1
|
Gao Y, Li F, Wang Y, Chen Z, Li Z. An artificial multienzyme cascade for the whole-cell synthesis of rare ketoses from glycerol. Biotechnol Lett 2023; 45:1355-1364. [PMID: 37486554 DOI: 10.1007/s10529-023-03415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE In our previous study, we constructed a one-pot multi-enzyme system for rare ketoses synthesis based on L-rhamnulose-1-phosphate aldolase (RhaD) from accessible glycerol in vitro. To eliminate tedious purification of enzymes, a facile Escherichia coli whole-cell cascade platform was established in this study. METHODS To enhance the conversion rate, the reaction conditions, substrate concentrations and expressions of related enzymes were extensively optimized. RESULTS The biosynthetic route for the cascade synthesis of rare ketoses in whole cells was successfully constructed and three rare ketoses including D-allulose, D-sorbose and L-fructose were produced using glycerol and D/L-glyceraldehyde (GA). Under optimized conditions, the conversion rates of rare ketoses were 85.0% and 93.0% using D-GA and L-GA as the receptor, respectively. Furthermore, alditol oxidase (AldO) was introduced to the whole-cell system to generate D-GA from glycerol, and the total production yield of D-sorbose and D-allulose was 8.2 g l-1 only from the sole carbon source glycerol. CONCLUSION This study demonstrates a feasible and cost-efficient method for rare sugars synthesis and can also be applied to the green synthesis of other value-added chemicals from glycerol.
Collapse
Affiliation(s)
- Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Fen Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yulu Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Tang H, Chen Z, Shao Y, Ju X, Li L. Development of an enzymatic cascade to systematically utilize lignocellulosic monosaccharide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1974-1980. [PMID: 36448581 DOI: 10.1002/jsfa.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fermentation valorization of two main lignocellulosic monosaccharides, glucose and xylose, is extensively developed; however, it is restricted by limited yield and process complexity. An in vitro enzymatic cascade reaction can be an alternative approach. RESULTS In this study, a three-stage, five-enzyme cascade was developed to convert pretreated biomass to valuable chemicals. First, a ribose-5-phosphate isomerase B mutant isomerized xylose to d-xylulose with high substrate specificity, and a d-arabinose dehydrogenase continued to reduce d-xylulose to d-arabitol. Simultaneously, glucose was utilized for the coenzyme regeneration catalyzed by a glucose dehydrogenase, generating useful gluconic acid and achieving 73% of total conversion rate after 36 h. Then, six kinds of pretreated biomass lignocellulose were hydrolyzed by cellulase and hemicellulase, and corn cob was identified as the initial substrate for providing the highest monosaccharide content. A 65% conversion rate of the lignocellulosic xylose was obtained after 24 h. CONCLUSIONS This study presents a proof of concept to convert main lignocellulosic monosaccharides systematically by an enzymatic cascade at stoichiometric ratio. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Yu Shao
- Engineering and Technology Centers of Transdermal Drug Delivery System of Jiangsu Province, Yunnan Baiyao Group Wuxi Pharmaceutical Co., Ltd, Wuxi, P. R. China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| |
Collapse
|
3
|
Chen Z, Gao XD, Li Z. Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose. Front Microbiol 2022; 13:881037. [PMID: 35495640 PMCID: PMC9048046 DOI: 10.3389/fmicb.2022.881037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 01/11/2023] Open
Abstract
D-Allulose, a generally regarded as safe (GRAS) sugar, is rare in nature. It is among the most promising sweeteners for future use due to its low caloric content, sucrose-like taste, and unique functions. D-Allulose has many physiological effects, such as antiobesity, antihyperglycemia, antidiabetes, anti-inflammatory, antioxidant, and neuroprotective effects. Therefore, D-allulose has important application value in the food, pharmaceutical, and healthcare industries. However, the high cost of D-allulose production limits its large-scale application. Currently, biotransformation is very attractive for D-allulose synthesis, with the two main methods of biosynthesis being the Izumoring strategy and the DHAP-dependent aldolase strategy. This article reviews recent advances regarding the physiological functions and biosynthesis of D-allulose. In addition, future perspectives on the production of D-allulose are presented.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Chen X, Wang F, Yu Q, Liu S, Wang W, Zhang Y, Wang Z, Yuan Z. One pot cascade biosynthesis of d-allulose from d-glucose and its kinetic modelling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Luo B, Jin MM, Li X, Makunga NP, Hu X. Yeast Surface Display for In Vitro Biosynthetic Pathway Reconstruction. ACS Synth Biol 2021; 10:2938-2946. [PMID: 34724381 DOI: 10.1021/acssynbio.1c00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymes immobilized through yeast surface display (YSD) can be used in in vitro metabolic pathway reconstruction as alternatives to the enzymes isolated or purified through conventional biochemistry methods. They can be easily prepared by growing and collecting yeast cells harboring display constructs. This may provide an economical method for enriching certain enzymes for biochemistry characterization and application. Herein, we took the advantage of one-pot cascade reactions catalyzed by YSD-immobilized enzymes in the mevalonate pathway to produce geraniol in vitro. YSD-immobilized enzymes of 10 cascade reactions for geraniol production, together with optimization of catalytic components, cofactor regeneration, and byproduct removal, achieved a final yield of 7.55 mg L-1 after seven cycles. This study demonstrated that it is feasible to reconstitute a complex multi-enzymatic system for the chemical biosynthesis in vitro by exploiting YSD-immobilized cascade enzymes.
Collapse
Affiliation(s)
- Biaobiao Luo
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National & Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan 430070, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan 430070, China
| | - Moonsoo M. Jin
- Department of Radiology and Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Xiaohua Li
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National & Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan 430070, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan 430070, China
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa
| | - Xuebo Hu
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National & Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan 430070, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan 430070, China
| |
Collapse
|
7
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
8
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Li W, Zhu Y, Jiang X, Zhang W, Guang C, Mu W. One-pot production of d-allulose from inulin by a novel identified thermostable exoinulinase from Aspergillus piperis and Dorea sp. d-allulose 3-epimerase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
11
|
Femmer C, Bechtold M, Panke S. Semi‐rational engineering of an amino acid racemase that is stabilized in aqueous/organic solvent mixtures. Biotechnol Bioeng 2020; 117:2683-2693. [DOI: 10.1002/bit.27449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Christian Femmer
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| | - Matthias Bechtold
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| | - Sven Panke
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| |
Collapse
|
12
|
Chen J, Wu H, Zhang W, Mu W. Ribose-5-phosphate isomerases: characteristics, structural features, and applications. Appl Microbiol Biotechnol 2020; 104:6429-6441. [PMID: 32533303 DOI: 10.1007/s00253-020-10735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Ribose-5-phosphate isomerase (Rpi, EC 5.3.1.6) is widespread in microorganisms, animals, and plants. It has a pivotal role in the pentose phosphate pathway and responsible for catalyzing the isomerization between D-ribulose 5-phosphate and D-ribose 5-phosphate. In recent years, Rpi has received considerable attention as a multipurpose biocatalyst for production of rare sugars, including D-allose, L-rhamnulose, L-lyxose, and L-tagatose. Besides, it has been thought of as a potential drug target in the treatment of trypanosomatid-caused diseases such as Chagas' disease, leishmaniasis, and human African trypanosomiasis. Despite increased research activities, up to now, no systematic review of Rpi has been published. To fill this gap, this paper provides detailed information about the enzymatic properties of various Rpis. Furthermore, structural features, catalytic mechanism, and molecular modifications of Rpis are summarized based on extensive crystal structure research. Additionally, the applications of Rpi in rare sugar production and the role of Rpi in trypanocidal drug design are reviewed. Key points • Fundamental properties of various ribose-5-phosphate isomerases (Rpis). • Differences in crystal structure and catalytic mechanism between RpiA and RpiB. • Application of Rpi as a rare sugar producer and a potential drug target.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
13
|
Femmer C, Bechtold M, Held M, Panke S. In vivo directed enzyme evolution in nanoliter reactors with antimetabolite selection. Metab Eng 2020; 59:15-23. [DOI: 10.1016/j.ymben.2020.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022]
|
14
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
15
|
Chen Z, Li Z, Li F, Wang M, Wang N, Gao XD. Cascade synthesis of rare ketoses by whole cells based on L-rhamnulose-1-phosphate aldolase. Enzyme Microb Technol 2019; 133:109456. [PMID: 31874684 DOI: 10.1016/j.enzmictec.2019.109456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases demonstrate important values in the production of rare ketoses due to their unique stereoselectivities. As a specific example, we developed an efficient Escherichia coli whole-cell biocatalytic cascade system in which rare ketoses were produced from abundant glycerol and catalyzed by four enzymes based on L-rhamnulose-1-phosphate aldolase (RhaD). For the semicontinuous bioconversion in which D-glyceraldehyde was continuously added, once D-glyceraldehyde was consumed, the final yields of D-sorbose and D-psicose were 15.30 g/L and 6.35 g/L, respectively. Moreover, the maximum conversion rate and productivity of D-sorbose and D-psicose were 99% and 1.11 g/L/h at 8 h, respectively. When L-glyceraldehyde was used instead of the D-isomer, the final yield of L-fructose was 16.80 g/L. Furthermore, the maximum conversion rate and productivity of L-fructose were 95% and 1.08 g/L/h at 8 h, respectively. This synthetic platform was also compatible with other various aldehydes, which allowed the production of many other high-value chemicals from glycerol.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Fen Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Mayan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
16
|
Mu W, Hassanin HAM, Zhou L, Jiang B. Chemistry Behind Rare Sugars and Bioprocessing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13343-13345. [PMID: 30543101 DOI: 10.1021/acs.jafc.8b06293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Wanmeng Mu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Hinawi A M Hassanin
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Leon Zhou
- Roquette America , Keokuk , Iowa 52632 , United States
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
17
|
Wrzosek K, Harriehausen I, Seidel-Morgenstern A. Combination of Enantioselective Preparative Chromatography and Racemization: Experimental Demonstration and Model-Based Process Optimization. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katarzyna Wrzosek
- Max-Planck Institute for Dynamics of Complex Technical System, Physical and Chemical Foundations of Process Engineering, 39106 Magdeburg, Germany
| | - Isabel Harriehausen
- Max-Planck Institute for Dynamics of Complex Technical System, Physical and Chemical Foundations of Process Engineering, 39106 Magdeburg, Germany
| | - Andreas Seidel-Morgenstern
- Max-Planck Institute for Dynamics of Complex Technical System, Physical and Chemical Foundations of Process Engineering, 39106 Magdeburg, Germany
- Otto von Guericke University, Chemical Process Engineering, 39106 Magdeburg, Germany
| |
Collapse
|
18
|
Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst. Molecules 2018; 23:molecules23102519. [PMID: 30275414 PMCID: PMC6222537 DOI: 10.3390/molecules23102519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 11/17/2022] Open
Abstract
Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of β-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of d-talose from d-galactose was discovered, a reaction not yet known to occur in nature. Moreover, the conversion is industrially relevant, as talose and its derivatives have been reported to possess important antimicrobial and anti-inflammatory properties. As the enzyme also catalyzes the keto-aldo isomerization of galactose to tagatose as a minor side reaction, the purity of talose was found to decrease over time. After process optimization, 23 g/L of talose could be obtained with a product purity of 86% and a yield of 8.5% (starting from 4 g (24 mmol) of galactose). However, higher purities and concentrations can be reached by decreasing and increasing the reaction time, respectively. In addition, two engineering attempts have also been performed. First, a mutant library of RmCE was created to try and increase the activity on monosaccharide substrates. Next, two residues from RmCE were introduced in the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) (S99M/Q371F), increasing the kcat twofold.
Collapse
|
19
|
Zhou Y, Wu S, Mao J, Li Z. Bioproduction of Benzylamine from Renewable Feedstocks via a Nine-Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. CHEMSUSCHEM 2018; 11:2221-2228. [PMID: 29766662 DOI: 10.1002/cssc.201800709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Production of chemicals from renewable feedstocks has been an important task for sustainable chemical industry. Although microbial fermentation has been widely employed to produce many biochemicals, it is still very challenging to access non-natural chemicals. Two methods (biotransformation and fermentation) have been developed for the first bio-derived synthesis of benzylamine, a commodity non-natural amine with broad applications. Firstly, a nine-step artificial enzyme cascade was designed by biocatalytic retrosynthetic analysis and engineered in recombinant E. coli LZ243. Biotransformation of l-phenylalanine (60 mm) with the E. coli cells produced benzylamine (42 mm) in 70 % conversion. Importantly, the cascade biotransformation was scaled up to 100 mL and benzylamine was successfully isolated in 57 % yield. Secondly, an artificial biosynthesis pathway to benzylamine from glucose was developed by combining the nine-step cascade with an enhanced l-phenylalanine synthesis pathway in cells. Fermentation with E. coli LZ249 gave benzylamine in 4.3 mm concentration from glucose. In addition, one-pot syntheses of several useful benzylamines from the easily available styrenes were achieved, representing a new type of alkene transformation by formal oxidative cleavage and reductive amination.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Jiwei Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
20
|
Wang Y, Ren H, Zhao H. Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production. Crit Rev Biochem Mol Biol 2018; 53:115-129. [PMID: 29411648 PMCID: PMC6112242 DOI: 10.1080/10409238.2018.1431201] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Biocatalysts have been increasingly used in the synthesis of fine chemicals and medicinal compounds due to significant advances in enzyme discovery and engineering. To mimic the synergistic effects of cascade reactions catalyzed by multiple enzymes in nature, researchers have been developing artificial tandem enzymatic reactions in vivo by harnessing synthetic biology and metabolic engineering tools. There is also growing interest in the development of one-pot tandem enzymatic or chemo-enzymatic processes in vitro due to their neat and concise catalytic systems and product purification procedures. In this review, we will briefly summarize the strategies of designing and optimizing in vitro tandem catalytic reactions, highlight a few representative examples, and discuss the future trend in this field.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
| | - Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
- Departments of Chemistry, Biochemistry, and Bioengineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
21
|
d-lyxose isomerase and its application for functional sugar production. Appl Microbiol Biotechnol 2018; 102:2051-2062. [DOI: 10.1007/s00253-018-8746-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
|
22
|
Enzymatic approaches to rare sugar production. Biotechnol Adv 2017; 35:267-274. [DOI: 10.1016/j.biotechadv.2017.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 01/02/2023]
|
23
|
Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun (Camb) 2017; 53:3916-3928. [DOI: 10.1039/c7cc00368d] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers recent advances in the directed evolution of enzymes for controlling site-selectivity of hydroxylation, amination and chlorination.
Collapse
Affiliation(s)
- Jian-bo Wang
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Guangyue Li
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| |
Collapse
|
24
|
Forward design of a complex enzyme cascade reaction. Nat Commun 2016; 7:12971. [PMID: 27677244 PMCID: PMC5052792 DOI: 10.1038/ncomms12971] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/18/2016] [Indexed: 11/18/2022] Open
Abstract
Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. Building multi-component enzymatic processes in one pot is challenged by the inherent complexity of each biochemical system. Here, the authors use online mass spectroscopy and engineering systems theory to achieve forward design of a ten-membered reaction cascade.
Collapse
|
25
|
Lemmerer M, Schmölzer K, Gutmann A, Nidetzky B. Downstream Processing of Nucleoside-Diphospho-Sugars from Sucrose Synthase Reaction Mixtures at Decreased Solvent Consumption. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Lemmerer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology; NAWI Graz; Petersgasse 12/I 8010 Graz Austria
| |
Collapse
|
26
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased l-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016; 55:11647-50. [PMID: 27512928 DOI: 10.1002/anie.201606235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/08/2022]
Abstract
Sustainable synthesis of useful and valuable chiral fine chemicals from renewable feedstocks is highly desirable but remains challenging. Reported herein is a designed and engineered set of unique non-natural biocatalytic cascades to achieve the asymmetric synthesis of chiral epoxide, diols, hydroxy acid, and amino acid in high yield and with excellent ee values from the easily available biobased l-phenylalanine. Each of the cascades was efficiently performed in one pot by using the cells of a single recombinant strain over-expressing 4-10 different enzymes. The cascade biocatalysis approach is promising for upgrading biobased bulk chemicals to high-value chiral chemicals. In addition, combining the non-natural enzyme cascades with the natural metabolic pathway of the host strain enabled the fermentative production of the chiral fine chemicals from glucose.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
27
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobasedl-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606235] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
28
|
Busto E, Simon RC, Richter N, Kroutil W. One-Pot, Two-Module Three-Step Cascade To Transform Phenol Derivatives to Enantiomerically Pure (R)- or (S)-p-Hydroxyphenyl Lactic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Busto
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Robert C. Simon
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Nina Richter
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| |
Collapse
|
29
|
Yoshihara A, Sato M, Fukada K. Evaluation of the Equilibrium Content of Tautomers of Deoxy-ketohexoses and Their Molar Absorption Coefficient of the Carbonyl Group in Aqueous Solution. CHEM LETT 2016. [DOI: 10.1246/cl.150953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| | - Kazuhiro Fukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| |
Collapse
|
30
|
Morgado G, Gerngross D, Roberts TM, Panke S. Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:117-146. [PMID: 27757475 DOI: 10.1007/10_2016_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Collapse
Affiliation(s)
- Gaspar Morgado
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania M Roberts
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
31
|
Van Overtveldt S, Verhaeghe T, Joosten HJ, van den Bergh T, Beerens K, Desmet T. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications. Biotechnol Adv 2015; 33:1814-28. [DOI: 10.1016/j.biotechadv.2015.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022]
|