1
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
2
|
Nguyen HV, Campbell K, Painter GF, Young SL, Walker GF. Redox-responsive CpG-dextran conjugate enhances anti-tumour immunity following intratumoral administration. Int J Pharm 2024; 664:124621. [PMID: 39182745 DOI: 10.1016/j.ijpharm.2024.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Conjugation of a therapeutic agent to a polymer for enhanced delivery into target cells followed by its intracellular triggered release has proved to be an effective drug delivery approach. This approach is applied to the delivery of the immune-stimulatory unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide for an anti-tumour immune response after intratumoral administration. On average four CpG-1668 molecules were covalently linked to a 40-kDa amino-functionalised dextran polymer via either a non-reversible (CpG-dextran) or an intracellular redox-responsive disulfide linkage (CpG-SS-dextran). Dynamic light scattering analysis showed that both conjugates had a similar particle size and surface charge of 17 nm and -10 mV, respectively. Agarose gel electrophoresis analysis showed that CpG-SS-dextran was stable in the extracellular low glutathione (GSH) concentration range (i.e. 10-20 μM) and was cleaved at the higher intracellular GSH concentration (5 mM), while CpG-dextran was stable in both GSH concentrations. Uptake and activation assays on bone-marrow-derived dendritic cells showed no significant difference between free CpG, CpG-dextran and CpG-SS-dextran. In a mouse subcutaneous colorectal tumour model the CpG-SS-dextran showed a statistically significantly greater inhibition of tumour growth (p < 0.03) and prolonged survival (p < 0.001) compared to CpG-dextran or free CpG. These results demonstrate that the redox-triggered intracellular release of CpG from a dextran polymer carrier has promise for intratumoral therapeutic vaccination against cancer.
Collapse
Affiliation(s)
- Hien V Nguyen
- Faculty of Pharmacy, Van Lang University, Ho Chi Minh City 70000, Vietnam; School of Pharmacy, University of Otago, Dunedin 9016, New Zealand.
| | - Katrin Campbell
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 5040, New Zealand.
| | - Sarah L Young
- Faculty of Science, University of Canterbury, Christchurch 8140, New Zealand.
| | - Greg F Walker
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
3
|
Bao Q, Bao M, Xiao H, Ganbold T, Han S, Baigude H. Tumor-Targeted Codelivery of CpG and siRNA by a Dual-Ligand-Functionalized Curdlan Nanoparticle. Biomacromolecules 2024; 25:3360-3372. [PMID: 38771665 DOI: 10.1021/acs.biomac.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The simultaneous delivery of CpG oligonucleotide along with short interfering RNA (siRNA) has the potential to significantly boost the anticancer impact of siRNA medications. Our previous research demonstrated that Curdlan nanoparticles functionalized with adenosine are capable of selectively delivering therapeutic siRNA to cancerous cells through endocytosis mediated by adenosine receptors. Herein, we synthesized a dual-ligand-functionalized Curdlan polymer (denoted by CuMAN) to simultaneously target tumor cells and tumor-associated macrophages (TAMs). CuMAN nanoparticles containing CpG and siRNA demonstrated enhanced uptake by B16F10 tumor cells and bone marrow-derived macrophages, which are facilitated by AR on tumor cells and mannose receptor on macrophages. This led to increased release of pro-inflammatory cytokines in both in vitro and in vivo settings. The synergistic effect of CpG on TAMs and RNAi on tumor cells mediated by the CuMAN nanoparticle not only suppressed the tumor growth but also strongly inhibited the lung metastasis. Our findings indicate that the CuMAN nanoparticle has potential as an effective dual-targeting delivery system for nucleic acid therapeutics.
Collapse
Affiliation(s)
- Qingming Bao
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P. R. China
| | - Mingming Bao
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P. R. China
| | - Hai Xiao
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P. R. China
| | - Tsogzolmaa Ganbold
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P. R. China
| | - Shuqin Han
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P. R. China
| | - Huricha Baigude
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, P. R. China
| |
Collapse
|
4
|
Lee D, Huntoon K, Wang Y, Kang M, Lu Y, Jeong SD, Link TM, Gallup TD, Qie Y, Li X, Dong S, Schrank BR, Grippin AJ, Antony A, Ha J, Chang M, An Y, Wang L, Jiang D, Li J, Koong AC, Tainer JA, Jiang W, Kim BYS. Synthetic cationic helical polypeptides for the stimulation of antitumour innate immune pathways in antigen-presenting cells. Nat Biomed Eng 2024; 8:593-610. [PMID: 38641710 PMCID: PMC11162332 DOI: 10.1038/s41551-024-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seong Dong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas D Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaqing Qie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi An
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Liang Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brain Tumour Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Li M, Yao H, Yi K, Lao YH, Shao D, Tao Y. Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomater Sci 2024; 12:2203-2228. [PMID: 38293828 DOI: 10.1039/d3bm01970e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
6
|
Kim Y, Lee S, Jon S. Liposomal Delivery of an Immunostimulatory CpG Induces Robust Antitumor Immunity and Long-Term Immune Memory by Reprogramming Tumor-Associated Macrophages. Adv Healthc Mater 2024; 13:e2300549. [PMID: 37931205 DOI: 10.1002/adhm.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Tumor-associated macrophages (TAMs)-representative immune-suppressive cells in the tumor microenvironment (TME)-are known to promote tumor progression and metastasis, and thus are considered an attractive target for cancer therapy. However, current TAM-targeting strategies are insufficient to result in robust antitumor efficacy. Here, a small lipid nanoparticle encapsulating immunostimulatory CpG oligodeoxynucleotides (SLNP@CpG) is reported as a new immunotherapeutic modality that can reprogram TAMs and further bridge innate-to-adaptive immunity. It is found that SLNP@CpG treatment enhances macrophage-mediated phagocytosis of cancer cells and tumor antigen cross-presentation, and skews the polarization state of macrophages in vitro. Intratumoral injection of SLNP@CpG into an established murine E.G7-OVA tumor model significantly suppresses tumor growth and considerably prolongs survival, completely eradicating tumors in 83.3% of mice. Furthermore, tumor-free mice resist rechallenge with E.G7-OVA cancer cells through induction of immunological memory and long-term antitumor immunity. SLNP@CpG even exerts antitumor efficacy in an aggressive B16-F10 melanoma model by remodeling TME toward immune stimulation and tumor elimination. These findings suggest that, by modulating the function of TAMs and reshaping an immunosuppressive TME, the SLNP@CpG nanomedicine developed here may become a promising immunotherapeutic option applicable to a variety of tumors.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seojung Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Lee B, Nanishi E, Levy O, Dowling DJ. Precision Vaccinology Approaches for the Development of Adjuvanted Vaccines Targeted to Distinct Vulnerable Populations. Pharmaceutics 2023; 15:1766. [PMID: 37376214 PMCID: PMC10305121 DOI: 10.3390/pharmaceutics15061766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology, as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combinations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation systems. In this context, several considerations exist, including the intended goals of immunization (e.g., achieving immunogenicity versus lessening transmission), reducing the likelihood of adverse reactogenicity, and optimizing the route of administration. Each of these considerations is accompanied by several key challenges. On-going innovation in precision vaccinology will expand and target the arsenal of vaccine components for protection of vulnerable populations.
Collapse
Affiliation(s)
- Branden Lee
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
| | - Etsuro Nanishi
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Zhao D, Tu ATT, Shobo M, Le NBT, Yoshikawa C, Sugai K, Hakamata Y, Yamazaki T. Non-Modified CpG Oligodeoxynucleotide Forming Guanine-Quadruplex Structure Complexes with ε-Poly- L-Lysine Induce Antibody Production as Vaccine Adjuvants. Biomolecules 2022; 12:biom12121868. [PMID: 36551297 PMCID: PMC9775190 DOI: 10.3390/biom12121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) induce inflammatory cytokines and type I interferons (IFNs) to activate the immune system. To apply CpG ODNs as vaccine adjuvants, the cellular uptake and stability of phosphodiester-based, non-modified ODNs require further improvement. Previously developed new CpG ODNs forming guanine-quadruplex (G4) structures showed higher nuclease resistance and cellular uptake than linear CpG ODNs; however, the complex formation of G4-CpG ODNs with antigen proteins is necessary for their application as vaccine adjuvants. In this study, we utilized a cationic polymer, ε-poly-L-lysine (ε-PLL), as a carrier for G4-CpG ODNs and antigen. The ε-PLL/G4-CpG ODN complex exhibited enhanced stability against nucleases. Cellular uptake of the ε-PLL/G4-CpG ODN complex positively correlated with the N/P ratio. In comparison to naked G4-CpG ODNs, the ε-PLL/G4-CpG ODN complex induced extremely high levels of interleukin (IL)-6, IL-12, and IFN-β. Relative immune cytokine production was successfully tuned by N/P ratio modification. Mice with the ε-PLL/G4-CpG ODN/ovalbumin (OVA) complex showed increased OVA-specific immunoglobulin (Ig)G, IgG1, and IgG2c levels, whereas total IgE levels did not increase and weight gain rates were not affected. Therefore, ε-PLL can serve as a safe and effective phosphodiester-based, non-modified CpG ODN delivery system, and the ε-PLL/G4-CpG ODN/antigen complex is a highly promising candidate for vaccine adjuvants and can be further used in clinical research.
Collapse
Affiliation(s)
- Dandan Zhao
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Anh Thi Tram Tu
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
| | - Miwako Shobo
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Nguyen Bui Thao Le
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Chiaki Yoshikawa
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Kazuhisa Sugai
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yoji Hakamata
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Correspondence: ; Tel.: +81-29-859-2345; Fax: +81-29-859-2449
| |
Collapse
|
9
|
Nguyen HV, Campbell K, Painter GF, Young SL, Walker GF. Effect of carrier molecular weight on physicochemical properties and the in vitro immune-stimulatory activity of the CpG-dextran conjugates. Int J Pharm 2022; 627:122236. [PMID: 36174851 DOI: 10.1016/j.ijpharm.2022.122236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
The effect of dextran molecular weight on the in vitro physicochemical and immune properties of cytosine-phosphate-guanine (CpG) oligodeoxynucleotide-amino-dextran conjugates is investigated. CpG-1668 was conjugated at the 3'-end to amino-dextran of differing molecular weight (20, 40, 70 or 110-kDa) via a stable bis-aryl hydrazone linkage. Conjugate formation was confirmed by agarose gel electrophoresis and dynamic light scattering measured the size and surface charge of conjugates. Uptake and immune-stimulatory activity of CpG-dextran by antigen-presenting cells was evaluated by flow cytometry and confocal microscopy. Degradation by DNase I was monitored by loss of the fluorescent signal from labelled CpG and changes in size and zeta potential. Hydrazone bond formation (UV 354 nm) showed on average four CpG molecules conjugated per polymer. CpG-dextran prepared from 20 or 40-kDa dextran had a size of 17 nm while 70 or 110-kDa was 30 nm. CpG-dextran was preferentially taken up by dendritic cells, followed by macrophages and then B-cells. Only the 20-kDa dextran conjugate significantly enhanced uptake by bone-marrow derived dendritic cells (BMDCs) compared to free CpG. Confocal microscopy showed that CpG and CpG-dextran accumulates in the endo-lysosomal compartment of BMDCs at 24 h. All conjugates upregulated activation markers (CD40, CD80 or CD86) of BMDCs to a similar level as for free CpG. CpG-dextran 40-kDa produced highest levels of cytokines (TNF-α, IL-6, and IL-12p70) secreted by BMDCs. Enzymatic protection assays showed that the conjugate made from dextran 20-kDa provided no protection for CpG while the higher molecular weight conjugates reduced degradation by DNase I. The 40-kDa dextran conjugate produced the greatest in vitro immune activity, this was due to the conjugate being relatively small in size for cell uptake while sufficiently large enough to protect CpG from nuclease attack. These in vitro studies identify the need to consider the molecular weight of the carrier in bioconjugate design.
Collapse
Affiliation(s)
- Hien V Nguyen
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand; Faculty of Pharmacy, Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Katrin Campbell
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 5040, New Zealand
| | - Sarah L Young
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Greg F Walker
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
10
|
Tuning the Stability of the Polyplex Nanovesicles of Oligonucleotides via a Zinc (II)-Coordinative Strategy. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Kawamoto Y, Liu W, Yum JH, Park S, Sugiyama H, Takahashi Y, Takakura Y. Enhanced Immunostimulatory Activity of Covalent DNA Dendrons. Chembiochem 2021; 23:e202100583. [PMID: 34881505 DOI: 10.1002/cbic.202100583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Indexed: 11/10/2022]
Abstract
The present study focused on the design and synthesis of covalent DNA dendrons bearing multivalent cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) that can stimulate the immune system through the activation of TLR9. These dendrons were synthesized using branching trebler phosphoramidite containing three identical protecting groups that enabled the simultaneous synthesis of multiple strands on a single molecule. Compared with linear ODNs, covalent DNA dendrons were found to be more resistant to nuclease degradation and were more efficiently taken up by macrophage-like RAW264.7 cells. Cellular uptake was suggested to be mediated by macrophage scavenger receptors. The covalent DNA dendrons composed of multivalent immunostimulatory branches enhanced the secretion of proinflammatory cytokines TNF-α and IL-6 from RAW264.7 cells, and 9-branched DNA dendrons showed the highest enhancement. Given their enhanced efficacy, we expect covalent DNA dendrons to be useful structures of oligonucleotide medicines.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Wen Liu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
12
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
13
|
Pressnall MM, Huang A, Groer CE, Huayamares SG, Laird Forrest M, Berkland CJ. Glatiramer acetate enhances tumor retention and innate activation of immunostimulants. Int J Pharm 2021; 605:120812. [PMID: 34144136 DOI: 10.1016/j.ijpharm.2021.120812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Cancer immunotherapy aims to stimulate immune cells to recognize and attack tumor tissue. The immunostimulatory polyanions polyI:C and CpG induce potent pro-inflammatory immune responses as TLR3 and TLR9 agonists, respectively. Clinical trials of TLR agonists, however, have been fraught with immune-related adverse events, even when injecting intratumorally in an effort to minimize systemic exposure. We identified Glatiramer Acetate (GA), a positively-charged polypeptide approved for multiple sclerosis, as a delivery agent capable of complexing with polyI:C or CpG and reducing the mobility of these actives. Small nanoparticles termed polyplexes form when mixing positively-charged GA and negatively-charged immunostimulant (polyI:C or CpG). The ratio of GA to immunostimulant directly affected the potency of TLR activation and the mobility of these actives in simulated tumor tissue. Polyplexes of GA and CpG were injected intratumorally in a tumor model of head and neck cancer (HNC) and significantly mitigated tumor growth as compared to the vehicle controls. Intratumoral injections of CpG showed the slowest tumor growth but exhibited dramatically higher systemic proinflammatory cytokine levels compared to polyplexes of GA with CpG. Sequencing of RNA from resected tumors revealed a similar pattern of upregulated proinflammatory cytokines for CpG and polyplexes, a finding supported by histological tumor staining showing similar infiltration of immune cells induced by these treatments. Intratumoral administration of polyplexes of GA with immunostimulant represents a translational approach to enhance local immune responses while mitigating systemic immune-related adverse events.
Collapse
Affiliation(s)
- Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Aric Huang
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Chad E Groer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States; HylaPharm, LLC, Lawrence, KS, United States
| | | | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States; HylaPharm, LLC, Lawrence, KS, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States; Bioengineering Program, University of Kansas, Lawrence, KS, United States; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
14
|
Dendronized polymer conjugates with amplified immunogenic cell death for oncolytic immunotherapy. J Control Release 2021; 329:1129-1138. [PMID: 33098912 DOI: 10.1016/j.jconrel.2020.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
The architecture of multivalent polymers exerts an amplified interaction between attached ligands and targets. In current research, we reveal that a dendronized polymer augments the efficacy of an oncolytic peptide (OP; KKWWKKWDipK) for immunotherapy by exploiting (i) "flexible" linear polymer backbone to facilitate interactions with biomembrane systems, and (ii) "rigid" dendronized side chains to enhance the membrane lytic property. We show that a dendronized N-(2-hydroxypropyl)methacrylamide (HPMA) polymer-OP conjugate (PDOP) adopts α-helix secondary structure and induces robust immunogenic cell death (ICD) in cancer cells as characterized by multiple damage-associated molecular patterns (DAMPs) which include intracellular formation of reactive oxygen species (ROS) and surface exposure of calreticulin (CRT). These events convert immunosuppressive 4T1 tumor to an immunoresponsive one by recruiting CD8+ cytotoxic T cells into tumor beds. Combination of PDOP with anti-PD-L1 immune checkpoint blockade (ICB) increases the number of effector memory T cells and completely eradicates 4T1 tumors in mice. Our findings suggest that PDOP is a promising platform for oncolytic immunotherapy.
Collapse
|
15
|
Soni D, Bobbala S, Li S, Scott EA, Dowling DJ. The sixth revolution in pediatric vaccinology: immunoengineering and delivery systems. Pediatr Res 2021; 89:1364-1372. [PMID: 32927471 PMCID: PMC7511675 DOI: 10.1038/s41390-020-01112-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023]
Abstract
Infection is the predominant cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, very young infants fail to respond optimally to most vaccines currently in use, especially neonates. In 2005, Stanley Plotkin proposed that new delivery systems would spur a new revolution in pediatric vaccinology, just as attenuation, inactivation, cell culture of viruses, genetic engineering, and adjuvantation had done in preceding decades. Recent advances in the field of immunoengineering, which is evolving alongside vaccinology, have begun to increasingly influence vaccine formulation design. Historically, the particulate nature of materials used in many vaccine formulations was empiric, often because of the need to stabilize antigens or reduce endotoxin levels. However, present vaccine delivery systems are rationally engineered to mimic the size, shape, and surface chemistry of pathogens, and are therefore often referred to as "pathogen-like particles". More than a decade from his original assessment, we re-assess Plotkin's prediction. In addition, we highlight how immunoengineering and advanced delivery systems may be uniquely capable of enhancing vaccine responses in vulnerable populations, such as infants. IMPACT: Immunoengineering and advanced delivery systems are leading to new developments in pediatric vaccinology. Summarizes delivery systems currently in use and development, and prospects for the future. Broad overview of immunoengineering's impact on vaccinology, catering to Pediatric Clinicians and Immunologists.
Collapse
Affiliation(s)
- Dheeraj Soni
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Sharan Bobbala
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
| | - Sophia Li
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
| | - Evan A. Scott
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
| | - David J. Dowling
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| |
Collapse
|
16
|
Nguyen HV, Campbell K, Painter GF, Young SL, Walker GF. Nanoparticle System Based on Amino-Dextran as a Drug Delivery Vehicle: Immune-Stimulatory CpG-Oligonucleotide Loading and Delivery. Pharmaceutics 2020; 12:pharmaceutics12121150. [PMID: 33260874 PMCID: PMC7760314 DOI: 10.3390/pharmaceutics12121150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study is to prepare and characterize an amino-dextran nanoparticle (aDNP) platform and investigate two loading strategies for unmethylated cytosine-phosphate-guanine (CpG) oligonucleotide. aDNP was prepared by desolvation of amino-dextran followed by the chemical crosslinking of amino groups. Size, surface charge, and surface morphology of aDNP was determined by dynamic light scattering and transmission electron microscopy. CpG was either loaded onto aDNP by adsorption (CpG-adsorbed-aDNP) or conjugated to aDNP (CpG-conjugated-aDNP). In vitro cytokine production by bone marrow-derived dendritic cells (BMDCs) was measured by flow cytometry. aDNPs size and zeta potential could be controlled to produce uniform particles in the size range of 50 to 300 nm, surface charge of −16.5 to +14 mV, and were spherical in shape. Formulation control parameters investigated included the anti-solvent, water-to-anti-solvent ratio, level of amine functionality of dextran, and the molar ratio of glutaraldehyde to amine. aDNP could be lyophilized without additional cryoprotectant. Unloaded cationic aDNP (+13 mV) showed acceptable in vitro hemolysis. Unloaded and CpG-loaded aDNPs showed no cytotoxicity on BMDCs. CpG-loaded nanoparticles stimulated cytokine production by BMDCs, the level of cytokine production was higher for CpG-conjugated-aDNP compared to CpG-absorbed-aDNP. aDNP is a promising new drug delivery platform as its offers versatility in loading and tuning of particle properties.
Collapse
Affiliation(s)
- Hien V. Nguyen
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand;
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand;
| | - Katrin Campbell
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand;
| | - Gavin F. Painter
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 5040, New Zealand;
| | - Sarah L. Young
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, NSW, Australia;
| | - Greg F. Walker
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand;
- Correspondence: ; Tel.: +64-3-479-7133
| |
Collapse
|
17
|
Jokonya S, Langlais M, Leshabane M, Reader PW, Vosloo JA, Pfukwa R, Coertzen D, Birkholtz LM, Rautenbach M, Klumperman B. Poly( N-vinylpyrrolidone) Antimalaria Conjugates of Membrane-Disruptive Peptides. Biomacromolecules 2020; 21:5053-5066. [PMID: 33156615 DOI: 10.1021/acs.biomac.0c01202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The concepts of polymer-peptide conjugation and self-assembly were applied to antimicrobial peptides (AMPs) in the development of a targeted antimalaria drug delivery construct. This study describes the synthesis of α-acetal, ω-xanthate heterotelechelic poly(N-vinylpyrrolidone) (PVP) via reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization, followed by postpolymerization deprotection to yield α-aldehyde, ω-thiol heterotelechelic PVP. A specific targeting peptide, GSRSKGT, for Plasmodium falciparum-infected erythrocytes was used to sparsely decorate the α-chain ends via reductive amination while cyclic decapeptides from the tyrocidine group were conjugated to the ω-chain end via thiol-ene Michael addition. The resultant constructs were self-assembled into micellar nanoaggregates whose sizes and morphologies were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro activity and selectivity of the conjugates were evaluated against intraerythrocytic P. falciparum parasites.
Collapse
Affiliation(s)
- Simbarashe Jokonya
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marvin Langlais
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Meta Leshabane
- Department of Biochemistry, Genetics and Microbiology, Institute of Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Paul W Reader
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Johan A Vosloo
- BioPep Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rueben Pfukwa
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute of Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute of Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Marina Rautenbach
- BioPep Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
18
|
Lee SN, Jin SM, Shin HS, Lim YT. Chemical Strategies to Enhance the Therapeutic Efficacy of Toll-like Receptor Agonist Based Cancer Immunotherapy. Acc Chem Res 2020; 53:2081-2093. [PMID: 32966047 DOI: 10.1021/acs.accounts.0c00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent developments in the fields of biomedical chemistry and immune bioengineering have enabled innovative therapeutic approaches that can enhance the efficacy, accuracy, and safety of cancer immunotherapy. Among the numerous strategies utilized in cancer immunotherapy, Toll-like receptor (TLR) agonist-based approaches have been studied for a long time since they trigger the innate immune system and generate antigen-specific T cell responses to fight against tumors. In addition to these immunostimulatory functions, TLR agonists also contribute to the reprogramming of immune suppressive tumor microenvironments. Although TLR agonists are now being intensively studied in clinical trials due to their substantial immunomodulatory properties, they still show a low therapeutic index. Nonspecific and random stimulation of various immune cells produces excess levels of proinflammatory cytokines, resulting in cytokine storms and chronic diseases. Therefore, the development of chemical strategies to enhance the therapeutic efficacy as well as the safety of TLR agonist-based immunotherapy is essential and in high demand.In this Account, we summarize and discuss recent developments in biomedical chemistry and bioengineering techniques for the immunomodulation of TLR agonists that have addressed the limitations in current cancer immunotherapy. Immunomodulation of TLR agonists can be classified into two different approaches: (1) molecular modulation via chemical structure modification and (2) macroscopic modulation via an engineered drug delivery system. In molecular modulation, based on prodrug and antedrug principles, activity is modulated (active or inactive) through immolative chemical linkers that can respond to extrinsic or intrinsic biological stimulation and the plasmatic environment, respectively. To increase the effectiveness of TLR agonists as immunostimulatory agents, researchers have conjugated TLR agonists with other immunotherapeutic moieties (antigen, antibody, other TLR agonist, etc.). For macroscopic modulation, bioengineering of delivery carriers differing in size or with albumin hitchhiking moieties has been utilized to increase the efficiency of the targeting of these carriers to secondary lymphoid organs (lymph nodes (LNs) and spleen). The conjugation of specific targeting ligands and incorporation of stimulus-triggering moieties can promote the delivery of TLR agonists into specific cells or intracellular compartments. Implantable porous scaffolds for specific immune cell recruitment and in situ depot-forming gel systems for controlled release of immunomodulatory drugs can increase the therapeutic efficacy of TLR agonists while reducing systemic toxicity. Taken together, these findings show that well-designed and precisely controlled chemical strategies for the immunomodulation of TLR agonists at both the molecular and macroscopic levels are expected to play key roles in improving the therapeutic efficacy of cancer immunotherapy while minimizing immune-related toxicity.
Collapse
Affiliation(s)
- Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
19
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
20
|
Lin Y, Yu R, Yin G, Chen Z, Lin H. Syringic acid delivered via mPEG-PLGA-PLL nanoparticles enhances peripheral nerve regeneration effect. Nanomedicine (Lond) 2020; 15:1487-1499. [PMID: 32552485 DOI: 10.2217/nnm-2020-0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To deliver syringic acid (SA) with a nanocarrier and enhance its function. Materials & methods: mPEG-PLGA-PLL (PEAL) nanoparticles were used to deliver SA. The characterization, storage stability, drug release, blood-compatibility and biocompatibility of SA-PEAL were detected by in vitro and in vivo assays. Cellular phenotypic experiments and rat sciatic nerve injury models were used to evaluate the function of SA-PEALs. Results: SA-PEAL had good storage stability, blood-compatibility and biocompatibility and could slowly release SA. SA-PEAL significantly enhanced the proliferation and migration ability of Schwann cells and function recovery of injured sciatic nerves. Conclusion: Our study provides an effective nano-delivery system for enhancing the neural repair function of SA and promoting further applications of SA.
Collapse
Affiliation(s)
- Yaofa Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China
| | - Ronghua Yu
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, PR China
| | - Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China
| |
Collapse
|
21
|
Yu W, Sun J, Liu F, Yu S, Xu Z, Wang F, Liu X. Enhanced Immunostimulatory Activity of a Cytosine-Phosphate-Guanosine Immunomodulator by the Assembly of Polymer DNA Wires and Spheres. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17167-17176. [PMID: 32131585 DOI: 10.1021/acsami.9b21075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unmethylated cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides are immunostimulatory nucleic acids wildly utilized as adjuvants or for vaccines to treat diseases. However, there is a lack of simple and efficient vectors for CpG oligodeoxynucleotide delivery with long-lasting immune stimulation. Herein, self-assembled polymer wires consisting of CpG motifs by hybridization chain reaction were constructed with excellent biocompatibility and immunostimulatory activity. The designed polymer DNA wires acted as programmable multivalent immunoadjuvants and triggered immune response, stimulated pro-inflammatory cytokine secretion, and induced the apoptosis of cancer cells. More strikingly, polymer nanospheres assembled from the polymer DNA wires and cationic poly-l-lysine further improved cellular uptake and continuously stimulate the lysosomal Toll-like receptor 9 of immune cells, thereby remarkably enhancing the activation of immune cells. These results demonstrated that self-assembled polymer DNA nanoassemblies with multivalent CpG could trigger strong immune response and further induce cancer cell death.
Collapse
Affiliation(s)
- Wenqian Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Junlin Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shuyi Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhen Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
22
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
23
|
Zhang H, Zhang J, Li Q, Song A, Tian H, Wang J, Li Z, Luan Y. Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 2020; 245:119983. [PMID: 32229333 DOI: 10.1016/j.biomaterials.2020.119983] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/14/2023]
Abstract
An efficient antitumor immune response relies on multiple cells-based process including tumor cells-targeted immunogenicity increment, dendritic cells (DCs)-targeted vaccine delivery and T cells-mediated tumor elimination. Only limited immune efficacy could be achieved by strengthening the function of single type of cells. Therefore, building an effective immunotherapeutic nanoplatform by simultaneously modulating the functions of multiple cells involved in immune process is urgently demanded. However, it is challenging to modulate multiple cells since the on-demand delivery of diverse agents to different cells is restricted by inherent different target sites. Herein, as a proof of concept, dual tailor-made metal organic framework (MOF) nanoparticles based on zeolitic imidazolate framework-8 (ZIF-8) are designed to comprehensively enhance the immunotherapy via the spatiotemporal cooperation of various therapeutic agents including photothermal agent IR820, adjuvant imiquimod (R837) and immunomodulator 1-methyl-d-tryptophan (1 MT). On one hand, IR820@ZIF-8 is modified with hyaluronic acid for realizing tumor-targeted photothermal therapy, accompanied with the release of tumor antigens. On the other hand, (R837+1 MT)@ZIF-8 is modified with mannan for achieving DCs-targeted immune amplification. The synergistic tumor cells-targeted treatment and DCs-targeted immunomodulation can efficiently overcome two major obstacles in immunotherapy: inadequate activation of immune response and immune evasion, offering powerful platform against invasive malignancy and rechallenged tumors.
Collapse
Affiliation(s)
- Huiyuan Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Qian Li
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Aixin Song
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong Province, 250100, China
| | - Hailong Tian
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Zhonghao Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong Province, 250100, China
| | - Yuxia Luan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
24
|
Kapitanova KS, Naumenko VA, Garanina AS, Melnikov PA, Abakumov MA, Alieva IB. Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:729-745. [PMID: 31509725 DOI: 10.1134/s0006297919070058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the progress of modern medicine, oncological diseases are still among the most common causes of death of adult populations in developed countries. The current therapeutic approaches are imperfect, and the high mortality of oncological patients under treatment, the lack of personalized strategies, and severe side effects arising as a result of treatment force seeking new approaches to therapy of malignant tumors. During the last decade, cancer immunotherapy, an approach that relies on activation of the host antitumor immune response, has been actively developing. Cancer immunotherapy is the most promising trend in contemporary fundamental and practical oncology, and restoration of the pathologically altered tumor microenvironment is one of its key tasks, in particular, the reprogramming of tumor macrophages from the immunosuppressive M2-phenotype into the proinflammatory M1-phenotype is pivotal for eliciting antitumor response. This review describes the current knowledge about macrophage classification, mechanisms of their polarization, their role in formation of the tumor microenvironment, and strategies for changing the functional activity of M2-macrophages, as well as problems of targeted delivery of immunostimulatory signals to tumor macrophages using nanoparticles.
Collapse
Affiliation(s)
- K S Kapitanova
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V A Naumenko
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
| | - A S Garanina
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - P A Melnikov
- Serbsky Federal Medical Research Center of Psychiatry and Narcology, Department of Fundamental and Applied Neurobiology, Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| | - M A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.,Russian National Research Medical University, Department of Medical Nanobiotechnology, Moscow, 117997, Russia
| | - I B Alieva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
25
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Ossipov DA. Hyaluronan-based delivery of therapeutic oligonucleotides for treatment of human diseases. Expert Opin Drug Deliv 2019; 16:621-637. [PMID: 31072142 DOI: 10.1080/17425247.2019.1617693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Oligonucleotide therapeutics such as antisense oligonucleotides and siRNA requires chemical modifications and nano-sized carriers to circumvent stability problems in vivo, to reach target tissues, and to overcome tissue and cellular barriers. Hyaluronic acid (HA), already utilized in drug delivery and tissue engineering, possess properties that are useful to solve these problems and achieve full potential of oligonucleotide therapeutics. AREAS COVERED Complexes of oligonucleotide therapeutics with HA are discussed in terms of interactions providing the complexes formation and genes targeted by the therapeutics to cure diseases such as cancer, atherosclerosis, liver cirrhosis, and inflammation. The achieved therapeutic effects are rationalized as consequences of biodistribution, cell internalization and endosomal escape provided by HA. EXPERT OPINION Design of electrostatic, coordination, and hydrophobic interactions as well as covalent conjugation between oligonucleotide drugs, HA macromolecules and intermediate ligands are crucial for carrier-cargo association and dissociation under different conditions to impart oligonucleotides stability in vivo, their accumulation in diseased organs, cellular uptake, and dissociation in cytoplasm intact. These are the delivery factors that provides eventual complex formation of oligonucleotide therapeutics with their mRNA, microRNA, or protein targets. Elucidation of the impact of structural parameters of oligonucleotide/HA complexes on their therapeutic effect in vivo is important for the future rational design of the delivery agents.
Collapse
Affiliation(s)
- Dmitri A Ossipov
- a Department of Biosciences and Nutrition , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
27
|
Ai SL, He XY, Liu BY, Zhuo RX, Cheng SX. Targeting Delivery of Oligodeoxynucleotides to Macrophages by Mannosylated Cationic Albumin for Immune Stimulation in Cancer Treatment. Mol Pharm 2019; 16:2616-2625. [PMID: 31013098 DOI: 10.1021/acs.molpharmaceut.9b00184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To efficiently deliver CpG oligodeoxynucleotides (ODNs) to macrophages for the reversal of cancer-induced immunosuppression, nanoparticles ODN@MCBSA with mannosylated cationic albumin (MCBSA) as a macrophage targeting vector were constructed. Compared with ODN@CBSA with cationic albumin (CBSA) as a vector, ODN@MCBSA exhibited significantly improved cellular uptake mediated by mannose moieties, resulting in significantly enhanced secretion of proflammatory cytokines including IL-12, IL-6, TNF-α, and iNOS. The modulation of macrophages toward the favorable M1 phenotype was confirmed by the upregulated CD80 expression after being treated by ODN delivery systems. In addition to immune cells, the effects of the ODN delivery system on cancerous HeLa cells were also investigated. The results showed that ODN@MCBSA did not affect the overall tumor cell viability. However, enhanced NF-κB, p-Akt, PIK3R3, Fas, and FasL, as well as upregulated caspases were observed in tumor cells, implying the pleiotropic effects on tumor cells. Our study provides a more in-depth understanding on the immunotherapeutic effects of CpG ODNs and highlights the importance of macrophage targeting delivery to minimize the effects on tumor cells. These results indicate that MCBSA could serve as a promising delivery vector of CpG ODNs to macrophages for cancer immunotherapy.
Collapse
Affiliation(s)
- Shu-Lun Ai
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Buo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
28
|
|
29
|
Wu C, Guan X, Xu J, Zhang Y, Liu Q, Tian Y, Li S, Qin X, Yang H, Liu Y. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials 2019; 205:106-119. [PMID: 30913486 DOI: 10.1016/j.biomaterials.2019.03.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022]
Abstract
Currently, photoimmunotherapy based on a theranostic nanoplatform emerges as a promising modality in advanced cancer therapy. In this study, a new type of versatile nanoassemblies (denoted as PC@GCpD(Gd)) was rationally designed by integrating the polydopamine stabilized graphene quantum dots (GQD)-photosensitizer nanocomposites (denoted as GCpD), immunostimulatory polycationic polymer/CpG oligodeoxynucleotide (CpG ODN) nanoparticles (denoted as PC) and Gd3+/Cy3 imaging probes for dual magnetic resonance/fluorescence imaging-guided photoimmunotherapy. PC@GCpD(Gd) effectively killed the tumor cells through the amplified photothermal and photodynamic effects mediated by GCpD, and contemporaneously delivered CpG ODN to the targeted endosomal Toll-like receptor 9 (TLR9) to continuously stimulate the secretion of proinflammatory cytokines and the maturation of dendritic cells, thereby resulting in the activation and infiltration of T lymphocytes. As a result, PC@GCpD(Gd) achieved robust inhibition efficiency to almost completely suppress the EMT6 murine mammary cancer model under laser irradiation, implying the superior synergy of combined photoimmunotherapy. Moreover, the in vivo delivery and biodistribution of PC@GCpD(Gd) could be tracked using the high-quality bimodal magnetic resonance imaging/fluorescence imaging. This study highlighted the potent prospect of hybrid PC@GCpD(Gd) nanoassemblies for precise cancer photoimmunotherapy with a cascading effect.
Collapse
Affiliation(s)
- Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xiaotian Guan
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jiming Xu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yingxue Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Qiuyue Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yuan Tian
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
30
|
Affiliation(s)
- Jenny Lou
- Department of Medical BiophysicsUniversity of Toronto Toronto M5G 1L7 Canada
- Princess Margaret Cancer CenterUniversity Health Network Toronto M5G 2C1 Canada
- Centre for Pharmaceutical OncologyUniversity of Toronto Toronto M5S 3M2 Canada
| | - Li Zhang
- Toronto General Hospital Research InstituteUniversity Health Network Toronto M5G 2C4 Canada
- Department of ImmunologyUniversity of Toronto Toronto M5S 1A8 Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto Toronto M5S 1A8 Canada
| | - Gang Zheng
- Department of Medical BiophysicsUniversity of Toronto Toronto M5G 1L7 Canada
- Princess Margaret Cancer CenterUniversity Health Network Toronto M5G 2C1 Canada
- Centre for Pharmaceutical OncologyUniversity of Toronto Toronto M5S 3M2 Canada
| |
Collapse
|
31
|
Arsiwala A, Castro A, Frey S, Stathos M, Kane RS. Designing Multivalent Ligands to Control Biological Interactions: From Vaccines and Cellular Effectors to Targeted Drug Delivery. Chem Asian J 2019; 14:244-255. [DOI: 10.1002/asia.201801677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Ammar Arsiwala
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Ana Castro
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Steven Frey
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Mark Stathos
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| |
Collapse
|
32
|
Li K, Dai Y, Chen W, Yu K, Xiao G, Richardson JJ, Huang W, Guo J, Liao X, Shi B. Self-Assembled Metal-Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer. ACTA ACUST UNITED AC 2018; 3:e1800241. [PMID: 32627378 DOI: 10.1002/adbi.201800241] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/31/2018] [Indexed: 02/05/2023]
Abstract
Engineering functional nanomaterials to have both high therapeutic efficacy and minimal side-effects has become a promising strategy for next-generation cancer treatments. Herein, an adenosine triphosphate (ATP) depletion and reactive oxygen species-enhanced combination chemotherapy platform is introduced whereby therapeutic samarium (Sm3+ ) ions and (-)-epicatechin (EC) are integrated via a metal-phenolic network (SmIII -EC). The independent pathway between Sm3+ and EC can achieve a synergistic therapeutic effect through the mitochondrial dysfunction process. SmIII -EC nanoparticles cause a significant reduction of viability of C26 murine colon carcinoma cells while with lower systemic toxic effects on normal cell lines. SmIII -EC nanoparticles are used to directly compare with a clinic anticancer drug 5-fluorouracil. SmIII -EC nanoparticles not only decrease the tumor volume but also do not affect the body weight of mice and normal organs, showing significant advantages over clinic counterpart. These facts suggest that SmIII -EC nanoparticles represent a clinically promising candidate for colon cancer treatment with a targeted therapeutic effect and minimum side toxicity.
Collapse
Affiliation(s)
- Ke Li
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kang Yu
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao Xiao
- Department of Environmental Science and Engineering, College of Environment and Resources, Fuzhou University, Fuzhou, 350108, China.,Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, USA
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wen Huang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junling Guo
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.,Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, USA
| | - Xuepin Liao
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Bi Shi
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Li W, Luo L, Huang J, Wang Q, Liu J, Xiao X, Fang H, Yang X, Wang K. Self-assembled DNA nanocentipedes as multivalent vehicles for enhanced delivery of CpG oligonucleotides. Chem Commun (Camb) 2018; 53:5565-5568. [PMID: 28475186 DOI: 10.1039/c7cc01128h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report self-assembled nanocentipedes as multivalent vehicles for the delivery of immunostimulatory CpG ODNs. The multivalent vehicles could be internalized by RAW264.7 cells and stimulate the secretion of large amounts of cytokines, successively inducing effective apoptosis of cancer cells.
Collapse
Affiliation(s)
- Wenshan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Liu C, Wang F, Liu Z, Ren J, Qu X. Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. Chem Commun (Camb) 2018; 53:1840-1843. [PMID: 28111662 DOI: 10.1039/c6cc09280b] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have demonstrated the ability of iron carboxylate metal-organic frameworks to efficiently deliver unmethylated cytosine-phosphate-guanine oligonucleotides. The nanoconjugates induced a stronger immune response than did free cytosine-phosphateguanine oligonucleotides and showed T2-magnetic resonance imaging ability both in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
35
|
Cui X, Sun Y, Shen M, Song K, Yin X, Di W, Duan Y. Enhanced Chemotherapeutic Efficacy of Paclitaxel Nanoparticles Co-delivered with MicroRNA-7 by Inhibiting Paclitaxel-Induced EGFR/ERK pathway Activation for Ovarian Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7821-7831. [PMID: 29411964 DOI: 10.1021/acsami.7b19183] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chemotherapy-induced activation of cell survival pathways leads to drug resistance. MicroRNAs (miRNAs) post-transcriptionally regulate gene expression in many biological pathways. Paclitaxel (PTX) is one of the first-line chemotherapy drugs for ovarian cancer, and it induces the activation of the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) pathway that leads to tumor cell proliferation, survival, invasion, and drug resistance. MicroRNA-7 (miR-7) has the ability to suppress the EGFR/ERK pathway. To sensitize chemotherapy, we developed monomethoxy(poly(ethylene glycol))-poly(d,l-lactide- co-glycolide)-poly(l-lysine) nanoparticles for the simultaneous co-delivery of PTX and miR-7. The resulting PTX/miR-7 nanoparticles (P/MNPs) protect miRNA from degradation, possess a sequential and controlled release of drugs, improve the transfection efficiency of miRNA, decrease the half-maximal inhibitory concentration of PTX, and increase the apoptosis of ovarian cancer cells. The chemotherapeutic efficacy of PTX is prominently enhanced in vitro and in vivo via the inhibition of PTX-induced EGFR/ERK pathway activation by miR-7. Our studies in P/MNPs reveal a novel paradigm for a dual-drug-delivery system of chemotherapeutics and gene therapy in treating cancers.
Collapse
|
36
|
Li L, Yang S, Song L, Zeng Y, He T, Wang N, Yu C, Yin T, Liu L, Wei X, Wu Q, Wei Y, Yang L, Gong C. An Endogenous Vaccine Based on Fluorophores and Multivalent Immunoadjuvants Regulates Tumor Micro-Environment for Synergistic Photothermal and Immunotherapy. Theranostics 2018; 8:860-873. [PMID: 29344312 PMCID: PMC5771099 DOI: 10.7150/thno.19826] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023] Open
Abstract
Recently, near-infrared (NIR) light-based photothermal therapy (PTT) has been widely applied in cancer treatment. However, in most cases, the tissue penetration depth of NIR light is not sufficient and thus photothermal therapy is unable to completely eradicate deep, seated tumors inevitably leading to recurrence of the tumor. Due to this significant limitation of NIR, improved therapeutic strategies are urgently needed. Methods: We developed an endogenous vaccine based on a novel nanoparticle platform for combinatorial photothermal ablation and immunotherapy. The design was based on fluorophore-loaded liposomes (IR-7-lipo) coated with a multivalent immunoadjuvant (HA-CpG). In vitro PTT potency was assessed in cells by LIVE/DEAD and Annexin V-FITC/PI assays. The effect on bone marrow-derived dendritic cells (BMDC) maturation and antigen presentation was evaluated by flow cytometry (FCM) with specific antibodies. After treatment, the immune cell populations in tumor micro-environment and the cytokines in the serum were detected by FCM and Elisa assay, respectively. Finally, the therapeutic outcome was investigated in an animal model. Results: Upon irradiation with 808 nm laser, IR-7-lipo induced tumor cell necrosis and released tumor-associated antigens, while the multivalent immunoadjuvant improved the expression of co-stimulatory molecules on BMDC and promoted antigen presentation. The combination therapy of PTT and immunotherapy regulated the tumor micro-environment, decreased immunosuppression, and potentiated host antitumor immunity. Most significantly, due to an enhanced antitumor immune response, combined photothermal immunotherapy was effective in eradicating tumors in mice and inhibiting tumor metastasis. Conclusion: This endogenous vaccination strategy based on synergistic photothermal and immunotherapy may provide a potentially effective approach for treatment of cancers, especially those difficult to be surgically removed.
Collapse
|
37
|
He XY, Liu BY, Wu JL, Ai SL, Zhuo RX, Cheng SX. A Dual Macrophage Targeting Nanovector for Delivery of Oligodeoxynucleotides To Overcome Cancer-Associated Immunosuppression. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42566-42576. [PMID: 29160061 DOI: 10.1021/acsami.7b13594] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To overcome cancer-associated immunosuppression, we prepared a dual-targeting vector to deliver CpG oligodeoxynucleotides (ODN) to macrophages. The dual-targeting system composed of mannosylated carboxymethyl chitosan (MCMC)/hyaluronan (HA) for macrophage targeting and protamine sulfate for ODN complexation was prepared by self-assembly. The effects of ODN delivery on immune cells was studied in J774A.1 cells. Due to the enhanced delivery efficiency, the dual-targeting delivery system exhibits a higher immune stimulatory activity compared with the monotargeting delivery system containing either MCMC or HA, resulting in a dramatically enhanced secretion of proinflammatory cytokines and a successful shift to activated macrophages (M1). Besides macrophages, the influence of the delivery system on tumor cells (MCF-7) was also investigated. In MCF-7 cells, the increased expressions of nuclear transcription factor-κB (NF-κB), PIK3R3, and phosphorylated protein kinase B (p-Akt) caused by activated NF-κB and phosphoinositide 3-kinase/Akt signalings were observed. Nevertheless, upregulated Fas as well as Fas ligand (FasL) may induce Fas/FasL-mediated apoptosis, which results in the increased expressions of caspases in tumor cells.
Collapse
Affiliation(s)
- Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Jin-Long Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Shu-Lun Ai
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
38
|
Wang Z, Zhang Y, Liu Z, Dong K, Liu C, Ran X, Pu F, Ju E, Ren J, Qu X. A bifunctional nanomodulator for boosting CpG-mediated cancer immunotherapy. NANOSCALE 2017; 9:14236-14247. [PMID: 28914317 DOI: 10.1039/c7nr04396a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligonucleotides (ODNs) possess high immunostimulatory activity and represent attractive tools for cancer treatment. However, their success in eliminating large solid tumors was hampered by the immunosuppressive tumor microenvironment. Herein, we report that the design of a novel MnO2-CpG-silver nanoclusters (AgNCs)-doxorubicin (DOX) conjugate for enhanced cancer immunotherapy, in which MnO2 nanosheets function as unique supports to integrate the chemotherapy drug DOX and the immunotherapeutic agent CpG-AgNCs. Importantly, DOX could be conjugated with MnO2 nanosheets through π-π interactions to serve as a bifunctional modulator of the tumor microenvironment to activate a tumor-specific immune response by inducing immunogenic cell death, and reverse the immunosuppressive tumor microenvironment via abrogating the immune-suppressive activity of regulatory T cells, both of which would greatly improve the immune response of CpG-AgNCs. In this way, the T-cell immune responses of CpG-AgNCs which are linked to MnO2 nanosheets were significantly enhanced and could exhibit remarkable antitumor activity against large solid tumors. Our study may guide the rational design of immunotherapeutic boosters for improving cancer treatment.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, Sainz V, Scomparin A, Satchi-Fainaro R, Préat V, Florindo HF. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 2017; 34:3-24. [PMID: 28941640 DOI: 10.1016/j.smim.2017.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology-based strategies can dramatically impact the treatment, prevention and diagnosis of a wide range of diseases. Despite the unprecedented success achieved with the use of nanomaterials to address unmet biomedical needs and their particular suitability for the effective application of a personalized medicine, the clinical translation of those nanoparticulate systems has still been impaired by the limited understanding on their interaction with complex biological systems. As a result, unexpected effects due to unpredicted interactions at biomaterial and biological interfaces have been underlying the biosafety concerns raised by the use of nanomaterials. This review explores the current knowledge on how nanoparticle (NP) physicochemical and surface properties determine their interactions with innate immune cells, with particular attention on the activation of pattern-recognition receptors and inflammasome. A critical perspective will additionally address the impact of biological systems on the effect of NP on immune cell activity at the molecular level. We will discuss how the understanding of the NP-innate immune cell interactions can significantly add into the clinical translation by guiding the design of nanomedicines with particular effect on targeted cells, thus improving their clinical efficacy while minimizing undesired but predictable toxicological effects.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Liane Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
40
|
Sun ZY, Chen PG, Liu YF, Shi L, Zhang BD, Wu JJ, Zhao YF, Chen YX, Li YM. Self-Assembled Nano-Immunostimulant for Synergistic Immune Activation. Chembiochem 2017; 18:1721-1729. [PMID: 28618135 DOI: 10.1002/cbic.201700246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Immunotherapy has become one of the most promising therapies for the treatment of diseases. Synthetic immunostimulants and nanomaterial immunostimulant systems are indispensable for the activation of the immune system in cancer immunotherapy. Herein, a strategy for preparing self-assembled nano-immunostimulants (SANIs) for synergistic immune activation is reported. Three immunostimulants self-assemble into nanoparticles through electrostatic interactions. SANIs showed strong synergistic immunostimulation in macrophages. SANIs could also induce a strong antitumor immune response to inhibit tumor growth in mice and act as an efficient adjuvant of antitumor vaccines. Therefore, SANIs may be generally applied in cancer immunotherapy. This novel SANI strategy provides a new way for the development of both immunostimulants and -suppressants.
Collapse
Affiliation(s)
- Zhan-Yi Sun
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pu-Guang Chen
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Fang Liu
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Shi
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo-Dou Zhang
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
41
|
Nanoparticles for immune system targeting. Drug Discov Today 2017; 22:1295-1301. [PMID: 28390214 DOI: 10.1016/j.drudis.2017.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 02/02/2023]
Abstract
Nanoparticles (NPs) are found in numerous applications used to modulate the immune system. They serve as drug delivery carriers or vaccine adjuvants and are utilized as therapeutics against a variety of diseases. NPs can be engineered to target distinct cellular components representing multiple pathways of immunity. The combination of NPs with immune system-targeting moieties has paved the way for improved targeted immune therapies. Here we provide an update of recent progress in this field.
Collapse
|
42
|
Yuba E, Yamaguchi A, Yoshizaki Y, Harada A, Kono K. Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 2017; 120:32-45. [DOI: 10.1016/j.biomaterials.2016.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/03/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022]
|
43
|
Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials 2017; 122:105-113. [PMID: 28110170 DOI: 10.1016/j.biomaterials.2017.01.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
Abstract
It has been widely accepted that lymph nodes (LNs) are critical targets of cancer vaccines and particles sized between 10 and 100 nm with a neutral or negative surface charge are preferred for lymphatic transfer after subcutaneous or intradermal injection. However their limited uptake by antigen presenting cells (APCs) and inadequate retention within LNs undoubtedly restrains their strength on activating T cell immunity. Here, we address this issue by tailoring the physicochemical properties of polymeric hybrid micelles (HMs), which are self-assembled from two amphiphilic diblock copolymers, poly-(ethylene glycol) phosphorethanolamine (PEG-PE) and polyethylenimine-stearic acid conjugate (PSA) via hydrophobic and electrostatic interactions. We successfully encapsulate melanoma antigen peptide Trp2 and Toll-like receptor-9 (TLR-9) agonist CpG ODN into HMs with a size of sub-30 nm. Their surface characteristics which are found closely related to their in vivo kinetics can be modulated by simply adjusting the molar ratio of PEG-PE and PSA. Our results demonstrated the optimized HMs with an equal mol of PEG-PE and PSA can potently target proximal LNs where their cargos are efficiently internalized by DCs. Furthermore, HMs mediated Trp2/CpG delivery system greatly expands antigen specific cytotoxic T lymphocytes (CTLs) and offers a strong anti-tumor effect in a lung metastatic melanoma model.
Collapse
|
44
|
Han Y, Duan Q, Li Y, Tian J. In vitro and in vivo investigation of chitosan–polylysine polymeric nanoparticles for ovalbumin and CpG co-delivery. RSC Adv 2017. [DOI: 10.1039/c7ra06450k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A simple and powerful vaccine delivery system was developed by electrostatic binding of chitosan-based polycation methoxy poly(ethylene glycol)–chitosan–poly(l-lysine) (mPEG–CS–PLL) with ovalbumin (OVA) and cytosine–phosphate–guanine (CpG).
Collapse
Affiliation(s)
- Yunfei Han
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- Laboratory of Clean Energy Technology
| | - Qian Duan
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Yanhui Li
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Jian Tian
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- Laboratory of Clean Energy Technology
| |
Collapse
|
45
|
Li W, Yang X, He L, Wang K, Wang Q, Huang J, Liu J, Wu B, Xu C. Self-Assembled DNA Nanocentipede as Multivalent Drug Carrier for Targeted Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25733-25740. [PMID: 27622459 DOI: 10.1021/acsami.6b08210] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An idea drug carrier, with good binding affinity, selectivity, drug payload capacity, and cellular internalized capability, will greatly improve the efficiency of target delivery. Herein a self-assembled and multivalent DNA nanostructure was developed as drug carrier for efficient and targeted delivery. The DNA structure was similar to that of a centipede, composed of trunk and legs: The trunk was a self-assembled DNA scaffold via hybridization chain reaction (HCR) from two biotinylated hairpin monomers created upon initiation by a trigger DNA, and the legs were biotinylated aptamers conjugated to the trunk via streptavidin-biotin affinity interaction. The long trunk of the "DNA nanocentipede" was loaded with doxorubicin (Dox), and the legs were SMMC-7721 cell-binding aptamers (Zy1) which functioned as targeting moieties to firmly and selectively grasp target cells. The results of agarose gel electrophoresis and fluorescence anisotropy confirmed that Zy1-based DNA nanocentipedes (Zy1-Nces) were successfully constructed. Flow cytometric analyses demonstrated that Zy1-Nces were more effective than free Zy1 in binding affinity and selectivity due to a multivalent effect. Confocal microscopy studies demonstrated that the internalization was highly dependent on the higher valences of DNA nanocentipedes without the loss of selectivity. Meanwhile, Zy1-Nces exhibited high drug-loading capacity and selective drug transport. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed enhanced cellular cytotoxicity of the Dox-loaded Zy1-Nces (Zy1-Nces-Dox) to the target SMMC-7721 cells but not negative control L02 cells. This approach is applicable to prepare drug carriers for other targets by construction of the nanocentipedes with relevant nucleic acid fragments.
Collapse
Affiliation(s)
- Wenshan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Leiliang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Bin Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Congcong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| |
Collapse
|
46
|
Dawson E, Leleux JA, Pradhan P, Roy K. Surface-Presentation of CpG and Protein–Antigen on Pathogen-Like Polymer Particles Generate Strong Prophylactic and Therapeutic Antitumor Protection. ACS Biomater Sci Eng 2016; 3:169-178. [DOI: 10.1021/acsbiomaterials.6b00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eileen Dawson
- The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jardin A. Leleux
- The Wallace
H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, The Parker H. Petit Institute for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pallab Pradhan
- The Wallace
H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, The Parker H. Petit Institute for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Krishnendu Roy
- The Wallace
H. Coulter Department of Biomedical Engineering at Georgia Tech and
Emory University, The Parker H. Petit Institute for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
47
|
Wang D, Wang T, Liu J, Yu H, Jiao S, Feng B, Zhou F, Fu Y, Yin Q, Zhang P, Zhang Z, Zhou Z, Li Y. Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. NANO LETTERS 2016; 16:5503-5513. [PMID: 27525587 DOI: 10.1021/acs.nanolett.6b01994] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising clinical modality for cancer therapy due to its ability to initiate an antitumor immune response. However, PDT-mediated cancer immunotherapy is severely impaired by tumor-cell immunosuppression of host T cell antitumor activity through the programmed cell death 1 ligand (PD-L1) and programmed cell death receptor 1 (PD-1) (PD-L1-PD-1) immune checkpoint pathway. Here, we demonstrate that PDT-mediated cancer immunotherapy can be augmented by PD-L1 knockdown (KD) in tumor cells. We rationally designed a versatile micelleplex by integrating an acid-activatable cationic micelle, photosensitizer (PS), and small interfering RNA (siRNA). The micelleplex was inert at physiological pH conditions and activated only upon internalization in the acidic endocytic vesicles of tumor cells for fluorescence imaging and PDT. Compared to PDT alone, the combination of PDT and PD-L1 KD showed significantly enhanced efficacy for inhibiting tumor growth and distant metastasis in a B16-F10 melanoma xenograft tumor model. These results suggest that acid-activatable micelleplexes utilizing PDT-induced cancer immunotherapy are more effective when combined with siRNA-mediated PD-L1 blockade. This study could provide a general strategy for enhancing the therapy efficacy of photodynamic cancer therapy.
Collapse
Affiliation(s)
- Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tingting Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jianping Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Shi Jiao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Bing Feng
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Fangyuan Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yuanlei Fu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhaocai Zhou
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
48
|
Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine (Lond) 2016; 11:2341-57. [PMID: 27526874 DOI: 10.2217/nnm-2016-0117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics. Finally, we will discuss the main challenges and technological advances that will allow these carriers to be considered as candidates for clinical development.
Collapse
Affiliation(s)
- Ana Cadete
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
49
|
Wang Y, Dehigaspitiya DC, Levine PM, Profit AA, Haugbro M, Imberg-Kazdan K, Logan SK, Kirshenbaum K, Garabedian MJ. Multivalent Peptoid Conjugates Which Overcome Enzalutamide Resistance in Prostate Cancer Cells. Cancer Res 2016; 76:5124-32. [PMID: 27488525 DOI: 10.1158/0008-5472.can-16-0385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
Development of resistance to antiandrogens for treating advanced prostate cancer is a growing concern and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here, we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its antiproliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacologic studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. Cancer Res; 76(17); 5124-32. ©2016 AACR.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urology, New York University School of Medicine, New York, New York
| | | | - Paul M Levine
- Department of Chemistry, New York University, New York, New York
| | - Adam A Profit
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, New York
| | - Michael Haugbro
- Department of Chemistry, New York University, New York, New York
| | - Keren Imberg-Kazdan
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Susan K Logan
- Department of Urology, New York University School of Medicine, New York, New York. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York
| | - Michael J Garabedian
- Department of Urology, New York University School of Medicine, New York, New York. Department of Microbiology, New York University School of Medicine, New York, New York.
| |
Collapse
|