyuan, 030001, China
| | - Daqian Song
- College of Chemistry, Jilin University, Jilin, Changchun, 130012, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China.
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China.
| |
Collapse
|
8
|
Temel ER, Eroğlu AE, Salih B, Boyaci E. Novel electrospun-based extractive probes for rapid determination of clinically important compounds in human plasma. Anal Chim Acta 2024; 1312:342750. [PMID: 38834264 DOI: 10.1016/j.aca.2024.342750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Coated blade spray (CBS) represents an innovative approach that utilizes solid-phase microextraction principles for sampling and sample preparation. When combined with ambient mass spectrometry (MS), it can also serve as an electrospray ionization source. Therefore, it became a promising tool in analytical applications as it can significantly reduce the analysis time. However, the current CBS coatings are based on the immobilization of extractive particles in bulk polymeric glue, which constrains the diffusion of the analytes to reach the extractive phase; therefore, the full reward of the system cannot be taken at pre-equilibrium. This has sparked the notion of developing new CBS probes that exhibit enhanced kinetics. RESULTS With this aim, to generate a new extractive phase with improved extraction kinetics, poly(divinylbenzene) (PDVB) nanoparticles were synthesized by mini-emulsion polymerization and then immobilized into sub-micrometer (in diameter) sized polyacrylonitrile fibers which were obtained by electrospinning method. Following the optimization and characterization studies, the electrospun-coated blades were used to determine cholesterol, testosterone, and progesterone in plasma spots using the CBS-MS approach. For testosterone and progesterone, 10 ng mL-1 limits of quantification could be obtained, which was 200 ng mL-1 for cholesterol in spot-sized samples without including any pre-treatment steps to samples prior to extraction. SIGNIFICANCE The comparison of the initial kinetics for dip-coated and electrospun-coated CBS probes proved that the electrospinning process could enhance the extraction kinetics; therefore, it can be used for more sensitive analyses. The total analysis time with this method, from sample preparation to instrumental analysis, takes only 7 min, which suggests that the new probes are promising for fast diagnostic applications.
Collapse
Affiliation(s)
- Ezgi Rana Temel
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkiye
| | - Ahmet E Eroğlu
- Department of Chemistry, İzmir Institute of Technology, Urla, 35430, İzmir, Turkiye
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, 06800, Turkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkiye.
| |
Collapse
|
9
|
Öztürk M, Salih B, Eroğlu AE, Boyaci E. Development and functionalization of electrospun fiber coated thin film microextraction devices for rapid mass spectrometric determination of biologically important polar molecules. J Pharm Biomed Anal 2024; 243:116074. [PMID: 38437785 DOI: 10.1016/j.jpba.2024.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Rapid diagnosis of diseases is one of the challenging areas in clinical research. From the analytical chemist's perspective, the main challenges are isolating the compounds from the bio-specimen and lengthy analysis times. In this regard, solid phase microextraction offers a platform to address the abovementioned challenges. Moreover, its sharp tip-thin film geometry, known as coated blade spray (CBS), can enhance the extraction and act as an ionization source in direct mass spectrometric analysis. In this study, a new CBS device specifically designed for polar analytes was prepared and optimized to determine urinary metabolites. For this purpose, polyacrylonitrile (PAN) was selected as a base polymer as it can be electrospun to form a nanofibrous structure, and it can be modified with weak ion exchange moieties to interact with polar analytes. Following the electrospinning of PAN, hydrolysis was optimized, and conditions leading to sufficient extraction enhancement without dissolving the polymer were obtained when probes were treated with 5.0 M of NaOH for 2.5 h. Using the coated blades prepared as explained, the evaluation of various extraction conditions showed that 5 min is sufficient for equilibrium extraction. In addition, the solution's ionic strength and pH significantly affect the extraction. Optimum sorption was obtained at no salt added and pH 7.0 conditions. The CBS-MS optimization showed that 10.0 µL of ACN/MeOH/H2O (40:40:20, v/v/v) with formic acid kept for 15 seconds on the blade before voltage application leads to the highest signal. The limits of quantification of the analytes are between 50 and 100 ng/mL.
Collapse
Affiliation(s)
- Merve Öztürk
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara 06800, Türkiye
| | - Ahmet E Eroğlu
- Department of Chemistry, İzmir Institute of Technology Urla, İzmir 35430, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
10
|
Zhang M, Shang R, Hong Z, Zhang H, Yu K, Kan G, Xiong H, Song D, Jiang Y, Jiang J. One-step online analysis of antibiotics in highly saline seawater by nano-based slug-flow microextraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134039. [PMID: 38492401 DOI: 10.1016/j.jhazmat.2024.134039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The transition to mass spectrometry (MS) in the analysis of antibiotics in the marine environment is highly desirable, particularly in the enhancement of sensitivity for high-salinity (3.5 wt%) seawater samples. However, the persistence of complex operational procedures poses substantial challenges to this transition. In this study, a rapid method for the online analysis of antibiotics in seawater samples via nano-electrospray ionization (nESI) MS based on slug-flow microextraction (SFME) has been proposed. Comparisons with other methods, complex laboratory setups for sample processing are now seamlessly integrated into a single online step, completing the entire process, including desalination and detection, SFME-nESI-MS provides faster results in less than 2 min while maintaining sensitivity comparable to that of other detection methods. Using SFME-nESI, six antibiotics in high-salinity (3.5 wt%) seawater samples have been determined in both positive and negative ion modes. The proposed method successfully detected clarithromycin, ofloxacin, and sulfadimidine in seawater within a linear range of 1-1000 ng mL-1 and limit of detection (LOD) of 0.23, 0.06, and 0.28 ng mL-1, respectively. The method recovery was from 92.8% to 107.3%, and the relative standard deviation was less than 7.5%. In addition, the response intensity of SFME-nESI-treated high-salinity (3.5 wt%) samples surpassed that of untreated medium-salinity (0.35 wt%) samples by two to five orders of magnitude. This advancement provides an exceptionally simplified protocol for the online rapid, highly sensitive, and quantitative determination of antibiotics in high-salinity (3.5 wt%) seawater.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ruonan Shang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Ziying Hong
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Huixia Xiong
- Shanxi Provincial Center for Disease Control and Prevention, Xiaonan Guan Street 8, Taiyuan 030001, China
| | - Daqian Song
- College of Chemistry, Jilin University, Jilin, Changchun 130012, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China.
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
11
|
Huang Y, Zheng Y, Zuo Q, Zhang Z, Zhu L, Li Y, Zhang Z. Surface charge-induced electrospray for high-throughput analysis of complex samples and electrochemical reaction intermediates using mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2002-2008. [PMID: 38497481 DOI: 10.1039/d4ay00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Electrospray-related ion sources are promising for direct mass spectrometric analysis of complex samples, but current protocols suffer from complicated components and low analytical sensitivity. Here, we propose a surface charge-induced electrospray ionization (SCIESI) inspired by flashover on an insulator surface under high voltage. This protocol not only effectively avoids contact between the sample solution and metal electrode, but also allows completion of the entire analytical process in less than 40 seconds and limits of detection in the pictogram per milliliter range. SCIESI coupled to mass spectrometry can also be used to monitor electro-chemical processes, and a number of oxidation and reduction reactions have been studied, demonstrating that it is a powerful tool for understanding electrochemical reaction mechanisms.
Collapse
Affiliation(s)
- Yajie Huang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Qianqian Zuo
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Zhiming Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Lixuan Zhu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
12
|
Hisatsune K, Murata T, Taniguchi M, Asano T, Ogata K, Iguchi A, Zaitsu K. Development of a rapid-fire drug screening method by probe electrospray ionization tandem mass spectrometry for human urine (RaDPi-U). Anal Bioanal Chem 2024:10.1007/s00216-024-05215-x. [PMID: 38523158 DOI: 10.1007/s00216-024-05215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Drug screening tests are mandatory in the search for drugs in forensic biological samples, and immunological methods and mass spectrometry (e.g., gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry) are commonly used for that purpose. However, these methods have some drawbacks, and developing new screening methods is required. In this study, we develop a rapid-fire drug screening method by probe electrospray ionization tandem mass spectrometry (PESI-MS/MS), which is an ambient ionization mass spectrometry method, for human urine, named RaDPi-U. RaDPi-U is carried out in three steps: (1) mixing urine with internal standard (IS) solution and ethanol, followed by vortexing; (2) pipetting the mixture onto a sample plate for PESI; and (3) rapid-fire analysis by PESI-MS/MS. RaDPi-U targets 40 forensically important drugs, which include illegal drugs, hypnotics, and psychoactive substances. The analytical results were obtained within 3 min because of the above-mentioned simple workflow of RaDPi-U. The calibration curves of each analyte were constructed using the IS method, and they were quantitatively valid, resulting in good linearity (0.972-0.999) with a satisfactory lower limit of detection and lower limit of quantitation (0.01-7.1 ng/mL and 0.02-21 ng/mL, respectively). Further, both trueness and precisions were 28% or less, demonstrating the high reliability and repeatability of the method. Finally, we applied RaDPi-U to three postmortem urine specimens and successfully detected different drugs in each urine sample. The practicality of the method is proven, and RaDPi-U will be a strong tool as a rapid-fire drug screening method not only in forensic toxicology but also in clinical toxicology.
Collapse
Affiliation(s)
- Kazuaki Hisatsune
- Forensic Science Laboratory, Aichi Prefectural Police Headquarters, 2-1-1, Sannomaru, Naka-ku, Nagoya, 460-8502, Japan.
| | - Tasuku Murata
- Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Masaru Taniguchi
- Nagoya City Public Health Research Institute, Sakurazaka, Moriyama-ku, Nagoya, 463-8585, Japan
| | - Tomomi Asano
- Department of Human Life and Environment, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, 463-8521, Japan
| | - Koretsugu Ogata
- Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Research Laboratory On Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-Data Analytics Laboratory (MiWA-Lab.), Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama, 649-6493, Japan.
- In Vivo Real-Time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
13
|
Thoben C, Stadtler JJ, Simon PR, Raddatz CR, Sehlmeyer M, Zimmermann S. Coated Blade Spray Ion Mobility Spectrometry. Anal Chem 2024; 96:3593-3599. [PMID: 38347729 PMCID: PMC10902811 DOI: 10.1021/acs.analchem.3c05586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
Coated blade spray (CBS) is a microextraction technology with blades that serve as both the extraction device and the electrospray ionization (ESI) emitter. CBS is designed for easy and rapid extraction of analytes in complex matrices as well as ESI directly from the blade. The technology selectively enriches the components of interest on a coated metal blade. The coating consists of a selective polymer. So far, CBS has only been coupled with mass spectrometry but never with ion mobility spectrometry (IMS), where ions are separated and detected based on their ion mobility in a drift gas under the influence of an electric field, while instrumentation is compact and easy to operate so that the advantages of CBS can be particularly well exploited. Therefore, this work focuses on coupling CBS with our previously described ESI-IMS. The ion mobility spectrometer has a drift length of only 75 mm and provides a high resolving power of RP = 100. In this work, preliminary measurements of CBS-IMS are presented. In particular, the detection of benzodiazepines and ketamine in drinks and the pesticide isoproturon in water samples is shown to demonstrate the feasibility of CBS-IMS.
Collapse
Affiliation(s)
- Christian Thoben
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Jannie J. Stadtler
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Paul R. Simon
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Merle Sehlmeyer
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| |
Collapse
|
14
|
Ma X, Fernández FM. Triboelectric Nanogenerator-Coated Blade Spray Mass Spectrometry for Volume-Limited Drug Analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117164. [PMID: 37981917 PMCID: PMC10653212 DOI: 10.1016/j.ijms.2023.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The demand for analytical tools for the analysis of low-concentration volume-limited samples has driven researchers to explore new analytical approaches. Mass spectrometry excels at trace analysis due to its high sensitivity and specificity, whereas ambient methods simplify, or completely eliminate sample preparation. Herein, we report a triboelectric nanogenerator-coated blade spray ambient mass spectrometry (TENG-CBS MS) method for the extraction, elution, and ionization of volume-limited, low-concentration small molecule drug samples with minimum sample preparation. Using a TENG device as the CBS power supply, we show it is possible to extract and analyze drug samples in a pulsed fashion at sub-nanogram to picogram levels with good stability and reproducibility. A wide range of analytes polarities were tested. Results indicated this method could also be useful for the analysis of low-level analytes in precious, volume limited samples in a simple single step.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
15
|
Drabińska N, Marcinkowska MA, Wieczorek MN, Jeleń HH. Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules 2023; 28:7985. [PMID: 38138475 PMCID: PMC10745519 DOI: 10.3390/molecules28247985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.
Collapse
Affiliation(s)
| | | | | | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (N.D.); (M.A.M.); (M.N.W.)
| |
Collapse
|
16
|
Deng J, Xie J, Lu Q, Xiao X, Wu Y, Liu N, Luo L, Luan T, Yang Y. Nanospray Laser-Induced Plasma Ionization Mass Spectrometry for Rapid and Sensitive Analysis of Polycyclic Aromatic Hydrocarbons and Halogenated Derivatives. Anal Chem 2023; 95:16791-16795. [PMID: 37937882 DOI: 10.1021/acs.analchem.3c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and halogenated derivatives are a series of environmental pollutants with potential toxicity and health risks on biosystems and the ecosystem. Rapid and sensitive analysis of trace PAHs and halogenated PAHs in complex environmental samples is a challenging topic for analytical science. Here we report the development of a nanospray laser-induced plasma ionization MS method for rapid and sensitive analysis of trace PAHs and halogenated PAHs under ambient and open-air conditions. A nanospray tip was applied for loading samples and placed pointing to the MS inlet, being a nanospray emitter with the application of a high voltage. A beam of laser was focused to induce energetic plasma between the nanospray emitter and the MS inlet for ionization of PAHs and halogenated PAHs for mass spectrometric analysis. Meanwhile, an inner-wall naphthyl-coated nanospray emitter was developed and applied as a solid-phase microextraction (SPME) probe for highly selective enrichment of trace PAHs and halogenated PAHs in complex environmental samples, and some organic solvent was applied to desorb the analytes for nanospray laser-induced plasma ionization MS analysis. Satisfactory linearity for each target PAH and halogenated PAH was obtained, with correlation coefficient values (r) no less than 0.9917. The method showed extremely high sensitivity for analysis of trace PAHs and halogenated PAHs in water, with limits of detection (LODs) and quantification (LOQs) of 0.0001-0.02 and 0.0003-0.08 μg/L, respectively. By using the inner-wall naphthyl-coated nanospray laser-induced plasma ionization MS method, sensitive detection of trace PAHs and halogenated PAHs in real sewage and wastewater samples was successfully achieved.
Collapse
Affiliation(s)
- Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialiang Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xu Xiao
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yuehua Wu
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Ning Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
17
|
Liu S, Xu W, Zhai Y. Swab-in-Capillary Electrospray Ionization and a Miniature Mass Spectrometer for In Situ Drug Analysis. Anal Chem 2023; 95:16987-16995. [PMID: 37948617 DOI: 10.1021/acs.analchem.3c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In situ analysis of drugs has been in increasing demand in many fields. As an updated version of capillary-in-capillary electrospray ionization (CC-ESI) developed previously, a disposable swab-in-capillary electrospray ionization (SC-ESI) source was designed in this study. With a micro medical swab for sampling and an integrated filter membrane for online filtration, SC-ESI was able to directly sample and MS analyze complex samples without the need for pretreatment. Coupled with a miniature mass spectrometer, SC-ESI was applied for direct analysis of effective ingredients in therapeutic drugs (in tablet, capsule, and liquid droplet) and drugs in saliva and quantitation of therapeutic drugs in blood. The limits of detection in absolute amounts were obtained as 1 ng for fentanyl and 0.5 ng for cocaine in saliva. Combining with an internal standard method, SC-ESI acquired linear quantitation ranges of 100-5000 ng/mL for imatinib in whole blood and 100-2000 ng/mL for clozapine in serum with high accuracies and precisions. The entire analysis process, from sampling to data acquisition, can be completed in less than 2 min. As demonstrated as a cheap, portable, and sampling-effective ionization source, SC-ESI has shown great potential for in situ drug analysis, especially in border drug screening and clinical therapeutic drug monitoring.
Collapse
Affiliation(s)
- Siyu Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Wang S, Shan S, Yang J, Zhou J, Wang G. Plastic probe electrospray ionization mass spectrometry developed for rapid fingerprint profile of biological samples without pretreatment. Anal Bioanal Chem 2023; 415:6701-6709. [PMID: 37755488 DOI: 10.1007/s00216-023-04947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
A triangular-shaped flat plastic substrate probe was prepared for direct electrospray ionization mass spectrometry (ESI-MS) for analysis of untreated chemical and biological samples including liquids (Met-Arg-Phe-Ala peptide, reserpine, and dodecyl aldehyde), solids (biological samples, traditional Chinese medicine), and powders (roasted coffee, rhizoma coptidis, lotus plumule, and Schisandra sphenanthera). Quantitative analysis of reserpine in water yielded a detection limit of 1 ng mL-1, dynamic response range within 1-500 ng mL-1, and linearity of signal response ˃0.9925. Compared to the conventional capillary ESI, this plastic probe ESI offers lower cost of analysis (US $0.0056 per probe), higher sensitivity, lower sample consumption, longer signal duration (>6 min), better reproducibility, signal stability, and higher speed of analysis (<10 s per sample, including sample loading). Overall, the results indicate the potential of ESI-MS based on flat plastic probes as a versatile method for simple, sensitive, and stable analysis of untreated biological sample analysis.
Collapse
Affiliation(s)
- Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Road, Nanchang, 330013, China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, China
- Evaluation and Research Center of Dao-Di Herbs of Jiangxi Province, GanJiang New Area, 330000, China
| | - Shan Shan
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Jian Yang
- Evaluation and Research Center of Dao-Di Herbs of Jiangxi Province, GanJiang New Area, 330000, China
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junhui Zhou
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, China
| | - Guofeng Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Road, Nanchang, 330013, China.
| |
Collapse
|
19
|
Sartore DM, Vargas Medina DA, Bocelli MD, Jordan-Sinisterra M, Santos-Neto ÁJ, Lanças FM. Modern automated microextraction procedures for bioanalytical, environmental, and food analyses. J Sep Sci 2023; 46:e2300215. [PMID: 37232209 DOI: 10.1002/jssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.
Collapse
Affiliation(s)
- Douglas M Sartore
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Deyber A Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcio D Bocelli
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcela Jordan-Sinisterra
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Álvaro J Santos-Neto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Fernando M Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
20
|
Nazdrajić E, Murtada K, Rickert DA, Pawliszyn J. Coupling of Solid-Phase Microextraction Directly to Mass Spectrometry via an Improved Microfluidic Open Interface to Facilitate High-Throughput Determinations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37004172 DOI: 10.1021/jasms.2c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mass spectrometry analysis can be performed by introducing samples directly to mass spectrometry, allowing the increase of the analysis throughput; however, some disadvantages of direct-to-mass spectrometry analysis include susceptibility to matrix effects and risk of instrument contamination from inadequate sample preparation. Solid-phase microextraction is one of the most suitable sample preparation methods for direct-to-mass spectrometry analysis, as it offers matrix-compatible coatings which ensure analyte enrichment with minimal or no interference from matrix. One of the ways solid-phase microextraction can be coupled directly to mass spectrometry is via a microfluidic open interface. This manuscript reports improvements made to the initial microfluidic open interface design, where the system components have been simplified to mostly commercially available materials. In addition, the analysis of samples has been automated by implementing software that fully controls the analysis workflow, where the washing procedure is optimized to completely reduce the carryover. Herein, the extraction and desorption time profiles from thin and thick SPME devices was studied where the overall workflow consisted of high-throughput sample preparation of 1.3 min per 96 samples and <1 min per sample instrumental analysis.
Collapse
Affiliation(s)
- Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Khaled Murtada
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Daniel A Rickert
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
21
|
Mirabelli MF. Direct Coupling of SPME to Mass Spectrometry. EVOLUTION OF SOLID PHASE MICROEXTRACTION TECHNOLOGY 2023:290-314. [DOI: 10.1039/bk9781839167300-00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solid-phase microextraction devices are normally analyzed by gas or liquid chromatography. Their use has become increasingly widespread since their introduction in 1990, and nowadays most analytical laboratories use or have used SPME as an efficient and green method to perform analyte extraction and sample clean-up in one step. The SPME technique is intrinsically flexible, and allows for a high degree of optimization with regard to the extracting phase, as well as the way sample is analyzed. Since its introduction, researchers have been trying different ways to transfer analytes extracted from the solid phase to a mass spectrometer, with the aim to increase throughput and reduce solvent, gas usage and costs associated with conventional chromatographic techniques. Furthermore, but not less important, for pure fun of developing new, more efficient and sensitive analytical strategies! This chapter aims at providing a comprehensive overview of the most relevant non-chromatographic mass spectrometric approaches developed for SPME. Technical aspects of each SPME-MS approach will be discussed, highlighting their advantages, disadvantages and future potential developments. Particular emphasis will be given on the most recent direct coupling approaches using novel ionization approaches, and a concise overview of the existing applications will also be provided.
Collapse
|
22
|
Hu B. Non-invasive Sampling of Human Body Fluids Using In Vivo SPME. EVOLUTION OF SOLID PHASE MICROEXTRACTION TECHNOLOGY 2023:451-465. [DOI: 10.1039/bk9781839167300-00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Noninvasive body fluids offer attractive sources to gain insights into human health. The in vivo solid-phase microextraction (SPME) technique is a fast and versatile sample preparation technique for the noninvasive sampling of human body fluids in various fields. This chapter summarizes the applications of SPME coupled with mass spectrometry (MS)-based approaches for noninvasive investigations of human body fluids, including urine, sweat, and saliva. New features of noninvasive SPME sampling and MS-based analysis are highlighted, and the prospects on their further development are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment Jinan University Guangzhou 510632 China
| |
Collapse
|
23
|
Salim H, Pont L, Giménez E, Benavente F. On-line aptamer affinity solid-phase extraction direct mass spectrometry for the rapid analysis of α-synuclein in blood. Anal Chim Acta 2023; 1256:341149. [PMID: 37037631 DOI: 10.1016/j.aca.2023.341149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/28/2023]
Abstract
On-line aptamer affinity solid-phase extraction direct mass spectrometry (AA-SPE-MS) is presented for the rapid purification, preconcentration, and characterization of α-synuclein (α-syn), which is a protein biomarker related to Parkinson's disease. Valve-free AA-SPE-MS is easily implemented using the typical SPE microcartridges and instrumental set-up necessary for on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry (AA-SPE-CE-MS). The essential requirement is substituting the application of the separation voltage by a pressure of 100 mbar for mobilization of the eluted protein through the capillary towards the mass spectrometer. Under optimized conditions with recombinant α-syn, repeatability is good in terms of migration time and peak area (percent relative standard deviation (%RSD) values (n = 3) are 1.3 and 6.6% at 1 μg mL-1, respectively). The method is satisfactorily linear between 0.025 and 5 μg mL-1 (R2 > 0.986), and limit of detection (LOD) is 0.02 μg mL-1 (i.e. 1000, 500, and 10 times lower than by CE-MS, direct MS, and AA-SPE-CE-MS, respectively). The established AA-SPE-MS method is further compared with AA-SPE-CE-MS, including for the analysis of α-syn in blood. The comparison discloses the advantages and disadvantages of AA-SPE-MS for the rapid and sensitive targeted analysis of protein biomarkers in biological fluids.
Collapse
|
24
|
Surface-Coated Acupuncture Needles as Solid-Phase Microextraction Probes for In Vivo Analysis of Bioactive Molecules in Living Plants by Mass Spectrometry. Metabolites 2023; 13:metabo13020220. [PMID: 36837839 PMCID: PMC9968076 DOI: 10.3390/metabo13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, we report the coupling of solid-phase microextraction (SPME) enabled by surface-coated acupuncture needles with nano-electrospray mass spectrometry (nanoESI-MS) for the analysis of bioactive molecules in living plants. The needle tip was oxidized by a mixture of nitric acid and hydrogen peroxide solution and then subject to surface coating via carbonization of paraffin. A combination of oxidation and surface coating resulted in a thin coating of carbon film, whereby the significantly increased surface area promoted both analyte enrichment and ionization for MS analysis. The analytical performances were evaluated through the characterization of small molecules, peptides and proteins. Compared with conventional nanoESI, our new strategy of employing surface-coated needles had a high salt tolerance. The streamlined experimental workflow could be completed within one minute. The linear dynamic ranges for L-histidine and L-lysine, as two representatives, were over two orders of magnitude with a limit of detection (LOD) of 3.0~5.0 ng/mL. A mark is made on the needle at 2 mm from the tip, the needle is then kept in the sample for 30 s. In vivo sampling and identification of α-tomatine and organic acids from the stem of a living tomato plant were demonstrated as a practical application, while the physiological activities of the plant were not disrupted due to the minimally invasive sampling. We anticipate that the developed strategy may be of potential use for real-time clinical and other on-site analyses.
Collapse
|
25
|
Zhou W, Wieczorek MN, Jiang RW, Pawliszyn J. Comparison of different approaches for direct coupling of solid-phase microextraction to mass spectrometry for drugs of abuse analysis in plasma. J Pharm Anal 2023; 13:216-222. [PMID: 36908852 PMCID: PMC9999297 DOI: 10.1016/j.jpha.2022.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The direct coupling of solid-phase microextraction (SPME) to mass spectrometry (MS) (SPME-MS) has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma. In recent years, our lab has developed three novel SPME-MS techniques: SPME-microfluidic open interface-MS (SPME-MOI-MS), coated blade spray-MS (CBS-MS), and SPME-probe electrospray ionization-MS (SPME-PESI-MS). The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing. However, all these three techniques utilize different SPME geometries and were tested with different MS instruments. Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application. This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers, CBS blades, and SPME-PESI probes and SPME-liquid chromatography-MS (SPME-LC-MS) for the analysis of drugs of abuse using the same MS instrument. Furthermore, for the first time, we developed different desorption chambers for MOI-MS for coupling with SPME fibers, CBS blades, and SPME-PESI probes, thus illustrating the universality of this approach. In total, eight analytical methods were developed, with the experimental data showing that all the SPME-based methods provided good analytical performance with R 2 of linearities larger than 0.9925, accuracies between 81% and 118%, and good precision with an RSD% ≤ 13%.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Martyna N Wieczorek
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Runshan Will Jiang
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
26
|
Boronat Ena MDM, Cowan DA, Abbate V. Ambient ionization mass spectrometry applied to new psychoactive substance analysis. MASS SPECTROMETRY REVIEWS 2023; 42:3-34. [PMID: 34036620 DOI: 10.1002/mas.21695] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
In the past decade a plethora of drugs with similar effects to controlled psychoactive drugs, like cannabis, amfetamine (amphetamine), or lysergic acid diethylamide, have been synthesized. These drugs can collectively be classified under the term new psychoactive substances (NPS) and are used for recreational purposes. The novelty of the substances, alongside the rapid rate of emergence and structural variability, makes their detection as well as their legal control highly challenging, increasing the demand for rapid and easy-to-use analytical techniques for their detection and identification. Therefore, interest in ambient ionization mass spectrometry applied to NPS has grown in recent years, which is largely because it is relatively fast and simple to use and has a low operating cost. This review aims to provide a critique of the suitability of current ambient ionization techniques for the analysis of NPS in the forensic and clinical toxicology fields. Consideration is given to analytical performance and ease of implementation, including ionization efficiency, selectivity, sensitivity, quantification, analyte chemistry, molecular coverage, validation, and practicality.
Collapse
Affiliation(s)
- Maria Del Mar Boronat Ena
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - David A Cowan
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| |
Collapse
|
27
|
Rickert D, Gómez-Ríos GA, Singh V, Pawliszyn J. Understanding the effect of spatial positioning of coated blade spray devices relative to the mass spectrometry inlet on different instrument platforms and its application to quantitative analysis of fentanyl and related analogs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9388. [PMID: 36039809 DOI: 10.1002/rcm.9388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE We evaluated the effect that the spatial positioning of coated-blade spray (CBS) devices with respect to the mass spectrometry (MS) inlet has when coupling to diverse MS platforms (i.e., triple quadrupole, linear ion trap and time of flight). Furthermore, as a proof of concept, we evaluated CBS-MS as a tool for quantitation of fentanyl and four analogues on said instruments. METHODS Custom-made MS interfaces were made to accurately position the blade in front of the MS inlet. CBS devices, coated with hydrophilic-lipophilic balanced particles, were used for both the optimization of the CBS position and the quantitation of fentanyl and analogues in urine and plasma samples on all instruments. RESULTS The SCIEX triple quadrupole instrument was the most sensitive to the position of the blade due to the presence of a curtain gas flowing laminarly out of the MS inlet. After optimization, the analytical capabilities of CBS on each instrument were assessed and the results obtained on both SCIEX and Waters platforms matched the performance obtained using a more advanced instrument by ThermoFisher Scientific. Furthermore, excellent figures of merit were attained for the quantitation of fentanyl and analogues on both triple quadrupole and linear ion trap platforms. CONCLUSIONS We demonstrated that optimization of MS parameters on different instrument vendors and front ends, such as the position of the CBS tip regarding the MS inlet, is vital to exploit the full quantitative potential of this technology. Application of the technology to screen and quantify fentanyl and analogues showed great potential when considering its coupling with portable mass spectrometers for therapeutic drug monitoring and point-of-care applications.
Collapse
Affiliation(s)
- Daniel Rickert
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | | | - Varoon Singh
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
28
|
Zhou W, Pawliszyn J. Coated Blade Spray with a Barrier: Improving Negative Electrospray Ionization and Sample Preparation. Anal Chem 2022; 94:15879-15886. [DOI: 10.1021/acs.analchem.2c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
29
|
Geballa-Koukoula A, Gerssen A, Blokland MH, Nielen MWF. Immunoaffinity Plastic Blade Spray Mass Spectrometry for Rapid Confirmatory Analysis of Food Contaminants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2038-2045. [PMID: 36223493 PMCID: PMC9634800 DOI: 10.1021/jasms.2c00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The lack of chromatographic separation in ambient and direct mass spectrometry (MS) ionization techniques jeopardizes the overall selectivity of the developed methods. Incorporating a biosensing element at the ionization source could compensate for that inherent lack of selectivity. Thus, a simplified immunoaffinity-direct MS technique was developed, immunoaffinity blade spray (iBS), featuring a conductive polystyrene blade material. In iBS, the generic coating used in conventional coated blade spray is replaced with a layer of highly specific monoclonal antibodies (mAbs), while the stainless steel is replaced with conductive polystyrene to allow for simple ELISA platelike hydrophobic immobilization of mAbs. Because of its high relevance for climate change-induced food safety issues, the mycotoxin deoxynivalenol (DON) was chosen as a model substance. Following a rapid extraction from wheat flour, DON is immuno-captured, and the blade is positioned in front of the MS for direct iBS-MS/MS analysis. The method's applicability was demonstrated by analyzing spiked and incurred wheat flour samples, omitting the need for time-consuming chromatographic separation. Apart from DON, cross-reacting DON conjugates could be successfully analyzed as well. The direct iBS-MS/MS method is generic and adaptable to detecting any analyte in sample extracts, provided that specific mAbs are available.
Collapse
Affiliation(s)
- Ariadni Geballa-Koukoula
- Wageningen
Food Safety Research, Wageningen University
& Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Arjen Gerssen
- Wageningen
Food Safety Research, Wageningen University
& Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Marco H. Blokland
- Wageningen
Food Safety Research, Wageningen University
& Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Michel W. F. Nielen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
30
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
31
|
Zhou W, Nazdrajić E, Pawliszyn J. Rapid Screening and Quantitation of Drugs of Abuse by Both Positive and Negative Modes via Coated Blade Spray-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1187-1193. [PMID: 35609124 DOI: 10.1021/jasms.2c00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solid-phase microextraction (SPME)-direct mass spectrometry (MS) has proven to be an efficient tool for the rapid screening and quantitation of target compounds at trace levels. However, it is challenging to perform screening using both positive and negative modes in one analytical run without compromising scanning speed and detection sensitivity. To take advantage of the special geometry of a coated blade spray (CBS) blade, which consists of two flat sides coated with the same SPME coating, we developed a CBS-MS method that enables desorption and ionization to be performed in positive ionization mode on one side of a coated blade and negative ionization mode on the other side of the same blade. By simply flipping the blade 180°, MS analysis in both ionization modes on different sides can be completed in 40 s. Combining this approach with an automated Concept 96-blade-based SPME system allowed analysis for one sample in positive and negative modes to be completed in less than 1 min. The workflow was optimized by using a biocompatible polyacrylonitrile as an undercoating layer and a binder of polyacrylonitrile/hydrophilic-lipophilic balance (HLB) particles, which enabled the rapid analysis of 20 drugs of abuse in saliva samples in both positive and negative modes. The proposed method provided low limits of quantification (between 0.005 and 10 ng/mL), with calibration linear correlation coefficients ⩾ 0.9925, accuracy between 72% and 126%, and relative precision < 15% for three validation points.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
32
|
Hu B, Yao ZP. Electrospray ionization mass spectrometry with wooden tips: A review. Anal Chim Acta 2022; 1209:339136. [PMID: 35569859 DOI: 10.1016/j.aca.2021.339136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Electrospray ionization (ESI) is a powerful ionization technique in mass spectrometry (MS). There has been an increasing interest for the new development of ESI technique to extend its applications. ESI-MS with wooden tips (wooden-tip ESI-MS), an ESI technique invented in 2011, enabled not only new applications but also new insights into the ESI mechanism. In this review, the technical aspects of wooden-tip ESI-MS are described, the new features of wooden-tip ESI-MS for sampling and ionization of analytes are highlighted, and the important applications of wooden-tip ESI-MS in various fields in the past 10 years, including food safety, forensic investigation, environmental analysis, biomedical analysis and protein study, are summarized. The perspectives on the further development and applications of wooden-tip ESI-MS are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| | - Zhong-Ping Yao
- State Key Laboratory for Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
33
|
Bogusiewicz J, Gaca-Tabaszewska M, Olszówka D, Jaroch K, Furtak J, Harat M, Pawliszyn J, Bojko B. Coated Blade Spray-Mass Spectrometry as a New Approach for the Rapid Characterization of Brain Tumors. Molecules 2022; 27:2251. [PMID: 35408649 PMCID: PMC9000701 DOI: 10.3390/molecules27072251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain tumors are neoplasms with one of the highest mortality rates. Therefore, the availability of methods that allow for the quick and effective diagnosis of brain tumors and selection of appropriate treatments is of critical importance for patient outcomes. In this study, coated blade spray-mass spectrometry (CBS-MS), which combines the features of microextraction and fast ionization methods, was applied for the analysis of brain tumors. In this approach, a sword-shaped probe is coated with a sorptive material to enable the extraction of analytes from biological samples. The analytes are then desorbed using only a few microliters of solvent, followed by the insertion of the CBS device into the interface on the mass spectrometer source. The results of this proof-of-concept experiment confirmed that CBS coupled to high-resolution mass spectrometry (HRMS) enables the rapid differentiation of two histologically different lesions: meningiomas and gliomas. Moreover, quantitative CBS-HRMS/MS analysis of carnitine, the endogenous compound, previously identified as a discriminating metabolite, showed good reproducibility with the variation below 10% when using a standard addition calibration strategy and deuterated internal standards for correction. The resultant data show that the proposed CBS-MS technique can be useful for on-site qualitative and quantitative assessments of brain tumor metabolite profiles.
Collapse
Affiliation(s)
- Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (M.G.-T.); (D.O.); (K.J.)
| | - Magdalena Gaca-Tabaszewska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (M.G.-T.); (D.O.); (K.J.)
| | - Dominik Olszówka
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (M.G.-T.); (D.O.); (K.J.)
| | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (M.G.-T.); (D.O.); (K.J.)
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (J.F.); (M.H.)
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (J.F.); (M.H.)
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-168 Bydgoszcz, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada;
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (M.G.-T.); (D.O.); (K.J.)
| |
Collapse
|
34
|
Swiner DJ, Kulyk DS, Osae H, Durisek GR, Badu-Tawiah AK. Reactive Thread Spray Mass Spectrometry for Localization of C═C Bonds in Free Fatty Acids: Applications for Obesity Diagnosis. Anal Chem 2022; 94:2358-2365. [PMID: 35072466 PMCID: PMC9107611 DOI: 10.1021/acs.analchem.1c03270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cellulose thread substrates offer a platform for microsampling and reactive ionization of free fatty acid (FFA) isomers for direct differentiation by mass spectrometry. Ambient corona discharge forms when direct current high voltage is applied to the tiny subfibers on the thread substrate in the presence of a polar spray solvent (MeOH/H2O, 2:1, v/v), facilitating chemical reactions across a C═C bond of unsaturated fatty acids. The process was applied for diagnosis of obesity, which we observed to show better discriminatory power when compared to determinations based on body mass index. Overall, the integrated reactive thread-based platform is capable of (i) microsampling and dry-state, room-temperature storage (>30 days) of the biofluids, (ii) in-capillary liquid/liquid extraction, and (iii) in situ epoxidation reactions to locate the C═C bond position in unsaturated fatty acids via reactions with reactive oxygen species present in ambient corona discharge. The study showcased the ability to correctly characterize FFAs, including degree of unsaturation, and the determination of their relative concentrations in clinical biofluid samples.
Collapse
Affiliation(s)
- Devin J. Swiner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Dmytro S. Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Hannah Osae
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - George R. Durisek
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
35
|
Wang J, Li C, Li P. A Small Footprint and Robust Interface for Solid Phase Microextraction and Mass Spectrometry Based on Vibrating Sharp-Edge Spray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:304-314. [PMID: 35040644 PMCID: PMC9014482 DOI: 10.1021/jasms.1c00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Combining solid phase microextraction (SPME) and mass spectrometry (MS) analysis has become increasingly important to many bioanalytical, environmental, and forensic applications due to its simplicity, rapid analysis, and capability of reducing matrix effects for complex samples. To further promote the adoption of SPME-MS based analysis and expand its application scope calls for efficient and convenient interfaces that couple the SPME sample handling with the efficient analyte ionization for MS. Here, we report a novel interface that integrates both the desorption and the ionization steps in one device based on the capillary vibrating sharp-edge spray ionization (cVSSI) method. We demonstrated that the cVSSI is capable of nebulizing liquid samples in a pulled-tip glass capillary with a battery powered function generator. The cVSSI device allows the insertion of a SPME probe into the spray capillary for desorption and then direct nebulization of the desorption solvent in situ. With the integrated interface, we have demonstrated rapid MS analysis of drug compounds from serum samples. Quantitative determination of various drug compounds including metoprolol, pindolol, acebutolol, oxprenolol, capecitabine, and irinotecan was achieved with good linearity (R2 = 0.97-0.99) and limit of detection ranging from 0.25 to 0.59 ng/mL without using a high voltage source. Only 3.5 μL of desorption solvent and 3 min desorption time were needed for the present method. Overall, we demonstrated a portable SPME-MS interface featuring high sensitivity, short analysis time, small footprint, and low cost, which makes it an attractive method for many applications requiring sample cleanup including drug compound monitoring, environmental sample analysis, and forensic sample analysis.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
36
|
Lu F, Zheng Y, Zhang Y, Ma Q, Zhang Z. Portable paper-in-tip spray ionization for the direct mass spectrometric analysis of target analytes in biofluid samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:222-227. [PMID: 34939624 DOI: 10.1039/d1ay01907d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Portable sampling of target analytes in complex biofluid samples makes mass spectrometric analysis more efficient. This study reports the development of paper-in-tip spray ionization for solid-phase microextraction and in situ electrospray of therapeutic drugs and proteins in complex biological matrices using a piece of hydrophobic paper substrate. This technique possesses a long (more than 8 min) and stable spray duration with only 20 μL of spray solvent. The entire analytical process for a complex sample can be completed in less than 1.5 min and enables high sensitivity (picogram-per-milliliter level) and high quantitation precision.
Collapse
Affiliation(s)
- Fangfang Lu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yuan Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
37
|
Geballa-Koukoula A, Gerssen A, Blokland MH, Elliott CT, Pawliszyn J, Nielen MWF. Immuno-Enriched Microspheres - Magnetic Blade Spray-Tandem Mass Spectrometry for Domoic Acid in Mussels. Anal Chem 2021; 93:15736-15743. [PMID: 34726384 PMCID: PMC8637537 DOI: 10.1021/acs.analchem.1c03816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Paramagnetic microspheres can be used in planar array fluorescence immunoassays for single or multiplex screening of food contaminants. However, no confirmation of the molecular identity is obtained. Coated blade spray (CBS) is a direct ionization mass spectrometry (MS) technique, and when combined with triple quadrupole MS/MS, it allows for rapid confirmation of food contaminants. The lack of chromatography in CBS, though, compromises the specificity of the measurement for unequivocal identification of contaminants, based on the European Union (EU) regulation. Therefore, a rapid and easy-to-use immuno-magnetic blade spray (iMBS) method was developed in which immuno-enriched paramagnetic microspheres replace the coating of CBS. The iMBS-MS/MS method was fully optimized, validated in-house following the EU 2021/808 regulation, and benchmarked against a commercial lateral flow immunoassay (LFIA) for on-site screening of DA. The applicability of iMBS-MS/MS was further demonstrated by analyzing incurred mussel samples. The combination of immunorecognition and MS/MS detection in iMBS-MS/MS enhances the measurement's selectivity, which is demonstrated by the rapid differentiation between the marine toxin domoic acid (DA) and its structural analog kainic acid (KA), which cannot be achieved with the LFIA alone. Interestingly, this first-ever reported iMBS-MS/MS method is generic and can be adapted to include any other immuno-captured food contaminant, provided that monoclonal antibodies are available, thus offering a complementary confirmatory analysis approach to multiplex immunoassay screening methods. Moreover, thanks to its speed of analysis, iMBS-MS/MS can bridge the logistics gap between future large-scale on-site testings using LFIAs and classical time-consuming confirmatory MS analysis performed in official control laboratories.
Collapse
Affiliation(s)
- Ariadni Geballa-Koukoula
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Arjen Gerssen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Marco H Blokland
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Christopher T Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, U.K
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Michel W F Nielen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
38
|
Li Y, Chen J, Meng L, He L, Liu H, Xiong C, Nie Z. Pocket-Size "MasSpec Pointer" for Ambient Ionization Mass Spectrometry. Anal Chem 2021; 93:13326-13333. [PMID: 34569226 DOI: 10.1021/acs.analchem.1c03087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Current ambient ionization sources for mass spectrometry (MS) are typically connected to gas cylinders, high-voltage supply, injection pump, and other accessory equipment, which hinder the popularization of MS in the field of on-site detection. Here, we developed a wireless pocket-size "MasSpec Pointer" (weights 65 g) based on arc discharge powered by a 3.7 V polymer Li battery for ambient ionization MS. A high voltage of 5600 V and 20 kHz was generated from the boost coil to penetrate air and form a plasma. The relative standard deviation (RSD) of the high-voltage pulses is 3.8%, leading to a stable discharge and a good quantification performance. A mini diaphragm pump was used to cool the plasma from ∼600 to ∼40 °C and to blow the plasma into a jet, which facilitates sampling. MasSpec Pointer can work well at both positive- and negative-ion modes without any modification and can quickly test gaseous, liquid, or solid samples. The limit of detection of this device for atrazine (an agrochemical) is lower than 0.1 ng/mL. MasSpec Pointer has shown its ability to pinpoint the double-bond location of fatty acid isomers without derivatization reagents or light illumination. Agrochemicals from the surface of an apple and daily chemicals from the surface of a finger were detected successfully using MasSpec Pointer coupled with a miniature mass spectrometer. We believe the "point-and-shoot" device coupled with mini-MS brings the hope for an age of detecting chemicals on-site by nonprofessionals.
Collapse
Affiliation(s)
- Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuying He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Bernardo RA, Sousa JCP, Gallimberti M, Junior FB, Vaz BG, Chaves AR. A fast and direct determination of bisphenol S in thermal paper samples using paper spray ionization mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57288-57296. [PMID: 34089157 DOI: 10.1007/s11356-021-14603-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Concerns about human health regarding the large use of bisphenol A in thermal papers have led to its replacement by bisphenol S. Analyses of bisphenols require several sample pretreatment steps, which are laborious, expensive, and time-consuming. A paper spray ionization mass spectrometry (PSI-MS) was developed to detect and quantify bisphenol S in three different brands of thermal papers commercially available. Parameters such as paper size, and paper position relative to the mass spectrometer inlet were evaluated. The analyses were performed in selected ion monitoring mode on a linear ion trap mass spectrometer. The developed method presented absolute recovery values ranging from 92.2 to 109.04%, accuracy values from -1.2 to 9.0%, and inter assay precision from 1.8 to 5.6% and enabled LOD as low as 5 ng g-1. The concentration of bisphenol S in all of the three brands of BPA-free thermal papers evaluated ranged from 1.36 to 6.77 μg g-1, and the concentrarion of BPA ranged from 6.56 to 16.4 μg g-1 in all samples of thermal paper evaluated. The PSI-MS method described here was comparable to the conventional ones, such as liquid chromatography coupled with mass spectrometry and gas chromatography coupled with mass spectrometry described in the literature. The present study proved to be practical, fast, and efficient for the direct determination of bisphenol S in thermal papers. Furthermore, the methodology here described showed to be a promising alternative to replace the classical methods for determination of bisphenol S, due to its simplicity, and no needing of any sample pretreatment.
Collapse
Affiliation(s)
| | | | - Matheus Gallimberti
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Fernando Barbosa Junior
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Boniek Gontijo Vaz
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | |
Collapse
|
40
|
Jackson S, Badu-Tawiah AK. Enhanced thread spray mass spectrometry: a general method for direct pesticide analysis in various complex matrices. Analyst 2021; 146:5592-5600. [PMID: 34369487 DOI: 10.1039/d1an00651g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Determination of pesticide residues in a wide variety of matrices is an ongoing challenge due to low concentration and substantial amounts of interfering endogenous compounds that can be coextracted with the analytes. Herein, we describe the use of cellulose thread both as a suitable sampling medium for various matrices and as a direct analysis platform through an improved thread spray mass spectrometry (MS) approach. Enhanced extraction and the subsequent generation of tiny nanodroplets, after the application of DC potential to the wet thread, enabled ultra-sensitive detection of pesticides without prior sample treatment. This methodology was applied to quantify glyphosate and its metabolite, aminomethylphosphonic acid, in surface water at 12.2 μg mL-1 limit of detection (LOD) via standard addition calibration. The method was also used for an internal standard calibration for the analysis of atrazine, which resulted in a LOD of 0.74 ng mL-1. The enhanced thread spray MS platform also proved effective when applied for direct analysis of diphenylamine and thiabendazole, which enabled the evaluation of post-harvest pesticide treatment of fruits (surface and interior) without complete destruction of the fruits.
Collapse
Affiliation(s)
- Sierra Jackson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Zhang X, Wang W, Zare RN, Min Q. Peptide and protein assays using customizable bio-affinity arrays combined with ambient ionization mass spectrometry. Chem Sci 2021; 12:10810-10816. [PMID: 34476062 PMCID: PMC8372322 DOI: 10.1039/d1sc02311j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
High-throughput identification and quantification of protein/peptide biomarkers from biofluids in a label-free manner is achieved by interfacing bio-affinity arrays (BAAs) with nano-electrospray desorption electrospray ionization mass spectrometry (nano-DESI-MS). A wide spectrum of proteins and peptides ranging from phosphopeptides to cis-diol biomolecules as well as thrombin can be rapidly extracted via arbitrarily predefined affinity interactions including coordination chemistry, covalent bonding, and biological recognition. An integrated MS platform allows continuous interrogation. Profiling and quantitation of dysregulated phosphopeptides from small-volume (∼5 μL) serum samples has been successfully demonstrated. As a front-end device adapted to any mass spectrometer, this MS platform might hold much promise in protein/peptide analysis in point-of-care (POC) diagnostics and clinical applications. Customizable bio-affinity arrays were interfaced with ambient ionization mass spectrometry for high-throughput assays of protein/peptide biomarkers in biofluids.![]()
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
42
|
Thirukumaran M, Singh V, Arao Y, Fujito Y, Nishimura M, Ogura T, Pawliszyn J. Solid-phase microextraction- probe electrospray ionization devices for screening and quantitating drugs of abuse in small amounts of biofluids. Talanta 2021; 231:122317. [PMID: 33965011 DOI: 10.1016/j.talanta.2021.122317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/03/2023]
Abstract
Probe electrospray ionization (PESI) is an ambient ionization mass spectrometry technique (AIMS) that is primarily used in qualitative studies, though researchers have recently combined it with sample preparation for the quantitative analysis of various analytes in biological matrices. This study presents a method that integrates solid-phase microextraction with PESI for direct coupling to a triple quadrupole mass spectrometer, and examines its ability to quantitate drugs of abuse. Intra- and inter-probe reproducibility experiments were conducted to assess the stability and reproducibility of the extraction-phase-coated PESI probes (coating length: 2 mm; coating thickness: 6.5 μm). This research is the first documented instance wherein highly sensitive determinations were successfully attained using these microextraction and micro-desorption techniques in conjunction with small volumes of sample and extraction phase. A mixture consisting of IPA/H2O (1/1 v/v) + 0.1% FA was determined to be the optimal desorption solvent for SPME-PESI-MS/MS, as it facilitated high analyte enrichment in a picolitre of the solvent, which acted at the same time as efficient electrospray media. Furthermore, a method of quantifying drugs of abuse in 30 μL of plasma without matrix modification was also developed. This method had an intra-day accuracy within the 80-120% range for all eight drugs of abuse at concentrations of 3, 30, and 90 pg μL-1; the exception to this result was lorazepam at 30 pg μL-1, which had an intra-day accuracy of 122%. The lower limit of quantification (LLOQ) for fentanyl and nordiazepam was pg μL-1; the LLOQ for buprenorphine, codeine, diazepam, lorazepam, and propranolol was 5 pg μL-1; and the LLOQ of oxazepam was 10 pg μL-1.
Collapse
Affiliation(s)
- Milaan Thirukumaran
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Yohei Arao
- Shimadzu Scientific Instruments, Inc., 7102 Riverwood Drive, Columbia, MD, 21046, USA; Shimadzu Corporation, Kyoto, Japan
| | - Yuka Fujito
- Shimadzu Scientific Instruments, Inc., 7102 Riverwood Drive, Columbia, MD, 21046, USA
| | - Masayuki Nishimura
- Shimadzu Scientific Instruments, Inc., 7102 Riverwood Drive, Columbia, MD, 21046, USA
| | - Tairo Ogura
- Shimadzu Scientific Instruments, Inc., 7102 Riverwood Drive, Columbia, MD, 21046, USA; Shimadzu Corporation, Kyoto, Japan
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
43
|
Kim H, Lee H, Kum D, Tae H, Cha S, Kim D, Kim S. Mechanism behind the paper spray chemical ionization phenomenon and the choice of solvent. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4602. [PMID: 32710504 DOI: 10.1002/jms.4602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Paper spray chemical ionization (PSCI) combined with mass spectrometry has been proposed as a sensitive method for the analysis of nonpolar aromatic compounds; however, the mechanism behind PSCI is not well understood. In the present study, the evidence for the occurrence of corona discharge is provided and its mechanism is proposed. Photographs taken with a highly sensitive camera evidently demonstrate the occurrence of corona discharge at the end of the triangular shape tip when a nonpolar solvent such as hexane was used at an applied potential of 6-7 kV. Nevertheless, corona discharge was not observed in the presence of a polar solvent. The occurrence of the corona discharge was attributed to charge accumulation in the dielectric layer generated by the nonpolar solvent on the fibers of the paper tip. Specifically, corona discharge was generated at the tip end when the charge approached a critical threshold. In the presence of a polar solvent, however, the dielectric layer was not generated and, hence, corona discharge was not observed. Based on this information, three nonpolar solvents were selected and their sensitivity for analyzing the phenanthrene and maltene fractions of crude oil was evaluated. Chlorobenzene provided the highest signal abundance; therefore, it was suggested as the optimum solvent for PSCI. Notably, the fundamental understanding of corona discharge in PSCI acquired in this study provides a basis for further improvement of this technique by way of surface modification.
Collapse
Affiliation(s)
- Hyungjun Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyunwoo Lee
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Daesub Kum
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Heungsik Tae
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea
| | - Donghwi Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
- Mass Spectrometry Convergence Research Center and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
44
|
Multi-class pesticide analysis in cannabis oil using coated blade spray and solid-phase microextraction with liquid chromatography coupled to mass spectrometry. Talanta 2021; 225:122036. [DOI: 10.1016/j.talanta.2020.122036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
|
45
|
Mikhail IE, Tehranirokh M, Gooley AA, Guijt RM, Breadmore MC. Hyphenated sample preparation-electrospray and nano-electrospray ionization mass spectrometry for biofluid analysis. J Chromatogr A 2021; 1646:462086. [PMID: 33892255 DOI: 10.1016/j.chroma.2021.462086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Stand-alone electrospray ionization mass spectrometry (ESI-MS) has been advancing through enhancements in throughput, selectivity and sensitivity of mass spectrometers. Unlike traditional MS techniques which usually require extensive offline sample preparation and chromatographic separation, many sample preparation techniques are now directly coupled with stand-alone MS to enable outstanding throughput for bioanalysis. In this review, we summarize the different sample clean-up and/or analyte enrichment strategies that can be directly coupled with ESI-MS and nano-ESI-MS for the analysis of biological fluids. The overview covers the hyphenation of different sample preparation techniques including solid phase extraction (SPE), solid phase micro-extraction (SPME), slug flow micro-extraction/nano-extraction (SFME/SFNE), liquid extraction surface analysis (LESA), extraction electrospray, extraction using digital microfluidics (DMF), and electrokinetic extraction (EkE) with ESI-MS and nano-ESI-MS.
Collapse
Affiliation(s)
- Ibraam E Mikhail
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia; Department of Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Masoomeh Tehranirokh
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Andrew A Gooley
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Rosanne M Guijt
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Centre for Regional and Rural Futures, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael C Breadmore
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
46
|
Alidoust M, Yamini Y, Baharfar M, Seidi S, Rasouli F. Microfluidic-enabled versatile hyphenation of electromembrane extraction and thin film solid phase microextraction. Talanta 2021; 224:121864. [PMID: 33379075 DOI: 10.1016/j.talanta.2020.121864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
In the present study, a versatile combination of electromembrane extraction (EME) with thin film solid phase microextraction (TF-SPME) was introduced using a microfluidic chip device. The device consisted of two single channels on two separate layers. The upper channel was dedicated to donor phase flow pass, while the beneath channel was used as a reservoir for stagnant acceptor solution. A slide of fluorine doped tin oxide (FTO) was accommodated in the bottom of the acceptor phase channel. A thin layer of polyaniline was electrodeposited on the FTO surface to achieve the required thin film for TF-SPME. A stainless-steel wire was embedded in the donor phase channel and another wire was also attached to the FTO surface. The channels were separated by a piece of polypropylene membrane impregnated with 1-octanol and the whole chip was fixed with bolts and nuts. The driving force for the extraction was an 8 V direct current (DC) voltage applied across the supported liquid membrane (SLM). Under the influence of the electrical field, analytes immigrated from sample towards the acceptor phase and then adsorbed on the thin film of the solid phase. Finally, the analytes were desorbed by successive movement of a desorption solvent in the acceptor phase channel followed by injection of the desorption solution to HPLC-UV. The applicability of the proposed device was demonstrated by the determination of four synthetic food dyes: Amaranth, Ponceau 4R, Allura Red, and Carmoisine, as the model analytes. The effective parameters on the efficiency of the both EME and TF-SPME were investigated. Under the optimized conditions, the microchip provided low LODs (1-10 μg L-1), and a wide linear dynamic range of 10-1000 μg L-1 for all analytes. The system also offered RSD values lower than 5.5% and acceptable reusability of the thin film for multiple extractions.
Collapse
Affiliation(s)
- Mina Alidoust
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box: 14115 175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box: 14115 175, Tehran, Iran.
| | - Mahroo Baharfar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box: 14115 175, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Fatemeh Rasouli
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
47
|
Chen L, Ghiasvand A, Rodriguez ES, Innis PC, Paull B. Applications of nanomaterials in ambient ionization mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Rocío-Bautista P, Famiglini G, Termopoli V, Palma P, Nazdrajić E, Pawliszyn J, Cappiello A. Direct Coupling of Bio-SPME to Liquid Electron Ionization-MS/MS via a Modified Microfluidic Open Interface. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:262-269. [PMID: 33213139 PMCID: PMC8016190 DOI: 10.1021/jasms.0c00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
We present a modified microfluidic open interface (MOI) for the direct coupling of Bio-SPME to a liquid electron ionization-tandem mass spectrometry (LEI-MS/MS) system as a sensitive technique that can directly analyze biological samples without the need for sample cleanup or chromatographic separations as well as without measurable matrix effects (ME). We selected fentanyl as test compound. The method uses a C18 Bio-SPME fiber by direct immersion (DI) in urine and plasma and the subsequent quick desorption (1 min) in a flow-isolated volume (2.5 μL) filled with an internal standard-acetonitrile solution. The sample is then transferred to an EI source of a triple-quadrupole mass spectrometer via a LEI interface at a nanoscale flow rate. The desorption and analysis procedure requires less than 10 min. Up to 150 samples can be analyzed without observing a performance decline, with fentanyl quantitation at microgram-per-liter levels. The method workflow is extremely dependable, relatively fast, sustainable, and leads to reproducible results that enable the high-throughput screening of various biological samples.
Collapse
Affiliation(s)
- Priscilla Rocío-Bautista
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy
- Department
of Pure and Applied Sciences, University
of Urbino, 61029 Urbino, Italy
| | - Giorgio Famiglini
- Department
of Pure and Applied Sciences, University
of Urbino, 61029 Urbino, Italy
| | - Veronica Termopoli
- Department
of Pure and Applied Sciences, University
of Urbino, 61029 Urbino, Italy
| | - Pierangela Palma
- Department
of Pure and Applied Sciences, University
of Urbino, 61029 Urbino, Italy
- Chemistry
Department, Vancouver Island University
VIU, Nanaimo, BC V9R5S5 Canada
| | - Emir Nazdrajić
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Achille Cappiello
- Department
of Pure and Applied Sciences, University
of Urbino, 61029 Urbino, Italy
- Chemistry
Department, Vancouver Island University
VIU, Nanaimo, BC V9R5S5 Canada
| |
Collapse
|
49
|
Li X, Attanayake K, Valentine, Li P. Vibrating Sharp-edge Spray Ionization (VSSI) for voltage-free direct analysis of samples using mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8232. [PMID: 29993155 PMCID: PMC6529299 DOI: 10.1002/rcm.8232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 10/14/2023]
Abstract
RATIONALE The development of miniaturized and field portable mass spectrometers could not succeed without a simple, compact, and robust ionization source. Here we present a voltage-free ionization method, Vibrating Sharp-edge Spray Ionization (VSSI), which can generate a spray of liquid samples using only one standard microscope glass slide to which a piezoelectric transducer is attached. Compared with existing ambient ionization methods, VSSI eliminates the need for a high electric field (~5000 V·cm-1 ) for spray generation, while sharing a similar level of simplicity and flexibility with the simplest direct ionization techniques currently available such as paper spray ionization (PSI) and other solid substrate-based electrospray ionization methods. METHODS The VSSI device was fabricated by attaching a piezoelectric transducer onto a standard glass microscope slide using epoxy glue. Liquid sample was aerosolized by either placing a droplet onto the vibrating edge of the glass slide or touching a wet surface with the glass edge. Mass spectrometric detection was achieved by placing the VSSI device 0.5-1 cm from the inlet of the mass spectrometer (Q-Exactive, ThermoScientific). RESULTS VSSI is demonstrated to ionize a diverse array of chemical species, including small organic molecules, carbohydrates, peptides, proteins, and nucleic acids. Preliminary sensitivity experiments show that high-quality mass spectra of acetaminophen can be obtained by consuming 100 femtomoles of the target. The dual spray of VSSI was also demonstrated by performing in-droplet denaturation of ubiquitin. Finally, due to the voltage-free nature and the direct-contact working mode of VSSI, it has been successfully applied for the detection of chemicals directly from human fingertips. CONCLUSIONS Overall, we report a compact ionization method based on vibrating sharp-edges. The simplicity and voltage-free nature of VSSI make it an attractive option for field portable applications or analyzing biological samples that are sensitive to high voltage or difficult to access by conventional ionization methods.
Collapse
Affiliation(s)
- Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
50
|
Gionfriddo E, Gómez-Ríos GA. Analysis of food samples made easy by microextraction technologies directly coupled to mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4665. [PMID: 33098354 DOI: 10.1002/jms.4665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Because of the complexity and diversity of food matrices, their chemical analysis often entails several analytical challenges to attain accurate and reliable results, especially for multiresidue analysis and ultratrace quantification. Nonetheless, microextraction technology, such as solid-phase microextraction (SPME), has revolutionized the concept of sample preparation for complex matrices because of its nonexhaustive, yet quantitative extraction approach and its amenability to coupling to multiple analytical platforms. In recent years, microextraction devices directly interfaced with mass spectrometry (MS) have redefined the analytical workflow by providing faster screening and quantitative methods for complex matrices. This review will discuss the latest developments in the field of food analysis by means of microextraction approaches directly coupled to MS. One key feature that differentiates SPME-MS approaches from other ambient MS techniques is the use of matrix compatible extraction phases that prevent biofouling, which could drastically affect the ionization process and are still capable of selective extraction of the targeted analytes from the food matrix. Furthermore, the review examines the most significant applications of SPME-MS for various ionization techniques such as direct analysis in real time, dielectric barrier desorption ionization, and some unique SPME geometries, for example, transmission mode SPME and coated blade spray, that facilitate the interface to MS instrumentation.
Collapse
Affiliation(s)
- Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, 43606, USA
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, 43606, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, 43606, USA
| | | |
Collapse
|