1
|
Li J, Cheng M, Zhang H, Wang Y, Guo W, Zheng Y. A Tetrazine Amplification System for Visual Detection of Trace Analytes via Click-Release Reactions. Angew Chem Int Ed Engl 2024:e202414246. [PMID: 39623886 DOI: 10.1002/anie.202414246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Achieving visual detection of analytes at ultra-low concentrations in complex mixtures remains a persistent challenge. While sophisticated techniques offer single-molecule sensitivity, practical hurdles remain, necessitating tailored signal amplification systems for direct visual detection. In this study, we develop a strategy for the visualized detection of tetrazine through a "click-release-oxidation-cycle" (CROC) cascade amplification process. We systematically describe the construction and synthesis of this system, the kinetic process of click release, the kinetics of oxidation to tetrazine and its cascade amplification effect in trace amounts of tetrazine. This system is capable of amplifying the signal of tetrazine at a concentration as low as 2 nM by 105-fold, thereby providing a clearly visible purple signal. Finally, as proof of concept, we successfully apply this method to visually detect trace β-galactosidase (β-gal) and Pd2+.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Mingxin Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Hongbo Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yichen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weiwei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
2
|
Zhang L, Li C, Shao S, Zhang Z, Chen D. Influenza viruses and SARS-CoV-2 diagnosis via sensitive testing methods in clinical application. Heliyon 2024; 10:e36410. [PMID: 39381246 PMCID: PMC11458974 DOI: 10.1016/j.heliyon.2024.e36410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/10/2024] Open
Abstract
The identification of influenza viruses and SARS-CoV-2 has garnered increasing attention due of their longstanding global menace to human life and health. The point-of-care test is a potential approach for identifying influenza viruses and SARS-CoV-2 in clinical settings, leading to timely discovery, documentation, and treatment. The primary difficulties encountered with conventional detection techniques for influenza viruses and SARS-CoV-2 are the limited or inadequate ability to identify the presence of the viruses, the lack of speed, precision, accuracy, sensitivity, and specificity, often resulting in a failure to promptly notify disease control authorities. Recently, point-of-care test methods, along with nucleic acid amplification, optics, electrochemistry, lateral/vertical flow, and minimization, have been demonstrated the characteristics of reliability, sensitivity, specificity, stability, and portability. A point-of-care test offers promising findings in the early detection of influenza viruses and SARS-CoV-2 in both scientific research and practical use. In this review, we will go over the principles, advantages, limitations, and real-world applications of point-of-care diagnostics. The significance of constraints of detection, throughput, sensitivity, and specificity in the analysis of clinical samples in settings with restricted resources is underscored. This discussion concludes with their prospects and challenges.
Collapse
Affiliation(s)
- Le Zhang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chunwen Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - ShaSha Shao
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Di Chen
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Bocu R. Extended Review Concerning the Integration of Electrochemical Biosensors into Modern IoT and Wearable Devices. BIOSENSORS 2024; 14:214. [PMID: 38785688 PMCID: PMC11117989 DOI: 10.3390/bios14050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical biosensors include a recognition component and an electronic transducer, which detect the body fluids with a high degree of accuracy. More importantly, they generate timely readings of the related physiological parameters, and they are suitable for integration into portable, wearable and implantable devices that are significant relative to point-of-care diagnostics scenarios. As an example, the personal glucose meter fundamentally improves the management of diabetes in the comfort of the patients' homes. This review paper analyzes the principles of electrochemical biosensing and the structural features of electrochemical biosensors relative to the implementation of health monitoring and disease diagnostics strategies. The analysis particularly considers the integration of the biosensors into wearable, portable, and implantable systems. The fundamental aim of this paper is to present and critically evaluate the identified significant developments in the scope of electrochemical biosensing for preventive and customized point-of-care diagnostic devices. The paper also approaches the most important engineering challenges that should be addressed in order to improve the sensing accuracy, and enable multiplexing and one-step processes, which mediate the integration of electrochemical biosensing devices into digital healthcare scenarios.
Collapse
Affiliation(s)
- Razvan Bocu
- Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
4
|
Manibalan K, Arul P, Wu HJ, Huang ST, Mani V. Self-Immolative Electrochemical Redox Substrates: Emerging Artificial Receptors in Sensing and Biosensing. ACS MEASUREMENT SCIENCE AU 2024; 4:163-183. [PMID: 38645581 PMCID: PMC11027205 DOI: 10.1021/acsmeasuresciau.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 04/23/2024]
Abstract
The development of artificial receptors has great significance in measurement science and technology. The need for a robust version of natural receptors is getting increased attention because the cost of natural receptors is still high along with storage difficulties. Aptamers, imprinted polymers, and nanozymes are some of the matured artificial receptors in analytical chemistry. Recently, a new direction has been discovered by organic chemists, who can synthesize robust, activity-based, self-immolative organic molecules that have artificial receptor properties for the targeted analytes. Specifically designed trigger moieties implant selectivity and sensitivity. These latent electrochemical redox substrates are highly stable, mass-producible, inexpensive, and eco-friendly. Combining redox substrates with the merits of electrochemical techniques is a good opportunity to establish a new direction in artificial receptors. This Review provides an overview of electrochemical redox substrate design, anatomy, benefits, and biosensing potential. A proper understanding of molecular design can lead to the development of a library of novel self-immolative redox molecules that would have huge implications for measurement science and technology.
Collapse
Affiliation(s)
- Kesavan Manibalan
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ponnusamy Arul
- Institute
of Biochemical and Biomedical Engineering, Department of Chemical
Engineering and Biotechnology, National
Taipei University of Technology, Taipei 10608, Taiwan (ROC)
| | - Hsin-Jay Wu
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sheng-Tung Huang
- Institute
of Biochemical and Biomedical Engineering, Department of Chemical
Engineering and Biotechnology, National
Taipei University of Technology, Taipei 10608, Taiwan (ROC)
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan (ROC)
| | - Veerappan Mani
- Advanced
Membranes and Porous Materials Center (AMPMC), Computer, Electrical
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Gattani A, Agrawal A, Khan MH, Gupta R, Singh P. Evaluation of catalytic activity of human and animal origin viral neuraminidase: Current prospect. Anal Biochem 2023; 671:115157. [PMID: 37061113 DOI: 10.1016/j.ab.2023.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
With the exception of plants, almost all living organisms synthesize neuraminidase/sialidase. It is a one among the crucial proteins that controls how virulent a microorganism is. An essential enzyme in orthomyxoviruses and paramyxoviruses that destroys receptors is neuraminidase. It plays a number of roles throughout the viral life cycle in addition to one that involves the release of progeny virus particles. This protein is an important target for therapeutic interventions and diagnostic assays. Neuraminidase inhibitors effectively prevent the spread of disease and viral infection. Sensitive, quick, and inexpensive high throughput assays are needed to screen for specific neuraminidase inhibitory chemicals. To characterize the neuraminidase catalytic activity, however, the traditional assays are still the most common in laboratories. This review gives a brief overview of these neuraminidase assays and recent, innovative developments, particularly those involving biosensors.
Collapse
Affiliation(s)
- Anil Gattani
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India.
| | - Aditya Agrawal
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Rewa, M.P, India
| | - M Hira Khan
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Rohini Gupta
- Department of Medicine, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Praveen Singh
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India; Biophysics Section, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India
| |
Collapse
|
6
|
Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. NATURE REVIEWS BIOENGINEERING 2023; 1:346-360. [PMID: 37168735 PMCID: PMC9951169 DOI: 10.1038/s44222-023-00032-w] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Electrochemical biosensors incorporate a recognition element and an electronic transducer for the highly sensitive detection of analytes in body fluids. Importantly, they can provide rapid readouts and they can be integrated into portable, wearable and implantable devices for point-of-care diagnostics; for example, the personal glucose meter enables at-home assessment of blood glucose levels, greatly improving the management of diabetes. In this Review, we discuss the principles of electrochemical biosensing and the design of electrochemical biosensor devices for health monitoring and disease diagnostics, with a particular focus on device integration into wearable, portable and implantable systems. Finally, we outline the key engineering challenges that need to be addressed to improve sensing accuracy, enable multiplexing and one-step processes, and integrate electrochemical biosensing devices in digital health-care pathways.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Jin Z, Li Y, Li K, Zhou J, Yeung J, Ling C, Yim W, He T, Cheng Y, Xu M, Creyer MN, Chang YC, Fajtová P, Retout M, Qi B, Li S, O'Donoghue AJ, Jokerst JV. Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing. Angew Chem Int Ed Engl 2023; 62:e202214394. [PMID: 36409652 PMCID: PMC9852014 DOI: 10.1002/anie.202214394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Aromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co-assembly experiments with plasmonic gold and surfactant-like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD-(ZZ)x -FFPC self-assemble into higher-order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro , a biomarker for SARS-CoV-2. This system is a simple and visual tool that senses Mpro in phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ke Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chuxuan Ling
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Maurice Retout
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Tepeli Büyüksünetçi Y, Anık Ü. Graphene‐Gold Hybrid Nanomaterial Based Impedimetric Immunosensor for H3N2 Influenza A Virus Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yudum Tepeli Büyüksünetçi
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
| | - Ülkü Anık
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
- Mugla Sitki Kocman University, Faculty of Science Chemistry Department Kotekli-Mugla/ Turkey
| |
Collapse
|
9
|
Jin Z, Yeung J, Zhou J, Cheng Y, Li Y, Mantri Y, He T, Yim W, Xu M, Wu Z, Fajtova P, Creyer MN, Moore C, Fu L, Penny WF, O'Donoghue AJ, Jokerst JV. Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:1259-1268. [PMID: 37406055 PMCID: PMC8791034 DOI: 10.1021/acs.chemmater.1c03871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a need for surveillance of COVID-19 to identify individuals infected with SARS-CoV-2 coronavirus. Although specific, nucleic acid testing has limitations in terms of point-of-care testing. One potential alternative is the nonstructural protease (nsp5, also known as Mpro/3CLpro) implicated in SARS-CoV-2 viral replication but not incorporated into virions. Here, we report a divalent substrate with a novel design, (Cys)2-(AA)x-(Asp)3, to interface gold colloids in the specific presence of Mpro leading to a rapid and colorimetric readout. Citrate- and tris(2-carboxyethyl)phosphine (TCEP)-AuNPs were identified as the best reporter out of the 17 ligated nanoparticles. Furthermore, we empirically determined the effects of varying cysteine valence and biological media on the sensor specificity and sensitivity. The divalent peptide was specific to Mpro, that is, there was no response when tested with other proteins or enzymes. Furthermore, the Mpro detection limits in Tris buffer and exhaled breath matrices are 12.2 and 18.9 nM, respectively, which are comparable to other reported methods (i.e., at low nanomolar concentrations) yet with a rapid and visual readout. These results from our work would provide informative rationales to design a practical and noninvasive alternative for COVID-19 diagnostic testing-the presence of viral proteases in biofluids is validated.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Colman Moore
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Fu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - William F Penny
- Division of Cardiology, University of California San Diego, San Diego, California 92161, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, Materials Science and Engineering Program, and Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
11
|
Huang G, Zhao H, Li P, Liu J, Chen S, Ge M, Qin M, Zhou G, Wang Y, Li S, Cheng Y, Huang Q, Wang J, Wang H, Yang L. Construction of Optimal SERS Hotspots Based on Capturing the Spike Receptor-Binding Domain (RBD) of SARS-CoV-2 for Highly Sensitive and Specific Detection by a Fish Model. Anal Chem 2021; 93:16086-16095. [PMID: 34730332 PMCID: PMC8577364 DOI: 10.1021/acs.analchem.1c03807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
It is highly challenging to construct the best SERS hotspots for the detection of proteins by surface-enhanced Raman spectroscopy (SERS). Using its own characteristics to construct hotspots can achieve the effect of sensitivity and specificity. In this study, we built a fishing mode device to detect the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at low concentrations in different detection environments and obtained a sensitive SERS signal response. Based on the spatial resolution of proteins and their protein-specific recognition functions, SERS hotspots were constructed using aptamers and small molecules that can specifically bind to RBD and cooperate with Au nanoparticles (NPs) to detect RBD in the environment using SERS signals of beacon molecules. Therefore, two kinds of AuNPs modified with aptamers and small molecules were used in the fishing mode device, which can specifically recognize and bind RBD to form a stable hotspot to achieve high sensitivity and specificity for RBD detection. The fishing mode device can detect the presence of RBD at concentrations as low as 0.625 ng/mL and can produce a good SERS signal response within 15 min. Meanwhile, we can detect an RBD of 0.625 ng/mL in the mixed solution with various proteins, and the concentration of RBD in the complex environment of urine and blood can be as low as 1.25 ng/mL. This provides a research basis for SERS in practical applications for protein detection work.
Collapse
Affiliation(s)
- Guangyao Huang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| | - Hongxin Zhao
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Pan Li
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
| | - Juanjuan Liu
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Siyu Chen
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Meihong Ge
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Miao Qin
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Guoliang Zhou
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Yongtao Wang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Shaofei Li
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Yizhuang Cheng
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Qiang Huang
- Multiscale Research Institute of Complex Systems,
Fudan University, Shanghai 201203,
China
| | - Junfeng Wang
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Hongzhi Wang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| | - Liangbao Yang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| |
Collapse
|
12
|
Zhang Z, Wang H, Su M, Sun Y, Tan S, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain‐Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Meng Su
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Yali Sun
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Shuang‐Jie Tan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics Fudan University Shanghai 200433 P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center General Hospital of the People's Liberation Army of China Beijing 100853 P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory The second medical center of Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Yanlin Song
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| |
Collapse
|
13
|
Zhang Z, Wang H, Su M, Sun Y, Tan SJ, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain-Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021; 60:24234-24240. [PMID: 34494351 DOI: 10.1002/anie.202109985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Fast and ultrasensitive detection of pathogens is very important for efficient monitoring and prevention of viral infections. Here, we demonstrate a label-free optical detection approach that uses a printed nanochain assay for colorimetric quantitative testing of viruses. The antibody-modified nanochains have high activity and specificity which can rapidly identify target viruses directly from biofluids in 15 min, as well as differentiate their subtypes. Arising from the resonance induced near-field enhancement, the color of nanochains changes with the binding of viruses that are easily observed by a smartphone. We achieve the detection limit of 1 PFU μL-1 through optimizing the optical response of nanochains in visible region. Besides, it allows for real-time response to virus concentrations ranging from 0 to 1.0×105 PFU mL-1 . This low-cost and portable platform is also applicable to rapid detection of other biomarkers, making it attractive for many clinical applications.
Collapse
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Shuang-Jie Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, 200433, P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center, General Hospital of the People's Liberation Army of China, Beijing, 100853, P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory, The second medical center of Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| |
Collapse
|
14
|
Hu X, Zhang N, Shen L, Yu L, Huang LY, Wang AJ, Shan D, Yuan PX, Feng JJ. The enhanced photoelectrochemical platform constructed by N-doped ZnO nanopolyhedrons and porphyrin for ultrasensitive detection of brain natriuretic peptide. Anal Chim Acta 2021; 1183:338870. [PMID: 34627528 DOI: 10.1016/j.aca.2021.338870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Abstract
Nowadays, brain natriuretic peptide (BNP-32) is fundamental to early cardiovascular clinical diagnosis, whose accurate assay is of significance by photoelectrochemistry (PEC) for the low background and high precision. Herein, a novel enhanced PEC platform was built by successive deposition of N-doped ZnO nanopolyhedra (N-ZnO NP) and protoporphyrin IX (PPIX). Specifically, the N-ZnO NP with a narrow bandgap of 2.60 eV was synthesized by direct calcination of zeolitic imidazole framework-8 (ZIF-8), and performed as the substrate to enhance the photocurrents of PPIX (as photosensitizer) whose photoelectron transfer pathway and enhanced PEC mechanism were studied in detail. Under such foundation, a label-free PEC aptasensor was developed by deposition of DNA aptamer onto the PEC platform and then ultrasensitive assay of BNP-32 based on a "signal off" model. The biosensor showed a wide linear range (1 pg mL-1- 0.1 μg mL-1) with a limit of detection (LOD) as low as 0.14 pg mL-1. This doping technique of ZnO nanomaterials provides some valuable guidelines for synthesis of advanced PEC probes in bioanalysis.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Nuo Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Yan Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Dan Shan
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
15
|
Biomimetic Nanopillar-Based Biosensor for Label-Free Detection of Influenza A Virus. BIOCHIP JOURNAL 2021; 15:260-267. [PMID: 34122741 PMCID: PMC8184868 DOI: 10.1007/s13206-021-00027-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Since the first emergence of influenza viruses, they have caused the flu seasonally worldwide. Precise detection of influenza viruses is required to prevent the spreading of the disease. Herein, we developed an optical biosensor using peptide-immobilized nanopillar structures for the label-free detection of influenza viruses. The spin-on-glass nanopillar structures were fabricated by nanoimprint lithography. A sialic acid-mimic peptide, which can specifically bind to hemagglutinin on the surface of the influenza virus, was immobilized onto the nanopillars via polymerized dopamine. The constructed nanopillar sensor enabled us to detect influenza A viruses in the range of 103-105 plaque-forming units through simple measurements of reflectance. Our findings suggest that biomimetic modification of nanopillar structures can be an alternative method for the immunodiagnosis of influenza viruses.
Collapse
|
16
|
Ivanov AS, Nikolaev KG, Stekolshchikova AA, Tesfatsion WT, Yurchenko SO, Novoselov KS, Andreeva DV, Rubtsova MY, Vorovitch MF, Ishmukhametov AA, Egorov AM, Skorb EV. Tick-Borne Encephalitis Electrochemical Detection by Multilayer Perceptron on Liquid–Metal Interface. ACS APPLIED BIO MATERIALS 2020; 3:7352-7356. [DOI: 10.1021/acsabm.0c00954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Artemii S. Ivanov
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Konstantin G. Nikolaev
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Anna A. Stekolshchikova
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Weini T. Tesfatsion
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | | | - Kostya S. Novoselov
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Daria V. Andreeva
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Maya Yu. Rubtsova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Mikhail F. Vorovitch
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
- Sechenov First Moscow State Medical University, 119991 Moscow, Russian Federation
| | - Aydar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
- Sechenov First Moscow State Medical University, 119991 Moscow, Russian Federation
| | - Alex M. Egorov
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| |
Collapse
|
17
|
Chen H, Park SG, Choi N, Moon JI, Dang H, Das A, Lee S, Kim DG, Chen L, Choo J. SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosens Bioelectron 2020; 167:112496. [PMID: 32818752 DOI: 10.1016/j.bios.2020.112496] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS)-based aptasensors display high sensitivity for influenza A/H1N1 virus detection but improved signal reproducibility is required. Therefore, in this study, we fabricated a three-dimensional (3D) nano-popcorn plasmonic substrate using the surface energy difference between a perfluorodecanethiol (PFDT) spacer and the Au layer. This energy difference led to Au nanoparticle self-assembly; neighboring nanoparticles then created multiple hotspots on the substrate. The localized surface plasmon effects at the hot spots dramatically enhanced the incident field. Quantitative evaluation of A/H1N1 virus was achieved using the decrease of Raman peak intensity resulting from the release of Cy3-labeled aptamer DNAs from nano-popcorn substrate surfaces via the interaction between the aptamer DNA and A/H1N1 virus. The use of a Raman imaging technique involving the fast mapping of all pixel points enabled the reproducible quantification of A/H1N1 virus on nano-popcorn substrates. Average ensemble effects obtained by averaging all randomly distributed hot spots mapped on the substrate made it possible to reliably quantify target viruses. The SERS-based imaging aptasensor platform proposed in this work overcomes the issues inherent in conventional approaches (the time-consuming and labor-intensiveness of RT-PCR and low sensitivity and quantitative analysis limits of lateral flow assay kits). Our SERS-based assay for detecting A/H1N1 virus had an estimated limit of detection of 97 PFU mL-1 (approximately three orders of magnitude more sensitive than that determined by the enzyme-linked immunosorbent assay) and the approximate assay time was estimated to be 20 min. Thus, this approach provides an ultrasensitive, reliable platform for detecting viral pathogens.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Namhyun Choi
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Anupam Das
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Seunghun Lee
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Do-Geun Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
18
|
Joshi SR, Sharma A, Kim GH, Jang J. Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110465. [DOI: 10.1016/j.msec.2019.110465] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/01/2019] [Accepted: 11/17/2019] [Indexed: 01/30/2023]
|
19
|
Matsubara T, Ujie M, Yamamoto T, Einaga Y, Daidoji T, Nakaya T, Sato T. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens 2020; 5:431-439. [PMID: 32077684 DOI: 10.1021/acssensors.9b02126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of a simple detection method with high sensitivity is essential for the diagnosis and surveillance of infectious diseases. Previously, we constructed a sensitive biosensor for the detection of pathological human influenza viruses using a boron-doped diamond electrode terminated with a sialyloligosaccharide receptor-mimic peptide that could bind to hemagglutinins involved in viral infection. Circulation of influenza induced by the avian virus in humans has become a major public health concern, and methods for the detection of avian viruses are urgently needed. Here, peptide density and dendrimer generation terminated on the electrode altered the efficiency of viral binding to the electrode surface, thus significantly enhancing charge-transfer resistance measured by electrochemical impedance spectroscopy. The peptide-terminated electrodes exhibited an excellent detection limit of less than one plaque-forming unit of seasonal H1N1 and H3N2 viruses. Furthermore, the improved electrode was detectable for avian viruses isolated from H5N3, H7N1, and H9N2, showing the potential for the detection of all subtypes of influenza A virus, including new subtypes. The peptide-based electrochemical architecture provided a promising approach to biosensors for ultrasensitive detection of pathogenic microorganisms.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Michiko Ujie
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- JST-ACCEL, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
20
|
Bekhit M, Wang HY, McHardy S, Gorski W. Infection Screening in Biofluids with Glucose Test Strips. Anal Chem 2020; 92:3860-3866. [DOI: 10.1021/acs.analchem.9b05313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael Bekhit
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hua-Yu Wang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Stanton McHardy
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Waldemar Gorski
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
21
|
Lisi F, Peterson JR, Gooding JJ. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens Bioelectron 2020; 148:111835. [DOI: 10.1016/j.bios.2019.111835] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
22
|
Liu G, Jia L, Xing G. Probing Sialidases or Siglecs with Sialic Acid Analogues, Clusters and Precursors. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guang‐jian Liu
- College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Li‐yan Jia
- College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| | - Guo‐wen Xing
- College of ChemistryBeijing Normal University Beijing 100875 P.R. China
| |
Collapse
|
23
|
Fluorescent sialic derivatives for the specific detection of influenza viruses. Bioorg Med Chem Lett 2019; 29:126773. [DOI: 10.1016/j.bmcl.2019.126773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
|
24
|
Eom G, Hwang A, Kim H, Yang S, Lee DK, Song S, Ha K, Jeong J, Jung J, Lim EK, Kang T. Diagnosis of Tamiflu-Resistant Influenza Virus in Human Nasal Fluid and Saliva Using Surface-Enhanced Raman Scattering. ACS Sens 2019; 4:2282-2287. [PMID: 31407570 DOI: 10.1021/acssensors.9b00697] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza viruses cause respiratory infection, spread through respiratory secretions, and are shed into the nasal secretion and saliva specimens. Therefore, nasal fluid and saliva are effective clinical samples for the diagnosis of influenza virus-infected patients. Although several methods have been developed to detect various types of influenza viruses, approaches for detecting mutant influenza viruses in clinical samples are rarely reported. Herein, we report for the first time a surface-enhanced Raman scattering (SERS)-based sensing platform for oseltamivir-resistant pandemic H1N1 (pH1N1) virus detection in human nasal fluid and saliva. By combining SERS-active urchin Au nanoparticles and oseltamivir hexylthiol, an excellent receptor for the pH1N1/H275Y mutant virus, we detected the pH1N1/H275Y virus specifically and sensitively in human saliva and nasal fluid samples. Considering that the current influenza virus infection testing methods do not provide information on the antiviral drug resistance of the virus, the proposed SERS-based diagnostic test for the oseltamivir-resistant virus will inform clinical decisions about the treatment of influenza virus infections, avoiding the unnecessary prescription of ineffective drugs and greatly improving therapy.
Collapse
Affiliation(s)
- Gayoung Eom
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | | | - Siyeong Yang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | | | | | | | - Jinyoung Jeong
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Juyeon Jung
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Eun-Kyung Lim
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| |
Collapse
|
25
|
Detection of p53 DNA using commercially available personal glucose meters based on rolling circle amplification coupled with nicking enzyme signal amplification. Anal Chim Acta 2019; 1060:64-70. [DOI: 10.1016/j.aca.2019.01.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
|
26
|
Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19495-19505. [PMID: 31058488 DOI: 10.1021/acsami.9b03920] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid and early diagnosis of respiratory viruses is key to preventing infections from spreading and guiding treatments. Here, we developed a sensitive and quantitative surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of influenza A H1N1 virus and human adenovirus (HAdV) by using Fe3O4@Ag nanoparticles as magnetic SERS nanotags. The new type of Fe3O4@Ag magnetic tags, which were conjugated with dual-layer Raman dye molecules and target virus-capture antibodies, performs the following functions: specific recognition and magnetic enrichment of target viruses in the solution and SERS detection of the viruses on the strip. Based on this strategy, the magnetic SERS strip can directly be used for real biological samples without any sample pretreatment steps. The limits of detection for H1N1 and HAdV were 50 and 10 pfu/mL, respectively, which were 2000 times more sensitive than those from the standard colloidal gold strip method. Moreover, the proposed strip is easy to operate, rapid, stable, and can achieve high throughput and is thus a potential tool for early detection of virus infection.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Xiaolong Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| | - Keli Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yanhui Zhu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Zhen Rong
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | | | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
27
|
Dziąbowska K, Czaczyk E, Nidzworski D. Detection Methods of Human and Animal Influenza Virus-Current Trends. BIOSENSORS-BASEL 2018; 8:bios8040094. [PMID: 30340339 PMCID: PMC6315519 DOI: 10.3390/bios8040094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.
Collapse
Affiliation(s)
- Karolina Dziąbowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Elżbieta Czaczyk
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| |
Collapse
|
28
|
Salikolimi K, Miyatake H, Aigaki T, Kawamoto M, Ito Y. Thiophene-Conjugated Ligand Probe for Nonenzymatic Turn-On Electrochemical Protein Detection. Anal Chem 2018; 90:11179-11182. [PMID: 30175583 DOI: 10.1021/acs.analchem.8b03006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new type of turn-on electrochemical protein detection is developed using an electropolymerizable molecular probe. To detect trypsin, a benzamidine ligand is conjugated with a thiophene moiety. Encapsulation of the probe in the trypsin pocket prevents electropolymerization, leading to efficient electron transfer from the electrolyte to the electrode. In contrast, unbound probes can become electropolymerized, yielding a polythiophene layer on the electrode. The polythiophene formed this way suppressed electron transfer. The detection limit of trypsin using this electrochemical strategy is 50 nM. The method is shown to be useful for nonenzymatic turn-on electrochemical detection.
Collapse
Affiliation(s)
- Krishnachary Salikolimi
- Emergent Bioengineering Materials Research Team , RIKEN Center for Emergent Matter Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Department of Biological Sciences , Tokyo Metropolitan University , 1-1 Minami-Osawa , Hachioji , Tokyo 192-0397 , Japan
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Toshiro Aigaki
- Department of Biological Sciences , Tokyo Metropolitan University , 1-1 Minami-Osawa , Hachioji , Tokyo 192-0397 , Japan
| | - Masuki Kawamoto
- Emergent Bioengineering Materials Research Team , RIKEN Center for Emergent Matter Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Nano Medical Engineering Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Graduate School of Science and Engineering , Saitama University , 255 Shimo-Okubo , Sakura-ku , Saitama 338-8570 , Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team , RIKEN Center for Emergent Matter Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Department of Biological Sciences , Tokyo Metropolitan University , 1-1 Minami-Osawa , Hachioji , Tokyo 192-0397 , Japan.,Nano Medical Engineering Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
29
|
Das A, Cui X, Chivukula V, Iyer SS. Detection of Enzymes, Viruses, and Bacteria Using Glucose Meters. Anal Chem 2018; 90:11589-11598. [DOI: 10.1021/acs.analchem.8b02960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amrita Das
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Xikai Cui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Vasanta Chivukula
- Atlanta Metropolitan State College, 1630 Metropolitan Parkway, Atlanta, Georgia 30310, United States
| | - Suri S. Iyer
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| |
Collapse
|
30
|
Cui X, Das A, Dhawane A, Sweeney J, Zhang X, Chivukula V, Iyer S. Highly specific and rapid glycan based amperometric detection of influenza viruses. FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.544.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Das A, Gurale BP, Dhawane AN, Iyer SS. Synthesis of biotinylated bivalent zanamivir analogs as probes for influenza viruses. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe synthesis of a biotinylated bivalent zanamivir analog as a probe for influenza viruses is reported. The compound was used in a ‘glycan’ based sandwich assay; where glycans were immobilized on glass slides to capture strains of influenza A H1N1, A/Brisbane/59/2007 virus; the biotinylated bivalent zanamivir analog-labeled streptavidin complex was used as reporter. This research strongly suggests that glycans can be used for capturing and reporting influenza viruses and the biotinylated compounds can be used as probes for capturing and isolating influenza viruses from complex mixtures.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry, 788 Petit Science Center, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Bharat P. Gurale
- Department of Chemistry, 788 Petit Science Center, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Abasaheb N. Dhawane
- Department of Chemistry, 788 Petit Science Center, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Suri S. Iyer
- Department of Chemistry, 788 Petit Science Center, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
32
|
Cui X, Das A, Dhawane AN, Sweeney J, Zhang X, Chivukula V, Iyer SS. Highly specific and rapid glycan based amperometric detection of influenza viruses. Chem Sci 2017; 8:3628-3634. [PMID: 28580101 PMCID: PMC5437373 DOI: 10.1039/c6sc03720h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Rapid and precise detection of influenza viruses in a point of care setting is critical for applying appropriate countermeasures. Current methods such as nucleic acid or antibody based techniques are expensive or suffer from low sensitivity, respectively. We have developed an assay that uses glucose test strips and a handheld potentiostat to detect the influenza virus with high specificity. Influenza surface glycoprotein neuraminidase (NA), but not bacterial NA, cleaved galactose bearing substrates, 4,7di-OMe N-acetylneuraminic acid attached to the 3 or 6 position of galactose, to release galactose. In contrast, viral and bacterial NA cleaved the natural substrate, N-acetylneuraminic acid attached to the 3 or 6 position of galactose. The released galactose was detected amperometrically using a handheld potentiostat and dehydrogenase bearing glucose test strips. The specificity for influenza was confirmed using influenza strains and different respiratory pathogens that include Streptococcus pneumoniae and Haemophilus influenzae; bacteria do not cleave these molecules. The assay was also used to detect co-infections caused by influenza and bacterial NA. Viral drug susceptibility and testing with human clinical samples was successful in 15 minutes, indicating that this assay could be used to rapidly detect influenza viruses at primary care or resource poor settings using ubiquitous glucose meters.
Collapse
Affiliation(s)
- Xikai Cui
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Amrita Das
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Abasaheb N Dhawane
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Joyce Sweeney
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Xiaohu Zhang
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Vasanta Chivukula
- Atlanta Metropolitan State College , 1630 Metropolitan Parkway , Atlanta , GA 30310 , USA
| | - Suri S Iyer
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| |
Collapse
|
33
|
Liu W, Gómez-Durán CFA, Smith BD. Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage. J Am Chem Soc 2017; 139:6390-6395. [PMID: 28426220 DOI: 10.1021/jacs.7b01628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A conceptually new type of enzymatic cleavage assay is reported that utilizes in situ supramolecular capture of the fluorescent product. A squaraine-derived substrate with large blocking groups at each end of its structure cannot be threaded by a tetralactam macrocycle until the blocking groups are removed by enzyme cleavage. A prototype design responds to viral neuraminidase, an indicator of influenza infection, and also measures susceptibility of the sample to neuraminidase inhibitor drugs. The substrate structure incorporates three key features: (a) a bis(4-amino-3-hydroxyphenyl)squaraine core with bright deep-red fluorescence and excellent photostability, (b) an N-methyl group at each end of the squaraine core that ensures fast macrocycle threading kinetics, and (c) sialic acid blocking groups that prevent macrocycle threading until they are removed by viral neuraminidase. The enzyme assay can be conducted in aqueous solution where dramatic colorimetric and fluorescence changes are easily observed by the naked eye. Alternatively, affinity capture beads coated with macrocycle can be used to immobilize the liberated squaraine and enable a range of heterogeneous analysis options. With further optimization, this new type of neuraminidase assay may be useful in a point of care clinic to rapidly diagnose influenza infection and also determine which of the approved antiviral inhibitor drugs is likely to be the most effective treatment for an individual patient. The assay design is generalizable and can be readily modified to monitor virtually any type of enzyme-catalyzed cleavage reaction.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - César F A Gómez-Durán
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
34
|
Singh R, Hong S, Jang J. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform. Sci Rep 2017; 7:42771. [PMID: 28198459 PMCID: PMC5309888 DOI: 10.1038/srep42771] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/13/2017] [Indexed: 12/23/2022] Open
Abstract
Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL-1, where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL-1 (R2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples.
Collapse
Affiliation(s)
- Renu Singh
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongkyeol Hong
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
35
|
Lim EK, Guk K, Kim H, Chung BH, Jung J. Simple, rapid detection of influenza A (H1N1) viruses using a highly sensitive peptide-based molecular beacon. Chem Commun (Camb) 2016; 52:175-8. [PMID: 26509476 DOI: 10.1039/c5cc05684e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A peptide-based molecular beacon (PEP-MB) was prepared for the simple, rapid, and specific detection of H1N1 viruses using a fluorescence resonance energy transfer (FRET) system. The PEP-MB exhibited minimal fluorescence in its "closed" hairpin structure. However, in the presence of H1N1 viruses, the specific recognition of the hemagglutinin (HA) protein of H1 strains by the PEP-MB causes the beacon to assume an "open" structure that emits strong fluorescence. The PEP-MB could detect H1N1 viruses within 15 min or even 5 min and can exhibit strong fluorescence even at low viral concentrations, with a detection limit of 4 copies.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 305-806, Daejeon, Republic of Korea. and BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 305-806, Daejeon, Republic of Korea
| | - Kyeonghye Guk
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 305-806, Daejeon, Republic of Korea. and Nanobiotechnology Major, School of Engineering, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, Republic of Korea
| | - Hyeran Kim
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 305-806, Daejeon, Republic of Korea
| | - Bong-Hyun Chung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 305-806, Daejeon, Republic of Korea. and BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 305-806, Daejeon, Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 305-806, Daejeon, Republic of Korea. and BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 305-806, Daejeon, Republic of Korea
| |
Collapse
|
36
|
Sun Y, Xu L, Zhang F, Song Z, Hu Y, Ji Y, Shen J, Li B, Lu H, Yang H. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens Bioelectron 2016; 89:906-912. [PMID: 27818055 DOI: 10.1016/j.bios.2016.09.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Avian influenza viruses infect a great number of global populations every year and can lead to severe epidemics with high morbidity and mortality. Facile, rapid and sensitive detection of viruses is very crucial to control the viral spread at its early stage. In this work, we developed a novel magnetic immunosensor based on surface enhanced Raman scattering (SERS) spectroscopy to detect intact but inactivated influenza virus H3N2 (A/Shanghai/4084T/2012) by constructing a sandwich complex consisting of SERS tags, target influenza viruses and highly SERS-active magnetic supporting substrates. The procedure of sample pretreatment could be significantly simplified since the magnetic supporting substrates allowed the enrichment and separation of viruses from a complex matrix. With a portable Raman spectrometer, the immunosensor could detect H3N2 down to 102TCID50/mL (TCID50 refers to tissue culture infection dose at 50% end point), with a good linear relationship from 102 to 5×103 TCID50/mL. Considering its time efficiency, portability and sensitivity, the proposed SERS-based magnetic immunoassay is very promising for a point-of-care (POC) test in clinical and diagnostic praxis.
Collapse
Affiliation(s)
- Yang Sun
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai 200052, China; Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Li Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Fengdi Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yunwen Hu
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yongjia Ji
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jiayin Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ben Li
- Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
37
|
Gurale BP, Dhawane AN, Cui X, Das A, Zhang X, Iyer SS. Indirect Detection of Glycosidases Using Amperometry. Anal Chem 2016; 88:4248-53. [DOI: 10.1021/acs.analchem.5b03943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bharat P. Gurale
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Abasaheb N. Dhawane
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Xikai Cui
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Amrita Das
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Xiaohu Zhang
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Suri S. Iyer
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| |
Collapse
|
38
|
Song S, Ha K, Guk K, Hwang SG, Choi JM, Kang T, Bae P, Jung J, Lim EK. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Adv 2016. [DOI: 10.1039/c6ra06689e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a peptide-functionalized polydiacetylene nanosensor for pH1N1 virus detection with the naked eye.
Collapse
Affiliation(s)
- Sinae Song
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Kab Ha
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Kyeonghye Guk
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Seul-Gee Hwang
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Jong Min Choi
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Taejoon Kang
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Pankee Bae
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Juyeon Jung
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Eun-Kyung Lim
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| |
Collapse
|
39
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015; 55:732-6. [PMID: 26593219 DOI: 10.1002/anie.201507563] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/26/2023]
Abstract
We report a discovery that personal glucose meters (PGMs) can give a dose-dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one-step homogeneous assays of many non-glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and without the need for conjugation and multiple steps of sample dilution, separation, or fluid manipulation. The methods are based on the target-induced consumption or production of NADH through cascade enzymatic reactions. Simultaneous monitoring of the glucose and L-lactate levels in human plasma from patients with diabetes is demonstrated and the results are comparable to those from current standard test methods. Since a large number of commercially available enzymatic assay kits utilize NADH in their detection, this discovery will allow the transformation of almost all of these clinical lab tests into POC tests that use a PGM.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA)
| | - Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Miao Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Ananda Basu
- Division of Endocrinology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).
| |
Collapse
|
41
|
Wang Z, Chen Z, Gao N, Ren J, Qu X. Transmutation of Personal Glucose Meters into Portable and Highly Sensitive Microbial Pathogen Detection Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4970-4975. [PMID: 26153225 DOI: 10.1002/smll.201500944] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Herein, for the first time, we presented a simple and general approach by using personal glucose meters (PGM) for portable and ultrasensitive detection of microbial pathogens. Upon addition of pathogenic bacteria, glucoamylase-quaternized magnetic nanoparticles (GA-QMNPS) conjugates were disrupted by the competitive multivalent interactions between bacteria and QMNPS, resulting in the release of GA. After magnetic separation, the free GA could catalyze the hydrolysis of amylose into glucose for quantitative readout by PGM. In such way, PGM was transmuted into a bacterial detection device and extremely low detection limits down to 20 cells mL(-1) was achieved. More importantly, QMNPS could inhibit the growth of the bacteria and destroy its cellular structure, which enabled bacteria detection and inhibition simultaneously. The simplicity, portability, sensitivity and low cost of presented work make it attractive for clinical applications.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhaowei Chen
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Nan Gao
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jinsong Ren
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
42
|
Zhang J, Xiang Y, Novak DE, Hoganson GE, Zhu J, Lu Y. Using a Personal Glucose Meter and Alkaline Phosphatase for Point-of-Care Quantification of Galactose-1-Phosphate Uridyltransferase in Clinical Galactosemia Diagnosis. Chem Asian J 2015; 10:2221-7. [DOI: 10.1002/asia.201500642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Yu Xiang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Donna E. Novak
- Division of Genetics; University of Illinois at Chicago; 840 S Wood St, CSB Chicago IL 60612 USA
| | - George E. Hoganson
- Division of Genetics; University of Illinois at Chicago; 840 S Wood St, CSB Chicago IL 60612 USA
| | - Junjie Zhu
- School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Yi Lu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|