1
|
Ge J, Lang X, Ji J, Qu C, Qiao H, Zhong J, Luo D, Hu J, Chen H, Wang S, Wang T, Li S, Li W, Zheng P, Xu J, Du H. Integration of biological and information technologies to enhance plant autoluminescence. THE PLANT CELL 2024; 36:4703-4715. [PMID: 39167833 PMCID: PMC11530770 DOI: 10.1093/plcell/koae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Autoluminescent plants have been genetically modified to express the fungal bioluminescence pathway (FBP). However, a bottleneck in precursor production has limited the brightness of these luminescent plants. Here, we demonstrate the effectiveness of utilizing a computational model to guide a multiplex five-gene-silencing strategy by an artificial microRNA array to enhance caffeic acid (CA) and hispidin levels in plants. By combining loss-of-function-directed metabolic flux with a tyrosine-derived CA pathway, we achieved substantially enhanced bioluminescence levels. We successfully generated eFBP2 plants that emit considerably brighter bioluminescence for naked-eye reading by integrating all validated DNA modules. Our analysis revealed that the luminous energy conversion efficiency of the eFBP2 plants is currently very low, suggesting that luminescence intensity can be improved in future iterations. These findings highlight the potential to enhance plant luminescence through the integration of biological and information technologies.
Collapse
Affiliation(s)
- Jieyu Ge
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuye Lang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengyi Qu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - He Qiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingling Zhong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Daren Luo
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Hu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongyu Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shun Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tiange Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiquan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Peng Zheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Du
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
2
|
Schramm S, Weiß D. Bioluminescence - The Vibrant Glow of Nature and its Chemical Mechanisms. Chembiochem 2024; 25:e202400106. [PMID: 38469601 DOI: 10.1002/cbic.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Bioluminescence, the mesmerizing natural phenomenon where living organisms produce light through chemical reactions, has long captivated scientists and laypersons alike, offering a rich tapestry of insights into biological function, ecology, evolution as well as the underlying chemistry. This comprehensive introductory review systematically explores the phenomenon of bioluminescence, addressing its historical context, geographic dispersion, and ecological significance with a focus on their chemical mechanisms. Our examination begins with terrestrial bioluminescence, discussing organisms from different habitats. We analyze thefireflies of Central Europe's meadows and the fungi in the Atlantic rainforest of Brazil. Additionally, we inspect bioluminescent species in New Zealand, specifically river-dwelling snails and mosquito larvae found in Waitomo Caves. Our exploration concludes in the Siberian Steppes, highlighting the area's luminescent insects and annelids. Transitioning to the marine realm, the second part of this review examines marine bioluminescent organisms. We explore this phenomenon in deep-sea jellyfish and their role in the ecosystem. We then move to Toyama Bay, Japan, where seasonal bioluminescence of dinoflagellates and ostracods present a unique case study. We also delve into the bacterial world, discussing how bioluminescent bacteria contribute to symbiotic relationships. For each organism, we contextualize its bioluminescence, providing details about its discovery, ecological function, and geographical distribution. A special focus lies on the examination of the underlying chemical mechanisms that enables these biological light displays. Concluding this review, we present a series of practical bioluminescence and chemiluminescence experiments, providing a resource for educational demonstrations and student research projects. Our goal with this review is to provide a summary of bioluminescence across the diverse ecological contexts, contributing to the broader understanding of this unique biological phenomenon and its chemical mechanisms serving researchers new to the field, educators and students alike.
Collapse
Affiliation(s)
- Stefan Schramm
- University of Applied Sciences Dresden (HTW Dresden), Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Dieter Weiß
- Institut für Organische und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 10, 07743, Jena, Germany
| |
Collapse
|
3
|
Palkina KA, Karataeva TA, Perfilov MM, Fakhranurova LI, Markina NM, Somermeyer LG, Garcia-Perez E, Vazquez-Vilar M, Rodriguez-Rodriguez M, Vazquez-Vilriales V, Shakhova ES, Mitiouchkina T, Belozerova OA, Kovalchuk SI, Alekberova A, Malyshevskaia AK, Bugaeva EN, Guglya EB, Balakireva A, Sytov N, Bezlikhotnova A, Boldyreva DI, Babenko VV, Kondrashov FA, Choob VV, Orzaez D, Yampolsky IV, Mishin AS, Sarkisyan KS. A hybrid pathway for self-sustained luminescence. SCIENCE ADVANCES 2024; 10:eadk1992. [PMID: 38457503 PMCID: PMC10923510 DOI: 10.1126/sciadv.adk1992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.
Collapse
Affiliation(s)
- Kseniia A. Palkina
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana A. Karataeva
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim M. Perfilov
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Liliia I. Fakhranurova
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nadezhda M. Markina
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Elena Garcia-Perez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Marta Rodriguez-Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Victor Vazquez-Vilriales
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Ekaterina S. Shakhova
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana Mitiouchkina
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna Alekberova
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alena K. Malyshevskaia
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Elena B. Guglya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
| | - Anastasia Balakireva
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nikita Sytov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Daria I. Boldyreva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vladislav V. Babenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Fyodor A. Kondrashov
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| | - Vladimir V. Choob
- Botanical Garden of Lomonosov Moscow State University, Vorobievy Gory 1 b.12, Moscow 119234 Russia
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Ilia V. Yampolsky
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
- Light Bio Inc., Ketchum, ID, USA
| | - Alexander S. Mishin
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Karen S. Sarkisyan
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Light Bio Inc., Ketchum, ID, USA
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
4
|
Park MJ, Kim E, Kim MJ, Jang Y, Ryoo R, Ka KH. Cloning and Expression Analysis of Bioluminescence Genes in Omphalotus guepiniiformis Reveal Stress-Dependent Regulation of Bioluminescence. MYCOBIOLOGY 2024; 52:42-50. [PMID: 38415178 PMCID: PMC10896133 DOI: 10.1080/12298093.2024.2302661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
Bioluminescence is a type of chemiluminescence that arises from a luciferase-catalyzed oxidation reaction of luciferin. Molecular biology and comparative genomics have recently elucidated the genes involved in fungal bioluminescence and the evolutionary history of their clusters. However, most studies on fungal bioluminescence have been limited to observing the changes in light intensity under various conditions. To understand the molecular basis of bioluminescent responses in Omphalotus guepiniiformis under different environmental conditions, we cloned and sequenced the genes of hispidin synthase, hispidin-3-hydroxylase, and luciferase enzymes, which are pivotal in the fungal bioluminescence pathway. Each gene showed high sequence similarity to that of other luminous fungal species. Furthermore, we investigated their transcriptional changes in response to abiotic stresses. Wound stress enhanced the bioluminescence intensity by increasing the expression of bioluminescence pathway genes, while temperature stress suppressed the bioluminescence intensity via the non-transcriptional pathway. Our data suggested that O. guepiniiformis regulates bioluminescence to respond differentially to specific environmental stresses. To our knowledge, this is the first study on fungal bioluminescence at the gene expression level. Further studies are required to address the biological and ecological meaning of different bioluminescence responses in changing environments, and O. quepiniiformis could be a potential model species.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Eunjin Kim
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Min-Jun Kim
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Yeongseon Jang
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Rhim Ryoo
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kang-Hyeon Ka
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| |
Collapse
|
5
|
Quan Z, Ohmiya Y, Liu YJ. Chemical Mechanism of Fireworm Bioluminescence - A Theoretical Proposition. J Phys Chem A 2023; 127:10851-10859. [PMID: 38103213 DOI: 10.1021/acs.jpca.3c07409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Odontosyllis undecimdonta is a marine worm, commonly known as a fireworm, that exhibits bluish-green bioluminescence (BL). The luciferin (L) and oxyluciferin (OL) during fireworm BL have been experimentally identified in vitro. The L and OL are the respective starting point and ending point of a series of complicated chemical reactions in the BL. However, the chemical mechanism of the fireworm BL remains largely unknown. Before the experiments provided strong evidence for the mechanism, based on our previously successful studies on several bioluminescent systems, we theoretically proposed the chemical mechanism of the fireworm BL in this article. By means of the spin-flip and time-dependent density functional calculations, we clearly described the complete process from L to OL: under the catalysis of luciferase, L undergoes deprotonation and reacts with 3O2 to form a dioxetanone anion via the single-electron transfer mechanism; the dioxetanone anion decomposes into the OL at the first singlet excited state (S1) by the gradually reversible charge-transfer-induced luminescence mechanism; and the S1-OL emits light and deexcites to OL in the ground state.
Collapse
Affiliation(s)
- Zhuo Quan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yoshihiro Ohmiya
- Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
6
|
Mujawar A, Phadte P, Palkina KA, Markina NM, Mohammad A, Thakur BL, Sarkisyan KS, Balakireva AV, Ray P, Yamplosky I, De A. Triple Reporter Assay: A Non-Overlapping Luciferase Assay for the Measurement of Complex Macromolecular Regulation in Cancer Cells Using a New Mushroom Luciferase-Luciferin Pair. SENSORS (BASEL, SWITZERLAND) 2023; 23:7313. [PMID: 37687774 PMCID: PMC10490530 DOI: 10.3390/s23177313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
This study demonstrates the development of a humanized luciferase imaging reporter based on a recently discovered mushroom luciferase (Luz) from Neonothopanus nambi. In vitro and in vivo assessments showed that human-codon-optimized Luz (hLuz) has significantly higher activity than native Luz in various cancer cell types. The potential of hLuz in non-invasive bioluminescence imaging was demonstrated by human tumor xenografts subcutaneously and by the orthotopic lungs xenograft in immunocompromised mice. Luz enzyme or its unique 3OH-hispidin substrate was found to be non-cross-reacting with commonly used luciferase reporters such as Firefly (FLuc2), Renilla (RLuc), or nano-luciferase (NLuc). Based on this feature, a non-overlapping, multiplex luciferase assay using hLuz was envisioned to surpass the limitation of dual reporter assay. Multiplex reporter functionality was demonstrated by designing a new sensor construct to measure the NF-κB transcriptional activity using hLuz and utilized in conjunction with two available constructs, p53-NLuc and PIK3CA promoter-FLuc2. By expressing these constructs in the A2780 cell line, we unveiled a complex macromolecular regulation of high relevance in ovarian cancer. The assays performed elucidated the direct regulatory action of p53 or NF-κB on the PIK3CA promoter. However, only the multiplexed assessment revealed further complexities as stabilized p53 expression attenuates NF-κB transcriptional activity and thereby indirectly influences its regulation on the PIK3CA gene. Thus, this study suggests the importance of live cell multiplexed measurement of gene regulatory function using more than two luciferases to address more realistic situations in disease biology.
Collapse
Affiliation(s)
- Aaiyas Mujawar
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
| | - Pratham Phadte
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Ksenia A. Palkina
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Nadezhda M. Markina
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Ameena Mohammad
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
| | - Bhushan L. Thakur
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Karen S. Sarkisyan
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Anastasia V. Balakireva
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Pritha Ray
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Ilia Yamplosky
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
| | - Abhijit De
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
| |
Collapse
|
7
|
Oba Y, Hosaka K. The Luminous Fungi of Japan. J Fungi (Basel) 2023; 9:615. [PMID: 37367550 DOI: 10.3390/jof9060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Luminous fungi have long attracted public attention in Japan, from old folklore and fiction to current tourism, children's toys, games, and picture books. At present, 25 species of luminous fungi have been discovered in Japan, which correspond to approximately one-fourth of the globally recognized species. This species richness is arguably due to the abundant presence of mycophiles looking to find new mushroom species and a tradition of night-time activities, such as firefly watching, in Japan. Bioluminescence, a field of bioscience focused on luminous organisms, has long been studied by many Japanese researchers, including the biochemistry and chemistry of luminous fungi. A Japanese Nobel Prize winner, Osamu Shimomura (1928-2018), primarily focused on the bioluminescence system of luminous fungi in the latter part of his life, and total elucidation of the mechanism was finally accomplished by an international research team with representatives from Russia, Brazil, and Japan in 2018. In this review, we focused on multiple aspects related to luminous fungi of Japan, including myth, taxonomy, and modern sciences.
Collapse
Affiliation(s)
- Yuichi Oba
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Ibaraki, Japan
| |
Collapse
|
8
|
Xie JM, Leng Y, Cui XY, Min CG, Ren AM, Liu G, Yin Q. Theoretical Study on the Formation and Decomposition Mechanisms of Coelenterazine Dioxetanone. J Phys Chem A 2023; 127:3804-3813. [PMID: 37083412 DOI: 10.1021/acs.jpca.3c00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Bioluminescence has been drawing broad attention due to its high signal-to-noise ratio and high bioluminescence quantum yields, which has been widely applied in the fields of biomedicine, bioanalysis, and so on. Among numerous bioluminescent substrates, coelenterazine is famous for its wide distribution. However, the oxygenation reaction mechanism of coelenterazine is far from being completely understood. In this paper, the formation and decomposition mechanisms of coelenterazine dioxetanone were investigated via density functional theory (DFT) and time-dependent (TD) DFT approaches. The results showed that the oxygenation reaction first occurred along the triplet-state potential energy surface (PES), after the intersystem crossing (ISC), second jumped to the diradical-state PES, and ultimately formed coelenterazine dioxetanone. For the decomposition mechanism of dioxetanone, the computational results showed that the chemiexcitation of neutral dioxetanone was more efficient than that of other dioxetanone species. Moreover, the diradical properties and the degree of ionic character are modified by the counter ions.
Collapse
Affiliation(s)
- Jin-Mei Xie
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Yan Leng
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093 P. R. China
| | - Xiao-Ying Cui
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093 P. R. China
| | - Chun-Gang Min
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093 P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Gang Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, P. R. China
| | - Qinhong Yin
- Faculty of Narcotics Control, Yunnan Police College, Kunming 650223, P. R. China
| |
Collapse
|
9
|
Oku N, Netsu R, Kurokawa Y, Igarashi Y. Phaeolschidin F, a new symmetrical bis(styrylpyrone) derivative with redox-catalyzing activity from the mushroom Gymnopilus aeruginosus (order Agaricales). J Antibiot (Tokyo) 2023; 76:236-238. [PMID: 36732638 DOI: 10.1038/s41429-023-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Phaeolschidin F (1) was isolated from fruiting bodies of the bitter and toxic mushroom Gymnopilus aeruginosus. Structure analysis by NMR and MS revealed that 1 is a new symmetrical bis(styrylpyrone). A series of anti-oxidant and pro-oxidant tests characterized that 1 is a redox catalyst having more anti-oxidant and less pro-oxidant activities than quercetin.
Collapse
Affiliation(s)
- Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Rie Netsu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoichi Kurokawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
10
|
Palkina KA, Balakireva AV, Belozerova OA, Chepurnykh TV, Markina NM, Kovalchuk SI, Tsarkova AS, Mishin AS, Yampolsky IV, Sarkisyan KS. Domain Truncation in Hispidin Synthase Orthologs from Non-Bioluminescent Fungi Does Not Lead to Hispidin Biosynthesis. Int J Mol Sci 2023; 24:1317. [PMID: 36674833 PMCID: PMC9866795 DOI: 10.3390/ijms24021317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Hispidin is a polyketide found in plants and fungi. In bioluminescent fungi, hispidin serves as a precursor of luciferin and is produced by hispidin synthases. Previous studies revealed that hispidin synthases differ in orthologous polyketide synthases from non-bioluminescent fungi by the absence of two domains with predicted ketoreductase and dehydratase activities. Here, we investigated the hypothesis that the loss of these domains in evolution led to the production of hispidin and the emergence of bioluminescence. We cloned three orthologous polyketide synthases from non-bioluminescent fungi, as well as their truncated variants, and assessed their ability to produce hispidin in a bioluminescence assay in yeast. Interestingly, expression of the full-length enzyme hsPKS resulted in dim luminescence, indicating that small amounts of hispidin are likely being produced as side products of the main reaction. Deletion of the ketoreductase and dehydratase domains resulted in no luminescence. Thus, domain truncation by itself does not appear to be a sufficient step for the emergence of efficient hispidin synthases from orthologous polyketide synthases. At the same time, the production of small amounts of hispidin or related compounds by full-length enzymes suggests that ancestral fungal species were well-positioned for the evolution of bioluminescence.
Collapse
Affiliation(s)
- Kseniia A. Palkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Anastasia V. Balakireva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Tatiana V. Chepurnykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nadezhda M. Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Aleksandra S. Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander S. Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
| | - Ilia V. Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Karen S. Sarkisyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Planta LLC., 121205 Moscow, Russia
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
2-(2-(Dimethylamino)vinyl)-4 H-pyran-4-ones as Novel and Convenient Building-Blocks for the Synthesis of Conjugated 4-Pyrone Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248996. [PMID: 36558129 PMCID: PMC9788530 DOI: 10.3390/molecules27248996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
A straightforward approach for the construction of the new class of conjugated pyrans based on enamination of 2-methyl-4-pyrones with DMF-DMA was developed. 2-(2-(Dimethylamino)vinyl)-4-pyrones are highly reactive substrates that undergo 1,6-conjugate addition/elimination or 1,3-dipolar cycloaddition/elimination followed by substitution of the dimethylamino group without ring opening. This strategy includes selective transformations leading to conjugated and isoxazolyl-substituted 4-pyrone structures. The photophysical properties of the prepared 4-pyrones were determined in view of further design of novel merocyanine fluorophores. A solvatochromism was found for enamino-substituted 4-pyrones accompanied by a strong increase in fluorescence intensity in alcohols. The prepared conjugated structures demonstrated valuable photophysical properties, such as a large Stokes shift (up to 204 nm) and a good quantum yield (up to 28%).
Collapse
|
12
|
Takatsu K, Kobayashi N, Wu N, Janin YL, Yamazaki T, Kuroda Y. Biophysical analysis of Gaussia Luciferase bioluminescence mechanisms using a non-oxidizable coelenterazine. BBA ADVANCES 2022; 3:100068. [PMID: 37082267 PMCID: PMC10074842 DOI: 10.1016/j.bbadva.2022.100068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gaussia luciferase (GLuc 18.2kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). It is a helical protein where two homologous sequential repeats form two anti-parallel bundles, each made of four helices. We previously identified a hydrophobic cavity as a prime candidate for the catalytic site, but GLuc's fast bioluminescence reaction hampered a detailed analysis. Here, we used azacoelenterazine (Aza-CTZ), a non-oxidizable coelenterazine (CTZ) analog, as a probe to investigate its binding mode to GLuc. While analysing GLuc's activity, we unexpectedly found that salt and monovalent anions are absolutely required for Gluc's bioluminescence, which retrospectively appears reasonable for a sea-dwelling organism. The NMR-based investigation, using chemical shift perturbations monitored by 15N-1H HSQC, suggested that Aza-CTZ (and thus unoxidized CTZ) binds to residues in or near the hydrophobic cavity. These NMR data are in line with a recent structural prediction of GLuc, hypothesizing that large structural changes occur in regions remote from the hydrophobic cavity upon the addition of CTZ. Interestingly, these results point toward a unique mode of catalysis to achieve CTZ oxidative decarboxylation.
Collapse
|
13
|
Cultivation of Inonotus hispidus in Stirred Tank and Wave Bag Bioreactors to Produce the Natural Colorant Hispidin. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hispidin (6-(3,4-dihydroxystyrl)-4-hydroxy-2-pyrone) production in submerged cultured mycelia of the basidiomycete Inonotus hispidus was doubled in shake flasks through irradiation with white light. The daily addition of 1 mM hydrogen peroxide as a chemical stressor and a repeated supplementation of the shake flask cultures with 2 mM caffeic acid, a biogenetic precursor, further increased the hispidin synthesis. These cultivation conditions were combined and applied to parallel fermentation trials on the 4 L scale using a classical stirred tank bioreactor and a wave bag bioreactor. No significant differences in biomass yield and colorant production were observed. The hispidin concentration in both bioreactors reached 5.5 g·L−1, the highest ever published. Textile dyeing with hispidin was successful, but impeded by its limited light stability in comparison to industrial dyes. However, following the idea of sustainability and the flawless toxicity profile, applications in natural cosmetics, other daily implements, or even therapeutics appear promising.
Collapse
|
14
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Sun Z, Guo J, Wan W, Wang C. A System of Rapidly Detecting Escherichia Coli in Food Based on a Nanoprobe and Improved ATP Bioluminescence Technology. NANOMATERIALS 2022; 12:nano12142417. [PMID: 35889637 PMCID: PMC9315785 DOI: 10.3390/nano12142417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Bacterial contamination is an important factor causing food security issues. Among the bacteria, Escherichia coli is one of the main pathogens of food-borne microorganisms. However, traditional bacterial detection approaches cannot meet the requirements of real-time and on-site detection. Thus, it is of great significance to develop a rapid and accurate detection of bacteria in food to ensure food safety and safeguard human health. The pathogen heat-treatment module was designed in this paper based on the techniques including nanoprobe, pathogen heat-treatment, graphene transparent electrode (GTE), and adenosine triphosphate (ATP) bioluminescence technology. The system mainly consists of two parts: one is the optical detection unit; the other is the data processing unit. And it can quickly and automatically detect the number of bacterial colonies in food such as milk etc. The system uses not only the probe to capture and enrich E. coli by antigen-antibody interaction but also the heat treatment to increase the amount of ATP released from bacterial cells within five minutes. To enhance the detecting accuracy and sensitivity, the electric field generated by GTE is adopted in the system to enrich ATP. Compared to the other conventional methods, the linear correlation coefficient of the system can be reached 0.975, and the system meets the design requirements. Under the optimal experimental conditions, the detection can be completed within 25 min, and the detectable concentration of bacteria is in the range of 3.1 × 101–106 CFU/mL. This system satisfies the demands of a fast and on-site inspection.
Collapse
Affiliation(s)
- Zhen Sun
- College of Physics and Electronic Science, Shandong Normal University, Jinan 250358, China; (Z.S.); (J.G.)
| | - Jia Guo
- College of Physics and Electronic Science, Shandong Normal University, Jinan 250358, China; (Z.S.); (J.G.)
| | - Wenbo Wan
- College of Information Science and Engineering, Shandong Normal University, Jinan 250358, China;
| | - Chunxing Wang
- College of Physics and Electronic Science, Shandong Normal University, Jinan 250358, China; (Z.S.); (J.G.)
- Correspondence:
| |
Collapse
|
16
|
Ronzhin NO, Posokhina ED, Mogilnaya OA, Bondar VS. Finding the Light Emission Stimulator of Neonothopanus nambi Basidiomycete and Studying Its Properties. DOKL BIOCHEM BIOPHYS 2022; 503:80-84. [PMID: 35538283 DOI: 10.1134/s1607672922020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022]
Abstract
A stimulator of light emission of the fungus was found in an aqueous extract from mycelium of the luminous basidiomycete Neonothopanus nambi after its treatment with β-glucosidase. The addition of the extract to the luminous mycelium increases the level of light emission from several times to 1.5 orders of magnitude or more. The luminescence stimulator is a low-molecular-weight thermostable compound: it is detected in the permeate after filtering the extract through a 10-kDa cutoff membrane and it retains the stimulating effect after heat treatment at 100°C for 5 min. In the absorption spectrum of the aqueous sample of the stimulator, two main peaks are observed in the shortwave region (205 and 260 nm) and a shoulder in the range of 350-370 nm can be seen. The luminescence stimulator exhibits blue fluorescence with an emission maximum at 440 nm when excited at 360 nm. It was established that the luminescence-stimulating component is not a substrate (or its precursor) of the luminescent system of the N. nambi fungus.
Collapse
Affiliation(s)
- N O Ronzhin
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia.
| | - E D Posokhina
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - O A Mogilnaya
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - V S Bondar
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
17
|
Gregor C. Imaging of Autonomous Bioluminescence Emission From Single Mammalian Cells. Methods Mol Biol 2022; 2524:163-172. [PMID: 35821470 DOI: 10.1007/978-1-0716-2453-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bioluminescent visualization of individual mammalian cells usually requires the addition of a luciferin substrate. This chapter describes the microscopic imaging of single cells by their bioluminescence (BL) emission generated without an external luciferin. Imaging is based on the expression of codon-optimized lux (co lux) genes and does not require manipulation of the cells apart from transfection. Due to the high brightness of the co lux system, light emission from single cells can be observed continuously for many hours using a specialized microscope.
Collapse
Affiliation(s)
- Carola Gregor
- Department of Optical Nanoscopy, Institut für Nanophotonik Göttingen e.V, Göttingen, Germany.
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Schramm S, Weiß D. Biolumineszenz – Teil 1: Terrestrische Biolumineszenz. CHEM UNSERER ZEIT 2021. [DOI: 10.1002/ciuz.202000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefan Schramm
- Institut für Organische und Makromolekulare Chemie Friedrich‐Schiller Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Merck KGaA Frankfurter Straße 250 64293 Darmstadt Deutschland
| | - Dieter Weiß
- Institut für Organische und Makromolekulare Chemie Friedrich‐Schiller Universität Jena Humboldtstraße 10 07743 Jena Deutschland
| |
Collapse
|
19
|
Isolation of Taxol and Flavin-like fluorochrome from Endophytic Fungi of Mangifera indica. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scouting for novel and plant-derived biomolecules from endophytic microbial sources draws greater focus on the discovery of novel bioactive metabolites. With this rationale, we scouted the endophytic fungi for taxol, an anticancer diterpenoid and fluorescent biomolecules. In the present study, about 31 endophytic fungal isolates recovered from the Mangifera indica leaves were screened for taxol production in M1D medium. About five isolates were shortlisted based on the thin layer chromatographic analysis of the fungal extracts. Among them Colletotrichum sp. MIP-5 has been identified as a producer of fungal taxol based on UV, FTIR, TLC and HPLC analysis. The partially purified fungal taxol showed similar spectral and chromatographic features of commercially available paclitaxel. In addition to this, we also report the production of a fluorescent compound by Penicillium sp. MIP-3. The Flavin-like compound exhibited a bright greenish-yellow fluorescence with an emission maximum in the range of 505 – 545nm. GC-MS analysis showed the occurrence of Latia luciferin, primarily associated with the bioluminescence of freshwater limpet Latia neritoides. This is the first report of this compound from Penicillium sp. In addition, therapeutically active steroid (β-Sitosterol, Stigmasterol, Campesterol), quinones (Benzo[h]quinoline, 2,4-dimethyl-) and phloroglucinol (Aspidinol) derivatives were also identified from Penicillium sp. MIP-3 based on GC-MS analysis. These molecules could potentially be used in biological and pharmaceutical applications in future.
Collapse
|
20
|
Tsarkova AS. Luciferins Under Construction: A Review of Known Biosynthetic Pathways. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioluminescence, or the ability of a living organism to generate visible light, occurs as a result of biochemical reaction where enzyme, known as a luciferase, catalyzes the oxidation of a small-molecule substrate, known as luciferin. This advantageous trait has independently evolved dozens of times, with current estimates ranging from the most conservative 40, based on the biochemical diversity found across bioluminescence systems (Haddock et al., 2010) to 100, taking into account the physiological mechanisms involved in the behavioral control of light production across a wide range of taxa (Davis et al., 2016; Verdes and Gruber, 2017; Bessho-Uehara et al., 2020a; Lau and Oakley, 2021). Chemical structures of ten biochemically unrelated luciferins and several luciferase gene families have been described; however, a full biochemical pathway leading to light emission has been elucidated only for two: bacterial and fungal bioluminescence systems. Although the recent years have been marked by extraordinary discoveries and promising breakthroughs in understanding the molecular basis of multiple bioluminescence systems, the mechanisms of luciferin biosynthesis for many organisms remain almost entirely unknown. This article seeks to provide a succinct overview of currently known luciferins’ biosynthetic pathways.
Collapse
|
21
|
Li B, Chen R, Zhu C, Kong F. Glowing plants can light up the night sky? A review. Biotechnol Bioeng 2021; 118:3706-3715. [PMID: 34251679 DOI: 10.1002/bit.27884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022]
Abstract
Luminescence, a physical phenomenon that producing cool light in vivo, has been found in bacteria, fungi, and animals but not yet in terrestrial higher plants. Through genetic engineering, it is feasible to introduce luminescence systems into living plant cells as biomarkers. Recently, some plants transformed with luminescent systems can glimmer in darkness, which can be observed by our naked eyes and provides a novel lighting resource. In this review, we summarized the bioassay development of luminescence in plant cells, followed by exampling the successful cases of glowing plants transformed with diverse luminescent systems. The potential key factors to design or optimize a glowing plant were also discussed. Our review is useful for the creation of the optimized glowing plants, which can be used not only in scientific research, but also as promising substitutes of artificial light sources in the future.
Collapse
Affiliation(s)
- Bolong Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ru Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chenba Zhu
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
22
|
Guo J, Liu X, Li Y, Ji H, Liu C, Zhou L, Huang Y, Bai C, Jiang Z, Wu X. Screening for proteins related to the biosynthesis of hispidin and its derivatives in Phellinus igniarius using iTRAQ proteomic analysis. BMC Microbiol 2021; 21:81. [PMID: 33711926 PMCID: PMC7953727 DOI: 10.1186/s12866-021-02134-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background Hispidin (HIP) and its derivatives, a class of natural fungal metabolites, possess complex chemical structures with extensive pharmacological activities. Phellinus igniarius, the most common source of HIP, can be used as both medicine and food. However, the biosynthetic pathway of HIP in P. igniarius remains unclear and we have a limited understanding of the regulatory mechanisms related to HIP. In this work, we sought to illustrate a biosynthesis system for hispidin and its derivatives at the protein level. Results We found that tricetolatone (TL) is a key biosynthetic precursor in the biosynthetic pathway of hispidin and that its addition led to increased production of hispidin and various hispidin derivatives. Based on the changes in the concentrations of precursors and intermediates, key timepoints in the biosynthetic process were identified. We used isobaric tags for relative and absolute quantification (iTRAQ) to study dynamic changes of related proteins in vitro. The 270 differentially expressed proteins were determined by GO enrichment analysis to be primarily related to energy metabolism, oxidative phosphorylation, and environmental stress responses after TL supplementation. The differentially expressed proteins were related to ATP synthase, NAD binding protein, oxidoreductase, and other elements associated with electron transfer and dehydrogenation reactions during the biosynthesis of hispidin and its derivatives. Multiple reaction monitoring (MRM) technology was used to selectively verify the iTRAQ results, leading us to screen 11 proteins that were predicted to be related to the biosynthesis pathways. Conclution These findings help to clarify the molecular mechanism of biosynthesis of hispidin and its derivatives and may serve as a foundation for future strategies to identify new hispidin derivatives. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02134-0.
Collapse
Affiliation(s)
- Jinjing Guo
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Xiaoxi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Yuanjie Li
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Hongyan Ji
- Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Cheng Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Li Zhou
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Yu Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Changcai Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Zhibo Jiang
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P.R. China
| | - Xiuli Wu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P.R. China.
| |
Collapse
|
23
|
Wang MY, Liu YJ. Chemistry in Fungal Bioluminescence: A Theoretical Study from Luciferin to Light Emission. J Org Chem 2021; 86:1874-1881. [DOI: 10.1021/acs.joc.0c02788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ming-Yu Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
25
|
Lau ES, Oakley TH. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol Rev Camb Philos Soc 2020; 96:673-691. [PMID: 33306257 DOI: 10.1111/brv.12672] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or 'multi-level convergent evolution'. To investigate multi-level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long-standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence. Evolutionary convergence does not necessarily extend across biological levels, as exemplified by cases of conservation and disparity in biological functions, organs, cells, and molecules associated with bioluminescence systems. Investigating differences across bioluminescent organisms will address fundamental questions on predictability and contingency in convergent evolution. Lastly, we highlight unexplored areas of bioluminescence research and advances in sequencing and chemical techniques useful for developing bioluminescence as a model system for studying multi-level convergent evolution.
Collapse
Affiliation(s)
- Emily S Lau
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, U.S.A
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, U.S.A
| |
Collapse
|
26
|
Garcia-Iriepa C, Marazzi M, Navizet I. The role of CO 2 detachment in fungal bioluminescence: thermally vs. excited state induced pathways. Phys Chem Chem Phys 2020; 22:26787-26795. [PMID: 33211036 DOI: 10.1039/d0cp05037g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different fungi lineages are known to emit light on Earth, mainly in tropical climates. Although the preparation of bioluminescent cell-free extracts allowed one to characterize the enzymatic requirements, the molecular mechanism underlying luminescence is still largely unknown and is based on the experimental putative assumption that a high-energy intermediate should be formed by reaction with O2 and formation of an endoperoxide. Here, we aim at determining, through state-of-the-art multiconfigurational quantum chemistry, the full mechanistic landscape leading from the endoperoxide to the emitting species, envisaging different possible pathways and proposing their viability. Especially, thermal CO2 detachment followed by excited-state peroxide opening (thermal-chemiluminescence) can compete with a parallel pathway, i.e., first excited-state endoperoxide opening, followed by CO2 detachment on the same excited-state (excited state-chemiluminescence). Clear differences in the energy supplies, as well as the possibility to directly populate the emitting species from the intersection seam between ground and excited states, land credence to a kinetically efficient thermal-chemiluminescent pathway, establishing for the first time a detailed description of fungal bioluminescence.
Collapse
Affiliation(s)
- Cristina Garcia-Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France
| | | | | |
Collapse
|
27
|
Dubinnyi MA, Ivanov IA, Rodionova NS, Kovalchuk SI, Kaskova ZM, Petushkov VN. α‐C‐Mannosyltryptophan is a Structural Analog of the Luciferin from Bioluminescent Siberian Earthworm
Henlea sp
. ChemistrySelect 2020. [DOI: 10.1002/slct.202003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maxim A. Dubinnyi
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Igor A. Ivanov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Natalia S. Rodionova
- Institute of Biophysics Krasnoyarsk Research Center Siberian Branch Russian Academy of Sciences Akademgorodok 660036 Krasnoyarsk Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Zinaida M. Kaskova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University 1 Ostrovityanova st. 117997 Moscow Russia
| | - Valentin N. Petushkov
- Institute of Biophysics Krasnoyarsk Research Center Siberian Branch Russian Academy of Sciences Akademgorodok 660036 Krasnoyarsk Russia
| |
Collapse
|
28
|
Chatragadda R. Terrestrial and marine bioluminescent organisms from the Indian subcontinent: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:747. [PMID: 33150454 DOI: 10.1007/s10661-020-08685-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The inception of bioluminescence by Harvey (1952) has led to a Nobel Prize to Osamu Shimomura (Chemistry, 2008) in biological research. Consequently, in recent years, bioluminescence-based assays to monitor toxic pollutants as a real-time marker, to study various diseases and their propagation in plants and animals, are developed in many countries. The emission ability of bioluminescence is improved by gene modification, and also, search for novel bioluminescent systems is underway. Over 100 species of organisms belonging to different taxa are known to be luminous in India. However, the diversity and distribution of luminous organisms and their applications are studied scarcely in the Indian scenario. In this context, the present review provides an overview of the current understanding of various bioluminescent organisms, functions, and applications. A detailed checklist of known bioluminescent organisms from India's marine, terrestrial, and freshwater ecosystems is detailed. This review infers that Indian scientists are needed to extend their research on various aspects of luminescent organisms such as biodiversity, genomics, and chemical mechanisms for conservation, ecological, and biomedical applications.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula, Goa, 403004, India.
| |
Collapse
|
29
|
Tong Y, Trajkovic M, Savino S, van Berkel WJH, Fraaije MW. Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence. J Biol Chem 2020; 295:16013-16022. [PMID: 32917724 DOI: 10.1074/jbc.ra120.014996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Indexed: 11/06/2022] Open
Abstract
Fungal bioluminescence was recently shown to depend on a unique oxygen-dependent system of several enzymes. However, the identities of the enzymes did not reveal the full biochemical details of this process, as the enzymes do not bear resemblance to those of other luminescence systems, and thus the properties of the enzymes involved in this fascinating process are still unknown. Here, we describe the characterization of the penultimate enzyme in the pathway, hispidin 3-hydroxylase, from the luminescent fungus Mycena chlorophos (McH3H), which catalyzes the conversion of hispidin to 3-hydroxyhispidin. 3-Hydroxyhispidin acts as a luciferin substrate in luminescent fungi. McH3H was heterologously expressed in Escherichia coli and purified by affinity chromatography with a yield of 100 mg/liter. McH3H was found to be a single component monomeric NAD(P)H-dependent FAD-containing monooxygenase having a preference for NADPH. Through site-directed mutagenesis, based on a modeled structure, mutant enzymes were created that are more efficient with NADH. Except for identifying the residues that tune cofactor specificity, these engineered variants may also help in developing new hispidin-based bioluminescence applications. We confirmed that addition of hispidin to McH3H led to the formation of 3-hydroxyhispidin as sole aromatic product. Rapid kinetic analysis revealed that reduction of the flavin cofactor by NADPH is boosted by hispidin binding by nearly 100-fold. Similar to other class A flavoprotein hydroxylases, McH3H did not form a stable hydroperoxyflavin intermediate. These data suggest a mechanism by which the hydroxylase is tuned for converting hispidin into the fungal luciferin.
Collapse
Affiliation(s)
- Yapei Tong
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Simone Savino
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
García-Iriepa C, Losantos R, Fernández-Martínez D, Sampedro D, Navizet I. Fungal Light Emitter: Understanding Its Chemical Nature and pH-Dependent Emission in Water Solution. J Org Chem 2020; 85:5503-5510. [PMID: 32202422 DOI: 10.1021/acs.joc.0c00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fungal bioluminescence is a fascinating natural process, standing out for the continuous conversion of chemical energy into light. The structure of fungal oxyluciferin (light emitter) was proposed in 2017, being different and more complex than other oxyluciferins. The complexity of fungal oxyluciferin arises from diverse equilibria such as keto/enol tautomerization or deprotonation equilibria of four titratable groups. For this reason, still some crucial details of its structure remain unexplored. To obtain further structural information, a combined experimental and computational study of natural and three synthetic fungal oxyluciferin analogues has been performed. Here, we state the most stable chemical form of fungal oxyluciferin regarding its keto and enol tautomers, in the ground and excited states. We propose the (3Z,5E)-6-(3,4-dihydroxyphenyl)-4-hydroxy-2-oxohexa-3,5-dienoic acid form as the light emitter (fluorescent state) in water solution. Moreover, we show that chemical modifications on fungal oxyluciferin can affect the relative stability of the conformers. Furthermore, we show the clear effect of pH on emission. General conclusions about the role of these titratable groups in emission modulation have been drawn, such as the key role of dihydroxyphenyl deprotonation. This study is key to further analyze the properties of fungal bioluminescence and propose novel synthetic analogues.
Collapse
Affiliation(s)
- Cristina García-Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,Departamento de Quı́mica Analı́tica, Quı́mica Fı́sica e Ingenierı́a Quı́mica, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Raúl Losantos
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diana Fernández-Martínez
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diego Sampedro
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Isabelle Navizet
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,MSME, Univ Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| |
Collapse
|
31
|
Kotlobay AA, Kaskova ZM, Yampolsky IV. Palette of Luciferases: Natural Biotools for New Applications in Biomedicine. Acta Naturae 2020; 12:15-27. [PMID: 32742724 PMCID: PMC7385095 DOI: 10.32607/actanaturae.10967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
Optoanalytical methods based on using genetically encoded bioluminescent enzymes, luciferases, allow one to obtain highly sensitive signals, are non-invasive, and require no external irradiation. Bioluminescence is based on the chemical reaction of oxidation of a low-molecular-weight substrate (luciferin) by atmospheric oxygen, which is catalyzed by an enzyme (luciferase). Relaxation of the luciferin oxidation product from its excited state is accompanied by a release of a quantum of light, which can be detected as an analytical signal. The ability to express luciferase genes in various heterological systems and high quantum yields of luminescence reactions have made these tools rather popular in biology and medicine. Among several naturally available luciferases, a few have been found to be useful for practical application. Luciferase size, the wavelength of its luminescence maximum, enzyme thermostability, optimal pH of the reaction, and the need for cofactors are parameters that may differ for luciferases from different groups of organisms, and this fact directly affects the choice of the application area for each enzyme. It is quite important to overview the whole range of currently available luciferases based on their biochemical properties before choosing one bioluminescent probe suitable for a specific application.
Collapse
Affiliation(s)
- A. A. Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Z. M. Kaskova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - I. V. Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
32
|
Chen W, Shao F, Xianyu Y. Microfluidics-Implemented Biochemical Assays: From the Perspective of Readout. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903388. [PMID: 31532891 DOI: 10.1002/smll.201903388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/20/2019] [Indexed: 05/05/2023]
Abstract
Over the past decades, microfluidics has emerged as an increasingly important tool to perform biochemical assays for diagnosis and healthcare. The precise fluid control and molecule manipulation within microfluidics greatly contribute to developing assays with simplicity and convenience. The advantages of microfluidics, including decreased consumption of reagents and samples, lower operating and analysis time, much lower cost, and higher integration and automation over traditional systems, offer a great platform to meet the needs of point-of-care applications. In this Review, versatile strategies are outlined and recent advances in microfluidics-implemented assays are discussed from the perspective of readout, because a convenient and straightforward readout is what a biochemical assay requires and the end user desires. Functions and properties arising from each readout are reviewed and the advantages and limitations of each readout are discussed together with current challenges and future perspectives.
Collapse
Affiliation(s)
- Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518055, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yunlei Xianyu
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
33
|
Theoretical study on bioluminescent mechanism and process of Siberian luminous earthworm Fridericia heliota. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Yeh HW, Ai HW. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:129-150. [PMID: 30786216 PMCID: PMC6565457 DOI: 10.1146/annurev-anchem-061318-115027] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although fluorescent reporters and biosensors have become indispensable tools in biological and biomedical fields, fluorescence measurements require external excitation light, thereby limiting their use in thick tissues and live animals. Bioluminescent reporters and biosensors may potentially overcome this hurdle because they use enzyme-catalyzed exothermic biochemical reactions to generate excited-state emitters. This review first introduces the development of bioluminescent reporters, and next, their applications in sensing biological changes in vitro and in vivo as biosensors. Lastly, we discuss chemiluminescent sensors that produce photons in the absence of luciferases. This review aims to explore fundamentals and experimental insights and to emphasize the yet-to-be-reached potential of next-generation luminescent reporters and biosensors.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
35
|
Bubyrev AI, Tsarkova AS, Kaskova ZM. Optimization of Fungal Luciferin Synthesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201902002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Rosário J, da Luz LL, Geris R, Ramalho JGS, da Silva AF, Júnior SA, Malta M. Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks. Sci Rep 2019; 9:7302. [PMID: 31086220 PMCID: PMC6513872 DOI: 10.1038/s41598-019-43835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
We show that filamentous fungi can emit green or red light after the accumulation of particulate lanthanide metal-organic frameworks over the cell wall. These new biohybrids present photoluminescence properties that are unaffected by the components of the cell wall. In addition, the fungal cells internalise lanthanide metal-organic framework particles, storing them into organelles, thereby making these materials promising for applications in living imaging studies.
Collapse
Affiliation(s)
- Jeferson Rosário
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Leonis L da Luz
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Regina Geris
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Jéssica G S Ramalho
- Institute of Physics, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Antônio F da Silva
- Institute of Physics, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Severino Alves Júnior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, Recife, PE, Brazil.
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil.
| |
Collapse
|
37
|
Puzyr AP, Burov AE, Medvedeva SE, Burova OG, Bondar VS. Two forms of substrate for the bioluminescent reaction in three species of basidiomycetes. Mycology 2019; 10:84-91. [PMID: 31069122 PMCID: PMC6493223 DOI: 10.1080/21501203.2019.1583688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 11/25/2022] Open
Abstract
The luminescent response of the enzymatic system of Armillaria borealis on the cold and hot extracts from cell-free culture liquids of Inonotus obliquus, Pholiota sp. and A. borealis was examined. The greatest influence on the light emission produced by the luminescent system of A. borealis was provided by the temperature at which the probes were prepared for assay. Boiling a culture liquid on water bath for a few minutes promoted a multifold increase in the luminescence. The results of luminescence assay suggest that the substance involved in the bioluminescent reaction in higher fungi is presented in culture liquids and mycelia in two forms. In one form, it is ready to interact with the enzymatic system and in the second form, it becomes accessible for the reaction after heat treatment. The pool of thermoactivated substance was found to be much large than the amount of the ready accessible one. We suggest that predecessors of hispidin, which is fungal luciferin precursor, are responsible for this phenomenon. They are not involved in bioluminescence at their original state and are converted into the substrate under the influence of high temperature.
Collapse
Affiliation(s)
- Alexey P Puzyr
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Andrey E Burov
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Institute of Computational Technologies, Siberian Branch of Russian Academy of Science, Krasnoyarsk, Russia
| | - Svetlana E Medvedeva
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | | | - Vladimir S Bondar
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| |
Collapse
|
38
|
Sangsopha W, Lekphrom R, Schevenels FT, Saksirirat W, Bua-Art S, Kanokmedhakul K, Kanokmedhakul S. New p-terphenyl and benzoquinone metabolites from the bioluminescent mushroom Neonothopanus nambi. Nat Prod Res 2019; 34:2186-2193. [PMID: 30810369 DOI: 10.1080/14786419.2019.1578763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two new p-terphenyls, neonambiterphenyls A and B (1-2), a new benzoquinone, neonambiquinone A (3), together with six known sesquiterpenes (4-9), were isolated from the bioluminescent mushroom Neonothopanus nambi PW3. The isolated compounds were identified by mass, IR and spectroscopic analyses (1D and 2D NMR). Compounds 1-3 and 5-7 showed cytotoxicity against cancer cell lines such as KB, NCI-H187 and MCF-7 with IC50 values ranging from 1.45 to 49.31 µg/mL. In addition, compounds 1 and 5 showed cytotoxicity against Vero cells with IC50 values of 38.72 and 32.90 µg/mL, respectively.
Collapse
Affiliation(s)
- Watchara Sangsopha
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Ratsami Lekphrom
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Florian T Schevenels
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Weerasak Saksirirat
- Agricultural Biotechnology Research Center for Sustainable Economy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Sureeporn Bua-Art
- Department of Agriculture, Plant Pathology Research Group Plant Protection Research and Development Office, Bangkok, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
39
|
Zlobovskaya OA, Shirmanova MV, Kovaleva TF, Sarkisyan KS, Zagaynova EV, Lukyanov KA. Sensors for Caspase Activities. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Abstract
We present identification of the luciferase and enzymes of the biosynthesis of a eukaryotic luciferin from fungi. Fungi possess a simple bioluminescent system, with luciferin being only two enzymatic steps from well-known metabolic pathways. The expression of genes from the fungal bioluminescent pathway is not toxic to eukaryotic cells, and the luciferase can be easily co-opted to bioimaging applications. With the fungal system being a genetically encodable bioluminescent system from eukaryotes, it is now possible to create artificially bioluminescent eukaryotes by expression of three genes. The fungal bioluminescent system represents an example of molecular evolution of a complex ecological trait and with molecular details reported in the paper, will allow additional research into ecological significance of fungal bioluminescence. Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.
Collapse
|
41
|
Bioluminescence expression during the transition from mycelium to mushroom in three North American Armillaria and Desarmillaria species. Fungal Biol 2018; 122:1064-1068. [PMID: 30342622 DOI: 10.1016/j.funbio.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Unlike most bioluminescent fungi, mycelia of Armillaria and Desarmillaria are constitutively bioluminescent while mature mushrooms are not. The absence of the luciferin, 3-hydroxyhispidin, and its precursor hispidin in mature mushrooms have been proposed to explain the lack of bioluminescence from Armillaria mushrooms. Using three North American species, A. gallica, A. mellea and D. tabescens (syn., Armillaria tabescens), we documented a decline in luminescence of ten fold during the transition from mycelia to, immature mushrooms (i.e., pins) for the two Armillaria species. As pins matured, luminescence declined by an additional two or three orders of magnitude. Lower initial luminescence of D. tabescens mycelia declined to negligible levels during mushroom development. Further, light production was localized in the gills and lower stipe of A. mellea mushrooms. The decline in luminescence during mushroom formation was reversed by addition of hispidin to stipe or gills which significantly enhanced luminescence by one and three orders of magnitude, respectively. We conclude that the modulation of Armillaria and Desarmillaria luminescence is achieved by luciferin availability early in mushroom development. However, since the temporal regulation of bioluminescence differs between Armillaria species and other genera, we conclude that bioluminescence in Armillaria is under unique selective pressures.
Collapse
|
42
|
Teranishi K. Trans-3-hydroxyhispidin is not an actual bioluminescence substrate in pileus gills of the luminous fungus Mycena chlorophos. Biochem Biophys Res Commun 2018; 504:190-195. [PMID: 30172376 DOI: 10.1016/j.bbrc.2018.08.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Mycena chlorophos is a species of molecular oxygen-dependent bioluminescent fungus, and its pileus gills emit bright green light. The chemical mechanisms underlying this bioluminescence phenomenon are not yet understood. An enzyme (luciferase) producing light from trans-3-hydroxyhispidin is present in M. chlorophos pileus gills. However, it is unclear whether trans-3-hydroxyhispidin is an actual bioluminescence substrate (luciferin) in the natural bioluminescence of M. chlorophos. In the present study, this question is resolved. It was clearly demonstrated that the trans-3-hydroxyhispidin analog trans-3-hydroxybisnoryangonin significantly inhibited the artificial luminescence induced by the addition of trans-3-hydroxyhispidin to living pileus gills but did not inhibit natural bioluminescence in living pileus gills. This inhibition was due to the reaction of trans-3-hydroxybisnoryangonin with luciferase for trans-3-hydroxyhispidin. Even though trans-4-aminocinnamic acid is known to inhibit natural bioluminescence in living pileus gills, in the present study, trans-4-aminocinnamic acid did not influence the artificial luminescence via trans-3-hydroxyhispidin in the presence of luciferase for trans-3-hydroxyhispidin. These inconsistencies between the natural bioluminescence and the artificial luminescence of trans-3-hydroxyhispidin indicate that trans-3-hydroxyhispidin is not an actual luciferin in natural bioluminescence. Trans-3,4-dihydroxycinnamic acid is generally known to be an intermediate in trans-3-hydroxyhispidin biosynthesis. The artificial luminescence induced by the addition of trans-3,4-dihydroxycinnamic acid to living pileus gills was not inhibited by trans-3-hydroxybisnoryangonin. Therefore, trans-3,4-dihydroxycinnamic acid does not contribute to the luminescence involving trans-3-hydroxyhispidin in living pileus gills.
Collapse
Affiliation(s)
- Katsunori Teranishi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
43
|
Teranishi K. Bioluminescence and chemiluminescence abilities oftrans‐3‐hydroxyhispidin on the luminous fungusMycena chlorophos. LUMINESCENCE 2018; 33:1235-1242. [DOI: 10.1002/bio.3540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Katsunori Teranishi
- Graduate School of BioresourcesMie University 1577 Kurimamachiya Tsu Mie Japan
| |
Collapse
|
44
|
Purtov KV, Gorokhovatsky AY, Kotlobay AA, Osipova ZM, Petushkov VN, Rodionova NS, Tsarkova AS, Chepurnykh TV, Yampolsky IV, Gitelson JI. Isolation and Purification of Fungal Luciferase from Neonothopanus nimbi. DOKL BIOCHEM BIOPHYS 2018; 480:177-180. [PMID: 30008105 DOI: 10.1134/s1607672918030134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 11/22/2022]
Abstract
This is the first study to obtain a high-purity luciferase from the fungus Neonothopanus nambi biomass that is suitable for subsequent sequencing.
Collapse
Affiliation(s)
- K V Purtov
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 630036, Russia.
| | - A Yu Gorokhovatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - A A Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Z M Osipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - V N Petushkov
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 630036, Russia
| | - N S Rodionova
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 630036, Russia
| | - A S Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T V Chepurnykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I V Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - J I Gitelson
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 630036, Russia
| |
Collapse
|
45
|
Puzyr AP, Medvedeva SE, Burov AE, Zernov YP, Bondar VS. Detection of Hispidin by a Luminescent System from Basidiomycete Armillaria borealis. DOKL BIOCHEM BIOPHYS 2018; 480:173-176. [PMID: 30008104 DOI: 10.1134/s1607672918030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/23/2022]
Abstract
In in vitro experiments, the possibility of using a luminescent system extracted from the luminous fungus Armillaria borealis has been shown to detect and determine the concentration of hispidin. A linear dependence of the luminescent response on the content of hispidin in solutions in the concentration range of 5.4 × 10-5-1.4 × 10-2 µM was detected. The stability of the enzyme system and the high sensitivity of the bioluminescent reaction allows carrying out multiple measurements with the analyte detection limit of 1.3 × 10-11 g. The obtained results show the prospects of creating a rapid bioluminescent method for the analysis of medical substances or extracts from various biological objects for the presence of hispidin.
Collapse
Affiliation(s)
- A P Puzyr
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia.
| | - S E Medvedeva
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - A E Burov
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia.,Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660049, Russia
| | - Yu P Zernov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - V S Bondar
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| |
Collapse
|
46
|
Tauber JP, Matthäus C, Lenz C, Hoffmeister D, Popp J. Analysis of basidiomycete pigments in situ by Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700369. [PMID: 29411940 DOI: 10.1002/jbio.201700369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Basidiomycetes, that is, mushroom-type fungi, are known to produce pigments in response to environmental impacts. As antioxidants with a high level of unsaturation, these compounds can neutralize highly oxidative species. In the event of close contact with other microbes, the enzymatically controlled pigment production is triggered and pigment secretion is generated at the interaction zone. The identification and analysis of these pigments is important to understand the defense mechanism of fungi, which is essential to counteract an uncontrolled spread of harmful species. Usually, a detailed analysis of the pigments is time consuming as it depends on laborious sample preparation and isolation procedures. Furthermore, the applied protocols often influence the chemical integrity of the compound of interest. A possibility to noninvasively investigate the pigmentation is Raman microspectroscopy. The methodology has the potential to analyze the chemical composition of the sample spatially resolved at the interaction zone. After the acquisition of a representative spectroscopic library, the pigment production by basidiomycetes was monitored for during response to different fungi and bacteria. The presented results describe a very efficient noninvasive way of pigment analysis which can be applied with minimal sample preparation.
Collapse
Affiliation(s)
- James P Tauber
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich Schiller University, Jena, Germany
| | - Christian Matthäus
- Spectroscopy/Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena, Germany
| | - Claudius Lenz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich Schiller University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich Schiller University, Jena, Germany
| | - Jürgen Popp
- Spectroscopy/Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
47
|
Vacher M, Fdez Galván I, Ding BW, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu YJ, Navizet I, Roca-Sanjuán D, Baader WJ, Lindh R. Chemi- and Bioluminescence of Cyclic Peroxides. Chem Rev 2018; 118:6927-6974. [PMID: 29493234 DOI: 10.1021/acs.chemrev.7b00649] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplified with substituted 1,2-dioxetanone species. In particular, the preference for singlet excited product states in that case is explained. The review also examines the diversity of specific solutions both in Nature and in artificial systems and the difficulties in identifying the emitting species and unraveling the color modulation process. The related subject of excited-state chemistry without light absorption is finally discussed. The content of this review should be an inspiration to human design of new molecular systems expressing unique light-emitting properties. An appendix describing the state-of-the-art experimental and theoretical methods used to study the phenomena serves as a complement.
Collapse
Affiliation(s)
- Morgane Vacher
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Stefan Schramm
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Romain Berraud-Pache
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | | | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Isabelle Navizet
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 , Valencia , Spain
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , Av. Prof. Lineu Prestes, 748 , 05508-000 São Paulo , SP , Brazil
| | - Roland Lindh
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
48
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
49
|
Purtov KV, Osipova ZM, Petushkov VN, Rodionova NS, Tsarkova AS, Kotlobay AA, Chepurnykh TV, Gorokhovatsky AY, Yampolsky IV, Gitelson JI. Structure of fungal oxyluciferin, the product of the bioluminescence reaction. DOKL BIOCHEM BIOPHYS 2018; 477:360-363. [PMID: 29297129 DOI: 10.1134/s1607672917060059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 11/23/2022]
Abstract
The structure of fungal oxyluciferin was determined, the enzymatic bioluminescence reaction under substrate saturation conditions with discrete monitoring of formed products was conducted, and the structures of the end products of the reaction were established. On the basis of these studies, the scheme of oxyluciferin degradation to the end products was developed. The structure of fungal oxyluciferin was confirmed by counter synthesis.
Collapse
Affiliation(s)
- K V Purtov
- Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia.
| | - Z M Osipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - V N Petushkov
- Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - N S Rodionova
- Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - A S Tsarkova
- Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - A A Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T V Chepurnykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - A Yu Gorokhovatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I V Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - J I Gitelson
- Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
50
|
Suzuki K, Nagai T. Recent progress in expanding the chemiluminescent toolbox for bioimaging. Curr Opin Biotechnol 2017; 48:135-141. [DOI: 10.1016/j.copbio.2017.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022]
|