1
|
Chen J, Brea RJ, Fracassi A, Cho CJ, Wong AM, Salvador-Castell M, Sinha SK, Budin I, Devaraj NK. Rapid Formation of Non-canonical Phospholipid Membranes by Chemoselective Amide-Forming Ligations with Hydroxylamines. Angew Chem Int Ed Engl 2024; 63:e202311635. [PMID: 37919232 PMCID: PMC11179435 DOI: 10.1002/anie.202311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.
Collapse
Affiliation(s)
- Jiyue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Christy J Cho
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Adrian M Wong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Marta Salvador-Castell
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Sunil K Sinha
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Souto-Trinei FA, Brea RJ, Devaraj NK. Biomimetic construction of phospholipid membranes by direct aminolysis ligations. Interface Focus 2023; 13:20230019. [PMID: 37577004 PMCID: PMC10415742 DOI: 10.1098/rsfs.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/19/2023] [Indexed: 08/15/2023] Open
Abstract
Construction of artificial cells requires the development of straightforward methods for mimicking natural phospholipid membrane formation. Here we describe the use of direct aminolysis ligations to spontaneously generate biomimetic phospholipid membranes from water-soluble starting materials. Additionally, we explore the suitability of such biomimetic approaches for driving the in situ formation of native phospholipid membranes. Our studies suggest that non-enzymatic ligation reactions could have been important for the synthesis of phospholipid-like membranes during the origin of life, and might be harnessed as simplified methods to enable the generation of lipid compartments in artificial cells.
Collapse
Affiliation(s)
- Federica A. Souto-Trinei
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701 A Coruña, Spain
| | - Roberto J. Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701 A Coruña, Spain
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Lomba-Riego L, Calvino-Sanles E, Brea RJ. In situ synthesis of artificial lipids. Curr Opin Chem Biol 2022; 71:102210. [PMID: 36116189 DOI: 10.1016/j.cbpa.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Lipids constitute one of the most enigmatic family of biological molecules. Although the importance of lipids as basic units of compartmental structure and energy storage is well-acknowledged, deciphering the biosynthesis and precise roles of specific lipid species has been challenging. To better understand the structure and function of these biomolecules, there is a burgeoning interest in developing strategies to produce noncanonical lipids in a controlled manner. This review covers recent advances in the area of in situ generation of synthetic lipids. Specifically, we report several approaches that constitute a powerful toolbox for achieving noncanonical lipid synthesis. We describe how these methodologies enable the direct construction of synthetic lipids, helping to address fundamental questions related to the cell biology of lipid biosynthesis, trafficking, and signaling. We envision that highlighting the current advances in artificial lipid synthesis will pave the way for broader interest into this emerging class of biomimetic molecules.
Collapse
Affiliation(s)
- Lucia Lomba-Riego
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Esther Calvino-Sanles
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain.
| |
Collapse
|
4
|
Knittel CH, Devaraj NK. Bioconjugation Strategies for Revealing the Roles of Lipids in Living Cells. Acc Chem Res 2022; 55:3099-3109. [PMID: 36215688 DOI: 10.1021/acs.accounts.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structural boundaries of living cells are composed of numerous membrane-forming lipids. Lipids not only are crucial for the cellular compartmentalization but also are involved in cell signaling as well as energy storage. Abnormal lipid levels have been linked to severe human diseases such as cancer, multiple sclerosis, neurodegenerative diseases, as well as lysosomal storage disorders. Given their biological significance, there is immense interest in studying lipids and their effect on cells. However, limiting factors include the low solubility of lipids, their structural complexity, and the challenge of using genetic techniques to directly manipulate lipid structure. Current methods to study lipids rely mostly on lipidomics, which analyzes the composition of lipid extracts using mass spectrometry. Although, these efforts have successfully catalogued and profiled a great number of lipids in cells, many aspects about their exact functional role and subcellular distribution remain enigmatic.In this Account, we outline how our laboratory developed and applied different bioconjugation strategies to study the role of lipids and lipid modifications in cells. Inspired by our ongoing work on developing lipid bioconjugation strategies to generate artificial cell membranes, we developed a ceramide synthesis method in live cells using a salicylaldehyde ester that readily reacts with sphingosine in form of a traceless ceramide ligation. Our study not only confirmed existing knowledge about the association of ceramides with cell death, but also gave interesting new findings about the structure-function relationship of ceramides in apoptosis. Our initial efforts led us to investigate probes that detect endogenous sphingolipids using live cell imaging. We describe the development of a fluorogenic probe that reacts chemoselectively with sphingosine in living cells, enabling the detection of elevated endogenous levels of this biomarker in human disease. Building on our interest in the fluorescence labeling of lipids, we have also explored the use of bioorthogonal reactions to label chemically synthesized lipid probes. We discuss the development of photocaged dihydrotetrazine lipids, where the initiation of the bioorthogonal reaction can be triggered by visible light, allowing for live cell modification of membranes with spatiotemporal control.Finally, proteins are often post-translationally modified by lipids, which have important effects on protein subcellular localization and function. Controlling lipid modifications with small molecule probes could help reveal the function of lipid post-translational modifications and could potentially inspire novel therapeutic strategies. We describe how our previous studies on synthetic membrane formation inspired us to develop an amphiphilic cysteine derivative that depalmitoylates membrane-bound S-acylated proteins in live cells. Ultimately, we applied this amphiphile mediated depalmitoylation (AMD) in studies investigating the palmitoylation of cancer relevant palmitoylated proteins in healthy and diseased cells.
Collapse
Affiliation(s)
- Caroline H Knittel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
6
|
Flores J, Brea RJ, Lamas A, Fracassi A, Salvador-Castell M, Xu C, Baiz CR, Sinha SK, Devaraj NK. Rapid and Sequential Dual Oxime Ligation Enables De Novo Formation of Functional Synthetic Membranes from Water-Soluble Precursors. Angew Chem Int Ed Engl 2022; 61:e202200549. [PMID: 35546783 DOI: 10.1002/anie.202200549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 01/28/2023]
Abstract
Cell membranes define the boundaries of life and primarily consist of phospholipids. Living organisms assemble phospholipids by enzymatically coupling two hydrophobic tails to a soluble polar head group. Previous studies have taken advantage of micellar assembly to couple single-chain precursors, forming non-canonical phospholipids. However, biomimetic nonenzymatic coupling of two alkyl tails to a polar head-group remains challenging, likely due to the sluggish reaction kinetics of the initial coupling step. Here we demonstrate rapid de novo formation of biomimetic liposomes in water using dual oxime bond formation between two alkyl chains and a phosphocholine head group. Membranes can be generated from non-amphiphilic, water-soluble precursors at physiological conditions using micromolar concentrations of precursors. We demonstrate that functional membrane proteins can be reconstituted into synthetic oxime liposomes from bacterial extracts in the absence of detergent-like molecules.
Collapse
Affiliation(s)
- Judith Flores
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, CA 92093, USA
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Alejandro Lamas
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, CA 92093, USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, CA 92093, USA
| | - Marta Salvador-Castell
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Cong Xu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, TX 78712-1224, USA
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, TX 78712-1224, USA
| | - Sunil K Sinha
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
8
|
Flores J, Brea RJ, Lamas A, Fracassi A, Salvador‐Castell M, Xu C, Baiz CR, Sinha SK, Devaraj NK. Rapid and Sequential Dual Oxime Ligation Enables De Novo Formation of Functional Synthetic Membranes from Water‐Soluble Precursors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Judith Flores
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, Natural Sciences Building 3328 La Jolla CA 92093 USA
| | - Roberto J. Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group Centro de Investigacións Científicas Avanzadas (CICA) Universidade da Coruña Rúa As Carballeiras 15701 A Coruña Spain
| | - Alejandro Lamas
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, Natural Sciences Building 3328 La Jolla CA 92093 USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, Natural Sciences Building 3328 La Jolla CA 92093 USA
| | - Marta Salvador‐Castell
- Department of Physics University of California, San Diego 9500 Gilman Drive, Building: Mayer Hall Addition 4561 La Jolla CA 92093 USA
| | - Cong Xu
- Department of Chemistry The University of Texas at Austin 105 E. 24th St. Stop A5300 Austin TX 78712-1224 USA
| | - Carlos R. Baiz
- Department of Chemistry The University of Texas at Austin 105 E. 24th St. Stop A5300 Austin TX 78712-1224 USA
| | - Sunil K. Sinha
- Department of Physics University of California, San Diego 9500 Gilman Drive, Building: Mayer Hall Addition 4561 La Jolla CA 92093 USA
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, Natural Sciences Building 3328 La Jolla CA 92093 USA
| |
Collapse
|
9
|
Zhang M, Zhang Y, Mu W, Dong M, Han X. In Situ Synthesis of Lipid Analogues Leading to Artificial Cell Growth and Division. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingrui Zhang
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ying Zhang
- Heilongjiang Institute of Technology College of Materials and Chemical Engineering CHINA
| | - Wei Mu
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Mingdong Dong
- Aarhus Universitet Interdisciplinary Nanosci Ctr iNANO DENMARK
| | - Xiaojun Han
- Harbin Institute of Technology School of Chemical Engineering and Technology No.92, West Da-Zhi Street, Harbin, 150001, China 150001 harbin CHINA
| |
Collapse
|
10
|
Qualls ML, Sagar R, Lou J, Best MD. Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. J Phys Chem B 2021; 125:12918-12933. [PMID: 34792362 DOI: 10.1021/acs.jpcb.1c07406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to modulate the structures of lipid membranes, predicated on our nuanced understanding of the properties that drive and alter lipid self-assembly, has opened up many exciting biological applications. In this Perspective, we focus on two endeavors in which the same principles are invoked to achieve completely opposite results. On one hand, controlled liposome decomposition enables triggered release of encapsulated cargo through the development of synthetic lipid switches that perturb lipid packing in the presence of disease-associated stimuli. In particular, recent approaches have utilized artificial lipid switches designed to undergo major conformational changes in response to a range of target conditions. On the other end of the spectrum, the ability to drive the in situ formation of lipid bilayer membranes from soluble precursors is an important component in the establishment of artificial cells. This work has culminated in chemoenzymatic strategies that enable lipid manufacturing from simple components. Herein, we describe recent advancements in these two unique undertakings that are linked by their reliance on common principles of lipid self-assembly.
Collapse
Affiliation(s)
- Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Abstract
A major goal of synthetic biology is to understand the transition between non-living matter and life. The bottom-up development of an artificial cell would provide a minimal system with which to study the border between chemistry and biology. So far, a fully synthetic cell has remained elusive, but chemists are progressing towards this goal by reconstructing cellular subsystems. Cell boundaries, likely in the form of lipid membranes, were necessary for the emergence of life. In addition to providing a protective barrier between cellular cargo and the external environment, lipid compartments maintain homeostasis with other subsystems to regulate cellular processes. In this Review, we examine different chemical approaches to making cell-mimetic compartments. Synthetic strategies to drive membrane formation and function, including bioorthogonal ligations, dissipative self-assembly and reconstitution of biochemical pathways, are discussed. Chemical strategies aim to recreate the interactions between lipid membranes, the external environment and internal biomolecules, and will clarify our understanding of life at the interface of chemistry and biology.
Collapse
|
12
|
Bhattacharya A, Cho CJ, Brea RJ, Devaraj NK. Expression of Fatty Acyl-CoA Ligase Drives One-Pot De Novo Synthesis of Membrane-Bound Vesicles in a Cell-Free Transcription-Translation System. J Am Chem Soc 2021; 143:11235-11242. [PMID: 34260248 DOI: 10.1021/jacs.1c05394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the central importance of lipid membranes in cellular organization, it is challenging to reconstitute their formation de novo from minimal chemical and biological elements. Here, we describe a chemoenzymatic route to membrane-forming noncanonical phospholipids in which cysteine-modified lysolipids undergo spontaneous coupling with fatty acyl-CoA thioesters generated enzymatically by a fatty acyl-CoA ligase. Due to the high efficiency of the reaction, we were able to optimize phospholipid formation in a cell-free transcription-translation (TX-TL) system. Combining DNA encoding the fatty acyl-CoA ligase with suitable lipid precursors enabled one-pot de novo synthesis of membrane-bound vesicles. Noncanonical sphingolipid synthesis was also possible by using a cysteine-modified lysosphingomyelin as a precursor. When the sphingomyelin-interacting protein lysenin was coexpressed alongside the acyl-CoA ligase, the in situ assembled membranes were spontaneously decorated with protein. Our strategy of coupling gene expression with membrane lipid synthesis in a one-pot fashion could facilitate the generation of proteoliposomes and brings us closer to the bottom-up generation of synthetic cells using recombinant synthetic biology platforms.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Christy J Cho
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Chen L, Li X, Yan Q. Light-Click In Situ Self-Assembly of Superhelical Nanofibers and Their Helicity Hierarchy Control. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xuefeng Li
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Abstract
Lipid membranes in cells are fluid structures that undergo constant synthesis, remodeling, fission, and fusion. The dynamic nature of lipid membranes enables their use as adaptive compartments, making them indispensable for all life on Earth. Efforts to create life-like artificial cells will likely involve mimicking the structure and function of lipid membranes to recapitulate fundamental cellular processes such as growth and division. As such, there is considerable interest in chemistry that mimics the functional properties of membranes, with the express intent of recapitulating biological phenomena. We suggest expanding the definition of membrane mimetic chemistry to capture these efforts. In this Perspective, we discuss how membrane mimetic chemistry serves the development of artificial cells. By leveraging recent advances in chemical biology and systems chemistry, we have an opportunity to use simplified chemical and biochemical systems to mimic the remarkable properties of living membranes.
Collapse
Affiliation(s)
- Jacob A Vance
- Chemistry and Biochemistry, University of California San Diego, California 92093, United States
| | - Neal K Devaraj
- Chemistry and Biochemistry, University of California San Diego, California 92093, United States
| |
Collapse
|
15
|
Khanal S, Brea RJ, Burkart MD, Devaraj NK. Chemoenzymatic Generation of Phospholipid Membranes Mediated by Type I Fatty Acid Synthase. J Am Chem Soc 2021; 143:8533-8537. [PMID: 33978402 DOI: 10.1021/jacs.1c02121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The de novo formation of lipid membranes from minimal reactive precursors is a major goal in synthetic cell research. In nature, the synthesis of membrane phospholipids is orchestrated by numerous enzymes, including fatty acid synthases and membrane-bound acyltransferases. However, these enzymatic pathways are difficult to fully reproduce in vitro. As such, the reconstitution of phospholipid membrane synthesis from simple metabolic building blocks remains a challenge. Here, we describe a chemoenzymatic strategy for lipid membrane generation that utilizes a soluble bacterial fatty acid synthase (cgFAS I) to synthesize palmitoyl-CoA in situ from acetyl-CoA and malonyl-CoA. The fatty acid derivative spontaneously reacts with a cysteine-modified lysophospholipid by native chemical ligation (NCL), affording a noncanonical amidophospholipid that self-assembles into micron-sized membrane-bound vesicles. To our knowledge, this is the first example of reconstituting phospholipid membrane formation directly from acetyl-CoA and malonyl-CoA precursors. Our results demonstrate that combining the specificity and efficiency of a type I fatty acid synthase with a highly selective bioconjugation reaction provides a biomimetic route for the de novo formation of membrane-bound vesicles.
Collapse
Affiliation(s)
- Satyam Khanal
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
17
|
Zhou Y, Yang H, Wang C, Xue Y, Wang X, Bao C, Zhu L. In situ formation of a biomimetic lipid membrane triggered by an aggregation-enhanced photoligation chemistry. Chem Sci 2021; 12:3627-3632. [PMID: 34163636 PMCID: PMC8179432 DOI: 10.1039/d0sc06049f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Nature or synthetic systems that can self-assemble into biomimetic membranes and form compartments in aqueous solution have received extensive attention. However, these systems often have the problems of requiring complex processes or lacking of control in simulating lipid synthesis and membrane formation of cells. This paper demonstrates a conceptually new strategy that uses a photoligation chemistry to convert nonmembrane molecules to yield liposomes. Lysosphingomyelin (Lyso) and 2-nitrobenzyl alcohol derivatives (NBs) are used as precursors and the amphiphilic character of Lyso promotes the formation of mixed aggregates with NBs, bringing the lipid precursors into close proximity. Light irradiation triggers the conversion of NBs into reactive aldehyde intermediates, and the preassembly facilitates the efficient and specific ligation between aldehyde and Lyso amine over other biomolecules, thereby accelerating the synthesis of phospholipids and forming membrane compartments similar to natural lipids. The light-controllable transformation represents the use of an external energy stimulus to form a biomimetic phospholipid membrane, which has a wide range of applications in medicinal chemistry, synthetic biological and abiogenesis.
Collapse
Affiliation(s)
- Yaowu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Huiting Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Chenxi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Yuan Xue
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Xuebin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Chunyan Bao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130# Meilong Road Shanghai 200237 China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology 130# Meilong Road Shanghai 200237 China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130# Meilong Road Shanghai 200237 China
| |
Collapse
|
18
|
Liu L, Zou Y, Bhattacharya A, Zhang D, Lang SQ, Houk KN, Devaraj NK. Enzyme-free synthesis of natural phospholipids in water. Nat Chem 2020; 12:1029-1034. [PMID: 33046841 DOI: 10.1038/s41557-020-00559-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 08/25/2020] [Indexed: 11/09/2022]
Abstract
All living organisms synthesize phospholipids as the primary constituent of their cell membranes. Enzymatic synthesis of diacylphospholipids requires preexisting membrane-embedded enzymes. This limitation has led to models of early life in which the first cells used simpler types of membrane building blocks and has hampered integration of phospholipid synthesis into artificial cells. Here we demonstrate an enzyme-free synthesis of natural diacylphospholipids by transacylation in water, which is enabled by a combination of ion pairing and self-assembly between lysophospholipids and acyl donors. A variety of membrane-forming cellular phospholipids have been obtained in high yields. Membrane formation takes place in water from natural alkaline sources such as soda lakes and hydrothermal oceanic vents. When formed vesicles are transferred to more acidic solutions, electrochemical proton gradients are spontaneously established and maintained. This high-yielding non-enzymatic synthesis of natural phospholipids in water opens up new routes for lipid synthesis in artificial cells and sheds light on the origin and evolution of cellular membranes.
Collapse
Affiliation(s)
- Luping Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Susan Q Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
19
|
Blanken D, Foschepoth D, Serrão AC, Danelon C. Genetically controlled membrane synthesis in liposomes. Nat Commun 2020; 11:4317. [PMID: 32859896 PMCID: PMC7455746 DOI: 10.1038/s41467-020-17863-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid membranes, nucleic acids, proteins, and metabolism are essential for modern cellular life. Synthetic systems emulating the fundamental properties of living cells must therefore be built upon these functional elements. In this work, phospholipid-producing enzymes encoded in a synthetic minigenome are cell-free expressed within liposome compartments. The de novo synthesized metabolic pathway converts precursors into a variety of lipids, including the constituents of the parental liposome. Balanced production of phosphatidylethanolamine and phosphatidylglycerol is realized, owing to transcriptional regulation of the activity of specific genes combined with a metabolic feedback mechanism. Fluorescence-based methods are developed to image the synthesis and membrane incorporation of phosphatidylserine at the single liposome level. Our results provide experimental evidence for DNA-programmed membrane synthesis in a minimal cell model. Strategies are discussed to alleviate current limitations toward effective liposome growth and self-reproduction.
Collapse
Affiliation(s)
- Duco Blanken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - David Foschepoth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Adriana Calaça Serrão
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
20
|
Flores J, White BM, Brea RJ, Baskin JM, Devaraj NK. Lipids: chemical tools for their synthesis, modification, and analysis. Chem Soc Rev 2020; 49:4602-4614. [PMID: 32691785 PMCID: PMC7380508 DOI: 10.1039/d0cs00154f] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipids remain one of the most enigmatic classes of biological molecules. Whereas lipids are well known to form basic units of membrane structure and energy storage, deciphering the exact roles and biological interactions of distinct lipid species has proven elusive. How these building blocks are synthesized, trafficked, and stored are also questions that require closer inspection. This tutorial review covers recent advances on the preparation, derivatization, and analysis of lipids. In particular, we describe several chemical approaches that form part of a powerful toolbox for controlling and characterizing lipid structure. We believe these tools will be helpful in numerous applications, including the study of lipid-protein interactions and the development of novel drug delivery systems.
Collapse
Affiliation(s)
- Judith Flores
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Brittany M White
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Hou Z, Wu X, Wu G, Yang E, Sun G, Wu A, Zheng L. Self-Assembled Vesicles Formed by Positional Isomers of Sodium Dodecyl Benzene Sulfonate-Based Pseudogemini Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7593-7601. [PMID: 32513009 DOI: 10.1021/acs.langmuir.0c01206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The construction of pseudogemini surfactants based on noncovalent interactions (such as electrostatic interaction and π-π stacking) was a powerful method to assemble well-defined aggregates in aqueous solution. The mixtures of butane-1,4-bis(methylimidazolium bromide) ([mim-C4-mim]Br2) and positional isomers of sodium dodecyl benzene sulfonate (SDBS-0,11 or SDBS-3,8) in a molar ratio of 1:2 were studied to characterize the effect of straight and branched alkyl chains on the aggregation behavior of pseudogemini surfactants. Spontaneous phase transition from micelles to vesicles was formed by these two kinds of complexes. Interestingly, a densely stacked onion-like structure (multilamellar vesicles) with more than one dozen layers was fabricated. The micelle and vesicle phases were characterized in detail by cryogenic transmission electron microscopy, polarized optical microscopy, dynamic light scattering, and rheological measurements. It can be clearly demonstrated that the structure of alkyl chain can significantly influence the surface adsorption, solution self-assembly, and aqueous two-phase system of pseudogemini surfactants. Our work provided a convenient technique to achieve controlled self-assembly by introducing positional isomers of surfactants.
Collapse
Affiliation(s)
- Zhaowei Hou
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
- Exploration and Development Research Institute of Daqing Oilfield Co. Ltd., Daqing 163712, China
| | - Xiaolin Wu
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
- Exploration and Development Research Institute of Daqing Oilfield Co. Ltd., Daqing 163712, China
| | - Guopeng Wu
- Exploration and Development Research Institute of Daqing Oilfield Co. Ltd., Daqing 163712, China
| | - Erlong Yang
- School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Guannan Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| |
Collapse
|
22
|
Hoogendoorn S, Aye Y. Empowering Global Chemical Biology at the Dawn of the New Decade. ACS Chem Biol 2020; 15:1287-1291. [PMID: 32315151 DOI: 10.1021/acschembio.0c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On January 22-24, 2020, scientific luminaries across the far-flung corners of chemical biology gathered in Geneva, Switzerland, to deliver their latest and greatest discoveries in the field. Generously supported by the Swiss National Science Foundation (SNSF), our academic partners, and industrial and journal sponsors, this chemical biology symposium in our opinion will remain memorable for several years to come, not only because of the diversity in scientific topics delivered by our invited eminent speakers as detailed herein, but it is also one-of-a-kind conference which reflected multidimensional balance-balance in age and gender, across these speakers. Such a remarkable speaker line-up doubtless attracted >200 attendees from academia and industry in and around Switzerland and beyond, representing a huge swathe of subfields of science interfacing chemistry and biology. Poster presentations from students and postdocs further spotlighted the exciting diversity in the field: spanning biosynthesis, optochemical genetics, genetic code expansion, lipid chemical biology, redox perturbation, microfluidics screening, membrane signaling, immune modulation, DNA circuits, and synthetic and computational biology. This notable heterogeneity in scientific topics also went hand-in-hand with the diverse representations of student/postdoc trainees from 56 institutions covering 14 countries worldwide, allowing us to witness science as a truly global enterprise.
Collapse
Affiliation(s)
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Jin S, Brea RJ, Rudd AK, Moon SP, Pratt MR, Devaraj NK. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nat Commun 2020; 11:2793. [PMID: 32493905 PMCID: PMC7270136 DOI: 10.1038/s41467-020-16595-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Biology utilizes multiple strategies, including sequestration in lipid vesicles, to raise the rate and specificity of chemical reactions through increases in effective molarity of reactants. We show that micelle-assisted reaction can facilitate native chemical ligations (NCLs) between a peptide-thioester – in which the thioester leaving group contains a lipid-like alkyl chain – and a Cys-peptide modified by a lipid-like moiety. Hydrophobic lipid modification of each peptide segment promotes the formation of mixed micelles, bringing the reacting peptides into close proximity and increasing the reaction rate. The approach enables the rapid synthesis of polypeptides using low concentrations of reactants without the need for thiol catalysts. After NCL, the lipid moiety is removed to yield an unmodified ligation product. This micelle-based methodology facilitates the generation of natural peptides, like Magainin 2, and the derivatization of the protein Ubiquitin. Formation of mixed micelles from lipid-modified reactants shows promise for accelerating chemical reactions in a traceless manner. Sequestration of reactants in lipid vesicles is a strategy prevalent in biological systems to raise the rate and specificity of chemical reactions. Here, the authors show that micelle-assisted reactions facilitate native chemical ligation between a peptide-thioester and a Cys-peptide modified by a lipid-like moiety.
Collapse
Affiliation(s)
- Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew K Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
24
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020; 59:5178-5184. [DOI: 10.1002/anie.201914836] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
25
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
26
|
Affiliation(s)
- Kilian Vogele
- Physik-DepartmentTechnische Universitat Munchen, TU München Garching Germany
| | - Tobias Pirzer
- Physik-DepartmentTechnische Universitat Munchen, TU München Garching Germany
| | - Friedrich C. Simmel
- Physik-DepartmentTechnische Universitat Munchen, TU München Garching Germany
| |
Collapse
|
27
|
Conibear AC, Muttenthaler M. Advancing the Frontiers of Chemical Protein Synthesis-The 7 th CPS Meeting, Haifa, Israel. Cell Chem Biol 2019; 25:247-254. [PMID: 29547714 DOI: 10.1016/j.chembiol.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 7th Chemical Protein Synthesis Meeting took place in September 2017 in Haifa, Israel, bringing together 100 scientists from 11 countries. The cutting-edge scientific program included new synthetic strategies and ligation auxiliaries, novel insights into protein signaling and post-translational modifications, and a range of promising therapeutic applications.
Collapse
Affiliation(s)
- Anne C Conibear
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
28
|
Bhattacharya A, Brea RJ, Niederholtmeyer H, Devaraj NK. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat Commun 2019; 10:300. [PMID: 30655537 PMCID: PMC6336818 DOI: 10.1038/s41467-018-08174-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/14/2018] [Indexed: 11/30/2022] Open
Abstract
All living cells consist of membrane compartments, which are mainly composed of phospholipids. Phospholipid synthesis is catalyzed by membrane-bound enzymes, which themselves require pre-existing membranes for function. Thus, the principle of membrane continuity creates a paradox when considering how the first biochemical membrane-synthesis machinery arose and has hampered efforts to develop simplified pathways for membrane generation in synthetic cells. Here, we develop a high-yielding strategy for de novo formation and growth of phospholipid membranes by repurposing a soluble enzyme FadD10 to form fatty acyl adenylates that react with amine-functionalized lysolipids to form phospholipids. Continuous supply of fresh precursors needed for lipid synthesis enables the growth of vesicles encapsulating FadD10. Using a minimal transcription/translation system, phospholipid vesicles are generated de novo in the presence of DNA encoding FadD10. Our findings suggest that alternate chemistries can produce and maintain synthetic phospholipid membranes and provides a strategy for generating membrane-based materials. The origin of phospholipids, the primary constituents of cell membranes, is uncertain. Here, the authors develop an in vitro system to synthesize phospholipid molecules from water-soluble single-chain amphiphilic precursors via a reaction catalysed by the mycobacterial ligase FadD10.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA
| | - Henrike Niederholtmeyer
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, Natural Sciences Building 3328, San Diego, CA, 92093, USA.
| |
Collapse
|
29
|
Budding and Division of Giant Vesicles Linked to Phospholipid Production. Sci Rep 2019; 9:165. [PMID: 30655551 PMCID: PMC6336860 DOI: 10.1038/s41598-018-36183-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The self-reproduction of supramolecular assemblies based on the synthesis and self-assembly of building blocks is a critical step towards the construction of chemical systems with autonomous, adaptive, and propagation properties. In this report, we demonstrate that giant vesicles can grow and produce daughter vesicles by synthesizing and incorporating phospholipids in situ from ad-hoc precursors. Our model involves acyl chain elongation via copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition reaction and the ensuing production of synthetic phospholipids to induce budding and division. In addition, the growth and budding of giant vesicles were compatible with the encapsulation and transfer of macromolecules as large as lambda phage DNA to the buds. This chemical system provides a useful model towards the implementation of cell-like compartments capable of propagation and transport of biological materials.
Collapse
|
30
|
Rudd AK, Brea RJ, Devaraj NK. Amphiphile-Mediated Depalmitoylation of Proteins in Living Cells. J Am Chem Soc 2018; 140:17374-17378. [PMID: 30516377 DOI: 10.1021/jacs.8b10806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational S-palmitoylation plays a central role in protein localization, trafficking, stability, aggregation, and cell signaling. Dysregulation of palmitoylation pathways in cells can alter protein function and is the cause of several diseases. Considering the biological and clinical importance of S-palmitoylation, tools for direct, in vivo modulation of this lipid modification would be extremely valuable. Here, we describe a method for the cleavage of native S-palmitoyl groups from proteins in living cells. Using a cell permeable, cysteine-functionalized amphiphile, we demonstrate the direct depalmitoylation of cellular proteins. We show that amphiphile-mediated depalmitoylation (AMD) can effectively cleave S-palmitoyl groups from the native GTPase HRas and successfully depalmitoylate mislocalized proteins in an infantile neuronal ceroid lipofuscinosis (INCL) disease model. AMD enables direct and facile depalmitoylation of proteins in live cells and has potential therapeutic applications for diseases such as INCL, where native protein thioesterase activity is deficient.
Collapse
Affiliation(s)
- Andrew K Rudd
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
31
|
Yewdall NA, Mason AF, van Hest JCM. The hallmarks of living systems: towards creating artificial cells. Interface Focus 2018; 8:20180023. [PMID: 30443324 PMCID: PMC6227776 DOI: 10.1098/rsfs.2018.0023] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the astonishing diversity and complexity of living systems, they all share five common hallmarks: compartmentalization, growth and division, information processing, energy transduction and adaptability. In this review, we give not only examples of how cells satisfy these requirements for life and the ways in which it is possible to emulate these characteristics in engineered platforms, but also the gaps that remain to be bridged. The bottom-up synthesis of life-like systems continues to be driven forward by the advent of new technologies, by the discovery of biological phenomena through their transplantation to experimentally simpler constructs and by providing insights into one of the oldest questions posed by mankind, the origin of life on Earth.
Collapse
Affiliation(s)
| | | | - Jan C. M. van Hest
- Eindhoven University of Technology, PO Box 513 (STO 3.31), Eindhoven, MB, The Netherlands
| |
Collapse
|
32
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
33
|
Traceless synthesis of ceramides in living cells reveals saturation-dependent apoptotic effects. Proc Natl Acad Sci U S A 2018; 115:7485-7490. [PMID: 29967152 DOI: 10.1073/pnas.1804266115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian cells synthesize thousands of distinct lipids, yet the function of many of these lipid species is unknown. Ceramides, a class of sphingolipid, are implicated in several cell-signaling pathways but poor cell permeability and lack of selectivity in endogenous synthesis pathways have hampered direct study of their effects. Here we report a strategy that overcomes the inherent biological limitations of ceramide delivery by chemoselectively ligating lipid precursors in vivo to yield natural ceramides in a traceless manner. Using this method, we uncovered the apoptotic effects of several ceramide species and observed differences in their apoptotic activity based on acyl-chain saturation. Additionally, we demonstrate spatiotemporally controlled ceramide synthesis in live cells through photoinitiated lipid ligation. Our in situ lipid ligation approach addresses the long-standing problem of lipid-specific delivery and enables the direct study of unique ceramide species in live cells.
Collapse
|
34
|
Seoane A, Brea RJ, Fuertes A, Podolsky KA, Devaraj NK. Biomimetic Generation and Remodeling of Phospholipid Membranes by Dynamic Imine Chemistry. J Am Chem Soc 2018; 140:8388-8391. [PMID: 29886740 DOI: 10.1021/jacs.8b04557] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimetic liposomes have a wide array of applications in several areas, ranging from medicinal chemistry to synthetic biology. Due to their biocompatibility and biological relevance, there is particular interest in the formation of synthetic phospholipid vesicles and the development of methods to tune their properties in a controlled manner. However, while true biological membranes are capable of responding to environmental stimuli by enzymatically remodeling their composition, synthetic liposomes are typically static once formed. Herein we report the chemoselective reaction of the natural amine-containing lysosphingomyelin with a series of long-chain aldehydes to form imines. This transformation results in the formation of phospholipid liposomes that are in dynamic equilibrium with the aldehyde-amine form. The reversibility of the imine linkage is exploited in the synthesis of vesicles that are capable of responding to external stimuli such as temperature or the addition of small molecules.
Collapse
Affiliation(s)
- Andrés Seoane
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Alberto Fuertes
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
35
|
Enomoto T, Brea RJ, Bhattacharya A, Devaraj NK. In Situ Lipid Membrane Formation Triggered by Intramolecular Photoinduced Electron Transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:750-755. [PMID: 28982007 DOI: 10.1021/acs.langmuir.7b02783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major goal of synthetic biology is the development of rational methodologies to construct self-assembling non-natural membranes, which could enable the efficient fabrication of artificial cellular systems from purely synthetic components. However, spatiotemporal control of artificial membrane formation remains both challenging and limited in scope. Here, we describe a new methodology to promote biomimetic phospholipid membrane formation by the photochemical activation of a catalyst-sensitizer dyad via an intramolecular photoinduced electron-transfer process. Our results offer future opportunities to exert spatiotemporal control over artificial cellular constructs.
Collapse
Affiliation(s)
- Takafumi Enomoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science , 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI [The Graduate University for Advanced Studies] , Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California at San Diego , La Jolla, California 92093, United States
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California at San Diego , La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California at San Diego , La Jolla, California 92093, United States
| |
Collapse
|
36
|
Exterkate M, Caforio A, Stuart MCA, Driessen AJM. Growing Membranes In Vitro by Continuous Phospholipid Biosynthesis from Free Fatty Acids. ACS Synth Biol 2018; 7:153-165. [PMID: 28922922 PMCID: PMC5778391 DOI: 10.1021/acssynbio.7b00265] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the key aspects that defines a cell as a living entity is its ability to self-reproduce. In this process, membrane biogenesis is an essential element. Here, we developed an in vitro phospholipid biosynthesis pathway based on a cascade of eight enzymes, starting from simple fatty acid building blocks and glycerol 3-phosphate. The reconstituted system yields multiple phospholipid species that vary in acyl-chain and polar headgroup compositions. Due to the high fidelity and versatility, complete conversion of the fatty acid substrates into multiple phospholipid species is achieved simultaneously, leading to membrane expansion as a first step toward a synthetic minimal cell.
Collapse
Affiliation(s)
- Marten Exterkate
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Antonella Caforio
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, and ‡Department of Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
37
|
Lang K. Building Peptide Bonds in Haifa: The Seventh Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2018; 19:115-120. [PMID: 29251813 DOI: 10.1002/cbic.201700606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 01/24/2023]
Abstract
The power of CPS, live! More than 90 attendees from around the world came together in Haifa to present and hear about cutting-edge science in protein chemistry, from advances in synthetic methods to applications in biology and medicine. The meeting was a powerful demonstration that chemical protein synthesis can provide otherwise unattainable insights into protein structure and function.
Collapse
Affiliation(s)
- Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
38
|
Devaraj NK, Perrin CL. Approach control. Stereoelectronic origin of geometric constraints on N-to-S and N-to-O acyl shifts in peptides. Chem Sci 2018; 9:1789-1794. [PMID: 29675223 PMCID: PMC5892126 DOI: 10.1039/c7sc04046f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/06/2018] [Indexed: 11/21/2022] Open
Abstract
Intramolecular N-to-S or N-to-O acyl shifts in peptides are of fundamental and practical importance, as they constitute the first step in protein splicing and can be used for the synthesis of thioester-modified peptides required for native chemical ligation. It has been stated that the nucleophile must be positioned anti to the carbonyl oxygen, as in a cis amide. Despite the importance of such reactions, an understanding of this geometric restriction remains obscure. Here we argue that the empirical requirement for positioning the nucleophile is a stereoelectronic effect arising from the ease of approach of the nucleophile to a carbonyl group, not ground-state destabilization. DFT calculations on model amides support our explanation and indicate a significant decrease in both the transition-state energy and the activation energy for a cis amide. However, the approach of the nucleophile must be anti not only to the carbonyl oxygen but also to the nitrogen. The direction of approach is expressed by a new, modified Bürgi-Dunitz angle. Our data shed light on the mechanisms of acyl shifts in peptides, and they explain why a cis peptide might be required for protein splicing. The further implications for acyl shits in homoserine and homocysteine peptides and for aldol condensations are also considered.
Collapse
Affiliation(s)
- Neal K Devaraj
- Dept. of Chemistry & Biochemistry , Univ. Calif. San Diego , La Jolla , CA 92093-0358 , USA .
| | - Charles L Perrin
- Dept. of Chemistry & Biochemistry , Univ. Calif. San Diego , La Jolla , CA 92093-0358 , USA .
| |
Collapse
|
39
|
Konetski D, Mavila S, Wang C, Worrell B, Bowman CN. Production of dynamic lipid bilayers using the reversible thiol–thioester exchange reaction. Chem Commun (Camb) 2018; 54:8108-8111. [DOI: 10.1039/c8cc03471k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coupling of phospholipid precursors using the reversible thiol–thioester exchange reaction enables downstream remodeling and functionalization.
Collapse
Affiliation(s)
- Danielle Konetski
- Department of Chemical and Biological Engineering
- University of Colorado
- Boulder
- USA
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering
- University of Colorado
- Boulder
- USA
| | - Chen Wang
- Department of Chemical and Biological Engineering
- University of Colorado
- Boulder
- USA
- Formlabs Inc
| | - Brady Worrell
- Department of Chemical and Biological Engineering
- University of Colorado
- Boulder
- USA
| | | |
Collapse
|
40
|
Bhattacharya A, Brea RJ, Devaraj NK. De novo vesicle formation and growth: an integrative approach to artificial cells. Chem Sci 2017; 8:7912-7922. [PMID: 29619165 PMCID: PMC5858084 DOI: 10.1039/c7sc02339a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
The assembly of synthetic membranes provides a powerful tool to reconstruct the structure and function of living cells.
The assembly of artificial cells provides a novel strategy to reconstruct life's functions and shed light on how life emerged on Earth and possibly elsewhere. A major challenge to the development of artificial cells is the establishment of simple methodologies to mimic native membrane generation. An ambitious strategy is the bottom-up approach, which aims to systematically control the assembly of highly ordered membrane architectures with defined functionality. This perspective will cover recent advances and the current state-of-the-art of minimal lipid architectures that can faithfully reconstruct the structure and function of living cells. Specifically, we will overview work related to the de novo formation and growth of biomimetic membranes. These studies give us a deeper understanding of the nature of living systems and bring new insights into the origin of cellular life.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| |
Collapse
|
41
|
Abstract
Synthetic methods inspired by Nature often offer unique advantages including mild conditions and biocompatibility with aqueous media. Inspired by an ergothioneine biosynthesis protein EgtB, a mononuclear non-haem iron enzyme capable of catalysing the C-S bond formation and sulfoxidation, herein, we discovered a mild and metal-free C-H sulfenylation/intramolecular rearrangement cascade reaction employing an internally oxidizing O-N bond as a directing group. Our strategy accommodates a variety of oxyamines with good site selectivity and intrinsic oxidative properties. Combining an O-N bond with an X-S bond generates a C-S bond and an S=N bond rapidly. The newly discovered cascade reaction showed excellent chemoselectivity and a wide substrate scope for both oxyamines and sulfenylation reagents. We demonstrated the biocompatibility of the C-S bond coupling reaction by applying a coumarin-based fluorogenic probe in bacterial lysates. Finally, the C-S bond coupling reaction enabled the first fluorogenic formation of phospholipids, which self-assembled to fluorescent vesicles in situ.
Collapse
|
42
|
Abstract
Cells produce lipid membranes de novo through a complex sequence of enzymatic reactions that are difficult to reconstitute in a minimal system. We set out to take a different approach and mimic the synthesis of phospholipids using abiotic but highly selective bioconjugation reactions. Here, I outline several of our group's recent advances in exploring chemoselective reactions for stitching together lipid fragments to form membrane-forming lipids from non-membrane-forming precursors. Rapid chemical reactions can be harnessed to achieve facile de novo synthesis of lipid membranes, and spontaneous membrane formation can be applied for the reconstitution of membrane proteins, encapsulation and concentration of nanomaterials, and the study of lipid membrane remodeling. I conclude by briefly outlining future challenges and opportunities.
Collapse
Affiliation(s)
- Neal K Devaraj
- University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
43
|
Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes. PLoS One 2016; 11:e0163058. [PMID: 27711229 PMCID: PMC5053487 DOI: 10.1371/journal.pone.0163058] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
The goal of bottom-up synthetic biology culminates in the assembly of an entire cell from separate biological building blocks. One major challenge resides in the in vitro production and implementation of complex genetic and metabolic pathways that can support essential cellular functions. Here, we show that phospholipid biosynthesis, a multiple-step process involved in cell membrane homeostasis, can be reconstituted starting from the genes encoding for all necessary proteins. A total of eight E. coli enzymes for acyl transfer and headgroup modifications were produced in a cell-free gene expression system and were co-translationally reconstituted in liposomes. Acyl-coenzyme A and glycerol-3-phosphate were used as canonical precursors to generate a variety of important bacterial lipids. Moreover, this study demonstrates that two-step acyl transfer can occur from enzymes synthesized inside vesicles. Besides clear implications for growth and potentially division of a synthetic cell, we postulate that gene-based lipid biosynthesis can become instrumental for ex vivo and protein purification-free production of natural and non-natural lipids.
Collapse
|
44
|
Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes. Proc Natl Acad Sci U S A 2016; 113:8589-94. [PMID: 27439858 DOI: 10.1073/pnas.1605541113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.
Collapse
|
45
|
Sustainable proliferation of liposomes compatible with inner RNA replication. Proc Natl Acad Sci U S A 2015; 113:590-5. [PMID: 26711996 DOI: 10.1073/pnas.1516893113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although challenging, the construction of a life-like compartment via a bottom-up approach can increase our understanding of life and protocells. The sustainable replication of genome information and the proliferation of phospholipid vesicles are requisites for reconstituting cell growth. However, although the replication of DNA or RNA has been developed in phospholipid vesicles, the sustainable proliferation of phospholipid vesicles has remained difficult to achieve. Here, we demonstrate the sustainable proliferation of liposomes that replicate RNA within them. Nutrients for RNA replication and membranes for liposome proliferation were combined by using a modified freeze-thaw technique. These liposomes showed fusion and fission compatible with RNA replication and distribution to daughter liposomes. The RNAs in daughter liposomes were repeatedly used as templates in the next RNA replication and were distributed to granddaughter liposomes. Liposome proliferation was achieved by 10 cycles of iterative culture operation. Therefore, we propose the use of culturable liposomes as an advanced protocell model with the implication that the concurrent supplement of both the membrane material and the nutrients of inner reactions might have enabled protocells to grow sustainably.
Collapse
|
46
|
Tian J, Yang F, Cui H, Zhou Y, Ruan X, Gu N. A Novel Approach to Making the Gas-Filled Liposome Real: Based on the Interaction of Lipid with Free Nanobubble within the Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26579-26584. [PMID: 26567461 DOI: 10.1021/acsami.5b07778] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanobubbles with a size less than 1 μm could make a promising application in ultrasound molecular imaging and drug delivery. However, the fabrication of stable gas encapsulation nanobubbles is still challenging. In this study, a novel method for preparation of lipid- encapsulated nanobubbles was reported. The dispersed phospholipid molecules in the prefabricated free nanobubbles solution can be assembled to form controllable stable lipid encapsulation gas-filled ultrasound-sensitive liposome (GU-Liposome). The optimized preparation parameters and formation mechanism of GU-Liposome were investigated in detail. Results showed that this type of GU-Liposome had mean diameter of 194.4 ± 6.6 nm and zeta potential of -25.2 ± 1.9 mV with layer by layer self-assembled lipid structure. The acoustic imaging analysis in vitro indicated that ultrasound imaging enhancement could be acquired by both perfusion imaging and accumulation imaging. The imaging enhancement level and duration time was related with the ratios of lipid to gas in the GU-Liposome structure. All in all, by this novel and controllable nanobubble construction technique, it will broaden the future theranostic applications of nanobubbles.
Collapse
Affiliation(s)
- Jilai Tian
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, China
| | - Huating Cui
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
| | - Xiaobo Ruan
- Xuzhou Central Hospital , Xuzhou 221009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, China
| |
Collapse
|
47
|
Brea RJ, Hardy MD, Devaraj NK. Towards self-assembled hybrid artificial cells: novel bottom-up approaches to functional synthetic membranes. Chemistry 2015; 21:12564-70. [PMID: 26149747 PMCID: PMC4617832 DOI: 10.1002/chem.201501229] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Indexed: 01/09/2023]
Abstract
There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing "hybrid" artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology.
Collapse
Affiliation(s)
- Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA), Fax: (+1) 858-534-9503 Homepage: http://devarajgroup.ucsd.edu
| | - Michael D Hardy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA), Fax: (+1) 858-534-9503 Homepage: http://devarajgroup.ucsd.edu
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA), Fax: (+1) 858-534-9503 Homepage: http://devarajgroup.ucsd.edu.
| |
Collapse
|
48
|
Cole CM, Brea RJ, Kim YH, Hardy MD, Yang J, Devaraj NK. Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Cole CM, Brea RJ, Kim YH, Hardy MD, Yang J, Devaraj NK. Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angew Chem Int Ed Engl 2015; 54:12738-42. [PMID: 26316292 DOI: 10.1002/anie.201504339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/02/2015] [Indexed: 11/11/2022]
Abstract
Transmembrane proteins are critical for signaling, transport, and metabolism, yet their reconstitution in synthetic membranes is often challenging. Non-enzymatic and chemoselective methods to generate phospholipid membranes in situ would be powerful tools for the incorporation of membrane proteins. Herein, the spontaneous reconstitution of functional integral membrane proteins during the de novo synthesis of biomimetic phospholipid bilayers is described. The approach takes advantage of bioorthogonal coupling reactions to generate proteoliposomes from micelle-solubilized proteins. This method was successfully used to reconstitute three different transmembrane proteins into synthetic membranes. This is the first example of the use of non-enzymatic chemical synthesis of phospholipids to prepare proteoliposomes.
Collapse
Affiliation(s)
- Christian M Cole
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA) http://devarajgroup.ucsd.edu
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA) http://devarajgroup.ucsd.edu
| | - Young Hun Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Pacific Hall 6160, La Jolla, CA 92093 (USA)
| | - Michael D Hardy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA) http://devarajgroup.ucsd.edu
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Pacific Hall 6160, La Jolla, CA 92093 (USA)
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093 (USA) http://devarajgroup.ucsd.edu.
| |
Collapse
|
50
|
Shih HW, Prescher JA. A Bioorthogonal Ligation of Cyclopropenones Mediated by Triarylphosphines. J Am Chem Soc 2015; 137:10036-9. [DOI: 10.1021/jacs.5b06969] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hui-Wen Shih
- Departments of Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jennifer A. Prescher
- Departments of Chemistry, ‡Molecular Biology & Biochemistry, and §Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|