1
|
Pradhan P, Biswas A, Rotta MKV, Kancharla PK. Strained Ion Pair Interactions-Driven Anion-Assisted Concerted Addition of Ketoximes/Aldoximes and Hydroxamic Acids to Glycals. Org Lett 2024; 26:10382-10387. [PMID: 39582198 DOI: 10.1021/acs.orglett.4c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Oximes and hydroxylamides are notable for their role as coupling partners in organic synthesis. However, their direct application as acceptors in O-glycosylation with glycal donors remains largely unexplored. Herein, we introduce a novel 2-deoxy glycosylation method for synthesizing N-O linked glycosides facilitated by sterically strained 2,4,6-tri-tert-butylpyridinium salts. This approach offers a broad substrate range, high tolerance for functional groups, and easy scalability, resulting in glycosyl oximes and glycosyloxyamines with exclusive α-selectivity and excellent yields. The effectiveness of this method is showcased through functionalization of glycosylated products, late-stage modification of bioactive drug molecules, and disaccharide synthesis. This innovative strategy offers an alternative route and holds promise for wide-ranging applications in the construction of bioactive N-O-linked glycosides in the future. The unique catalytic mechanism by the sterically hindered pyridinium salt has been studied via 1H NMR, IR, UV-vis, and fluorescence studies.
Collapse
Affiliation(s)
- Priyanka Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ashish Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mahendra K V Rotta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Beyer PD, Nielsen MM, Picazo E, Jacobsen EN. β-Selective 2-Deoxy- and 2,6-Dideoxyglucosylations Catalyzed by Bis-Thioureas. J Am Chem Soc 2024; 146:27318-27323. [PMID: 39348510 DOI: 10.1021/jacs.4c11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
We present methods for β-selective 2-deoxy- and 2,6-dideoxyglucosylations of natural products, carbohydrates, and amino acids using bis-thiourea hydrogen-bond-donor catalysts. Disarming ester protecting groups were necessary to counter the high reactivity of 2-deoxyglycosyl electrophiles toward non-stereospecific SN1 pathways. Alcohol and phenol nucleophiles with both base- and acid-sensitive functionalities were compatible with the catalytic protocol, enabling access to a wide array of 2-deoxy-β-O-glucosides.
Collapse
Affiliation(s)
- Peyton D Beyer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael M Nielsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elias Picazo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Fan W, Zhang Y, Li Y, Zhang W, Huang D. Solvent-Free Strategy for Direct Access to Versatile Quaternary Ammonium Salts with Complete Atom Economy. CHEMSUSCHEM 2022; 15:e202200529. [PMID: 35466550 DOI: 10.1002/cssc.202200529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Indexed: 06/14/2023]
Abstract
A solvent-free method for the synthesis of quaternary ammonium salts (QAS) by iodoquaternization of alkenes with N-heteroarenes was reported. Its advantages lie in energy-saving and clean production by using iodine as the oxidant and manual grinding the starting materials, together with the complete atom economy and low process mass intensity (PMI) value. Demonstrated by 50 examples, the generated QAS was proved to be able to produce valuable chemicals, such as biological protease inhibitors, anti-cancer agents, and organic fluorescent materials.
Collapse
Affiliation(s)
- Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
4
|
Mukherjee MM, Ghosh R, Hanover JA. Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Front Mol Biosci 2022; 9:896187. [PMID: 35775080 PMCID: PMC9237389 DOI: 10.3389/fmolb.2022.896187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Carbohydrates involving glycoconjugates play a pivotal role in many life processes. Better understanding toward glycobiological events including the structure–function relationship of these biomolecules and for diagnostic and therapeutic purposes including tailor-made vaccine development and synthesis of structurally well-defined oligosaccharides (OS) become important. Efficient chemical glycosylation in high yield and stereoselectivity is however challenging and depends on the fine tuning of a protection profile to get matching glycosyl donor–acceptor reactivity along with proper use of other important external factors like catalyst, solvent, temperature, activator, and additive. So far, many glycosylation methods have been reported including several reviews also. In the present review, we will concentrate our discussion on the recent trend on α- and β-selective glycosylation reactions reported during the past decade.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| |
Collapse
|
5
|
Liu KM, Wang PY, Guo ZY, Xiong DC, Qin XJ, Liu M, Liu M, Xue WY, Ye XS. Iterative Synthesis of 2-Deoxyoligosaccharides Enabled by Stereoselective Visible-Light-Promoted Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202114726. [PMID: 35133053 DOI: 10.1002/anie.202114726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 01/02/2023]
Abstract
The photoinitiated intramolecular hydroetherification of alkenols has been used to form C-O bonds, but the intermolecular hydroetherification of alkenes with alcohols remains an unsolved challenge. We herein report the visible-light-promoted 2-deoxyglycosylation of alcohols with glycals. The glycosylation reaction was completed within 2 min in a high quantum yield (ϕ=28.6). This method was suitable for a wide array of substrates and displayed good reaction yields and excellent stereoselectivity. The value of this protocol was further demonstrated by the iterative synthesis of 2-deoxyglycans with α-2-deoxyglycosidic linkages up to a 20-mer in length and digoxin with β-2-deoxyglycosidic linkages. Mechanistic studies indicated that this reaction involved a glycosyl radical cation intermediate and a photoinitiated chain process.
Collapse
Affiliation(s)
- Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Zhen-Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xian-Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Wan-Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
6
|
Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Md. Firoj Hossain
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
7
|
Liu K, Wang P, Guo Z, Xiong D, Qin X, Liu M, Liu M, Xue W, Ye X. Iterative Synthesis of 2‐Deoxyoligosaccharides Enabled by Stereoselective Visible‐Light‐Promoted Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Peng‐Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Zhen‐Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University Nanjing 210023 Jiangsu China
| | - Xian‐Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Wan‐Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
8
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective
O
‐Glycosylations by Pyrylium Salt Organocatalysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | - Thomas Holmstrøm
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | | |
Collapse
|
9
|
Yao W, Wang H, Zeng J, Wan Q. Practical synthesis of 2-deoxy sugars via metal free deiodination reactions. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2021.2015365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Marino C, Bordoni AV. Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Org Biomol Chem 2022; 20:934-962. [PMID: 35014646 DOI: 10.1039/d1ob02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deoxy sugars represent an important class of carbohydrates, present in a large number of biomolecules involved in multiple biological processes. In various antibiotics, antimicrobials, and therapeutic agents the presence of deoxygenated units has been recognized as responsible for biological roles, such as adhesion or great affinity to receptors, or improved efficacy. The characterization of glycosidases and glycosyltranferases requires substrates, inhibitors and analogous compounds. Deoxygenated sugars are useful for carrying out specific studies for these enzymes. Deoxy sugars, analogs of natural substrates, may behave as substrates or inhibitors, or may not interact with the enzyme. They are also important for glycodiversification studies of bioactive natural products and glycobiological processes, which could contribute to discovering new therapeutic agents with greater efficacy by modification or replacement of sugar units. Deoxygenation of carbohydrates is, thus, of great interest and numerous efforts have been dedicated to the development of methods for the reduction of sugar hydroxyl groups. Given that carbohydrates are the most important renewable chemicals and are more oxidized than fossil raw materials, it is also important to have methods to selectively remove oxygen from certain atoms of these renewable raw materials. The different methods for removal of OH groups of carbohydrates and representative or recent applications of them are presented in this chapter. Glycosidic bonds in general, and 2-deoxy glycosidic linkages, are included. It is not the scope of this survey to cover all reports for each specific technique.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química & Instituto de Nanociencia y Nanotecnología - Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| |
Collapse
|
11
|
Gallier F, E Miranda LSDM. Organocatalysis applied to carbohydrates: from roots to current developments. Org Biomol Chem 2021; 20:919-933. [PMID: 34931627 DOI: 10.1039/d1ob01919h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalysis emerged in the last decade as a powerful tool for the synthesis of complex molecules. In the field of carbohydrates, it found widespread use in the synthesis of rare and non-natural carbohydrate derivatives. Additionally, it has also found important application in the stereoselective functionalization of the anomeric carbon in glycosylation reactions. These efforts culminated in the development of different types of catalysts operating through distinct activation modes that allow the selective synthesis of α- or β-glycosides even on daunting substrates. All these advances starting from its first examples in carbohydrate synthesis to the current developments in glycosylation reactions are reviewed.
Collapse
Affiliation(s)
- Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France. .,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Leandro Soter de Mariz E Miranda
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France. .,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.,Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Av Athos da Silveira Ramos 149, Centro de Tecnologia, Bl A, 21941909 Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective O-Glycosylations by Pyrylium Salt Organocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115394. [PMID: 34847269 DOI: 10.1002/anie.202115394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/06/2023]
Abstract
Despite many years of invention, the field of carbohydrate chemistry remains rather inaccessible to non-specialists, which limits the scientific impact and reach of the discoveries made in the field. Aiming to increase the availability of stereoselective glycosylation chemistry for non-specialists, we have discovered that several commercially available pyrylium salts catalyze stereoselective O-glycosylations of a wide range of phenols and alkyl alcohols. This catalytic reaction utilizes trichloroacetimidates, an easily accessible and synthetically proven electrophile, takes place under air and only initiates when all three reagents are mixed, which should provide better reproducibility by non-specialists. The reaction exhibits varying degrees of stereospecificity, resulting in β-selective glycosylations from α-trichloroacetimidates, whilst an α-selective glycosylation proceeds from β-trichloroacetimidates. A mechanistic study revealed that the reaction likely proceeds via an SN 2-like substitution on the protonated electrophile.
Collapse
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Thomas Holmstrøm
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Christian Marcus Pedersen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| |
Collapse
|
13
|
Weiss R, Golisano T, Pale P, Mamane V. Insight into the Modes of Activation of Pyridinium and Bipyridinium Salts in Non‐Covalent Organocatalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Tamara Golisano
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
14
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
A robust and tunable halogen bond organocatalyzed 2-deoxyglycosylation involving quantum tunneling. Nat Commun 2020; 11:4911. [PMID: 32999276 PMCID: PMC7527348 DOI: 10.1038/s41467-020-18595-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022] Open
Abstract
The development of noncovalent halogen bonding (XB) catalysis is rapidly gaining traction, as isolated reports documented better performance than the well-established hydrogen bonding thiourea catalysis. However, convincing cases allowing XB activation to be competitive in challenging bond formations are lacking. Herein, we report a robust XB catalyzed 2-deoxyglycosylation, featuring a biomimetic reaction network indicative of dynamic XB activation. Benchmarking studies uncovered an improved substrate tolerance compared to thiourea-catalyzed protocols. Kinetic investigations reveal an autoinductive sigmoidal kinetic profile, supporting an in situ amplification of a XB dependent active catalytic species. Kinetic isotopic effect measurements further support quantum tunneling in the rate determining step. Furthermore, we demonstrate XB catalysis tunability via a halogen swapping strategy, facilitating 2-deoxyribosylations of D-ribals. This protocol showcases the clear emergence of XB catalysis as a versatile activation mode in noncovalent organocatalysis, and as an important addition to the catalytic toolbox of chemical glycosylations. Halogen bonding (HB) catalysis is rapidly gaining momentum, however, cases of XB activation for challenging bonds formation are rare. Here, the authors show a robust XB catalyzed 2-deoxyglycosylation with broad scope and featuring a quantum tunneling phenomenon in the proton transfer rate determining step.
Collapse
|
16
|
Liu M, Liu K, Xiong D, Zhang H, Li T, Li B, Qin X, Bai J, Ye X. Stereoselective Electro‐2‐deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 27 Shanda Nanlu Jinan Shandong 250100 China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
17
|
Izumi S, Kobayashi Y, Takemoto Y. Stereoselective Synthesis of 1,1′‐Disaccharides by Organoboron Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sanae Izumi
- Graduate School of Pharmaceutical Sciences Kyoto University 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences Kyoto University 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
18
|
Liu M, Liu KM, Xiong DC, Zhang H, Li T, Li B, Qin X, Bai J, Ye XS. Stereoselective Electro-2-deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020; 59:15204-15208. [PMID: 32394599 DOI: 10.1002/anie.202006115] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/09/2022]
Abstract
We report a novel and highly stereoselective electro-2-deoxyglycosylation from glycals. This method features excellent stereoselectivity, scope, and functional-group tolerance. This process can also be applied to the modification of a wide range of natural products and drugs. Furthermore, a scalable synthesis of glycosylated podophyllotoxin and a one-pot trisaccharide synthesis through iterative electroglycosylations were achieved.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
19
|
Stereoselective Synthesis of 1,1′‐Disaccharides by Organoboron Catalysis. Angew Chem Int Ed Engl 2020; 59:14054-14059. [DOI: 10.1002/anie.202004476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/12/2022]
|
20
|
Pal KB, Guo A, Das M, Báti G, Liu XW. Superbase-Catalyzed Stereo- and Regioselective Glycosylation with 2-Nitroglycals: Facile Access to 2-Amino-2-deoxy-O-glycosides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kumar Bhaskar Pal
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gábor Báti
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
21
|
Palo-Nieto C, Sau A, Jeanneret R, Payard PA, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Org Lett 2020; 22:1991-1996. [DOI: 10.1021/acs.orglett.9b04525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Pierre-Adrien Payard
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Aude Salamé
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maristela Braga Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| |
Collapse
|
22
|
Jiang N, Dong Y, Sun G, Yang G, Wang Q, Zhang J. Core‐Shell Fe
3
O
4
@Carbon@SO
3
H: A Powerful Recyclable Catalyst for the Synthesis of α‐2‐Deoxygalactosides. ChemistrySelect 2020. [DOI: 10.1002/slct.202000089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Youxian Dong
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guosheng Sun
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guofang Yang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Qingbing Wang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Jianbo Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| |
Collapse
|
23
|
Nakamura T, Okuno K, Nishiyori R, Shirakawa S. Hydrogen‐Bonding Catalysis of Alkyl‐Onium Salts. Chem Asian J 2020; 15:463-472. [DOI: 10.1002/asia.201901652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Takumi Nakamura
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ken Okuno
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ryuichi Nishiyori
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Seiji Shirakawa
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
24
|
Smajlagic I, Guest M, Durán R, Herrera B, Dudding T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. J Org Chem 2020; 85:585-593. [PMID: 31790584 DOI: 10.1021/acs.joc.9b02682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Matt Guest
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Rocío Durán
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| |
Collapse
|
25
|
Direct Addition of Amides to Glycals Enabled by Solvation‐Insusceptible 2‐Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Nakatsuji Y, Kobayashi Y, Takemoto Y. Direct Addition of Amides to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019; 58:14115-14119. [PMID: 31392793 DOI: 10.1002/anie.201907129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Indexed: 01/12/2023]
Abstract
The direct 2-deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2-deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2-deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2-deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2-deoxyglycosylation reaction difficult. Diffusion-ordered two-dimensional NMR spectroscopy analysis implied that the 2-chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π-scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
27
|
Ghosh T, Mukherji A, Kancharla PK. Sterically Hindered 2,4,6-Tri-tert-butylpyridinium Salts as Single Hydrogen Bond Donors for Highly Stereoselective Glycosylation Reactions of Glycals. Org Lett 2019; 21:3490-3495. [DOI: 10.1021/acs.orglett.9b00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K. Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
28
|
Sau A, Palo-Nieto C, Galan MC. Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C 6F 5) 3 as Catalyst. J Org Chem 2019; 84:2415-2424. [PMID: 30706711 PMCID: PMC6466476 DOI: 10.1021/acs.joc.8b02613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
B(C6F5)3 enables the metal-free
unprecedented substrate-controlled direct α-stereoselective
synthesis of deoxyglycosides from glycals. 2,3-Unsaturated α-O-glycoside products are obtained with deactivated glycals
at 75 °C in the presence of the catalyst, while 2-deoxyglycosides
are formed using activated glycals that bear no leaving group at C-3
at lower temperatures. The reaction proceeds in good to excellent
yields via concomitant borane activation of glycal donor and nucleophile
acceptor. The method is exemplified with the synthesis of a series
of rare and biologically relevant glycoside analogues.
Collapse
Affiliation(s)
- Abhijit Sau
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Carlos Palo-Nieto
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - M Carmen Galan
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
29
|
Ghosh T, Mukherji A, Srivastava HK, Kancharla PK. Secondary amine salt catalyzed controlled activation of 2-deoxy sugar lactols towards alpha-selective dehydrative glycosylation. Org Biomol Chem 2019; 16:2870-2875. [PMID: 29633773 DOI: 10.1039/c8ob00423d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new organocatalytic glycosylation method exploiting the lactol functionality has been disclosed. The catalytic generation of glycosyl oxacarbenium ions from lactols under forcible conditions via weakly Brønsted-acidic, readily available secondary amine salts affects the diastereoselective glycosylation of 2-deoxypyranoses and furanoses. This operationally simple iminium catalyzed activation of 2-deoxy hemi-acetals is a potential alternative to the existing cumbersome methods that need specialized handling. The mechanisms for this unique transformation and kinetic/thermodynamic effects have been discussed based on both experimental evidence and theoretical studies.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | | | | | | |
Collapse
|
30
|
Bradshaw GA, Colgan AC, Allen NP, Pongener I, Boland MB, Ortin Y, McGarrigle EM. Stereoselective organocatalyzed glycosylations - thiouracil, thioureas and monothiophthalimide act as Brønsted acid catalysts at low loadings. Chem Sci 2019; 10:508-514. [PMID: 30713648 PMCID: PMC6334493 DOI: 10.1039/c8sc02788a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023] Open
Abstract
Thiouracil catalyzes stereoselective glycosylations with galactals in loadings as low as 0.1 mol%. It is proposed that in these glycosylations thiouracil, monothiophthalimide, and the previously reported catalyst, Schreiner's thiourea, do not operate via a double H-bonding mechanism but rather by Brønsted acid/base catalysis. In addition to the synthesis of 2-deoxyglycosides and glycoconjugates, we report the first organocatalytic synthesis of 1,1'-linked trehalose-type sugars.
Collapse
Affiliation(s)
- G A Bradshaw
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - A C Colgan
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - N P Allen
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - I Pongener
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - M B Boland
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - Y Ortin
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - E M McGarrigle
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| |
Collapse
|
31
|
Manhas S, Taylor MS. Dehydrative glycosidations of 2-deoxysugar derivatives catalyzed by an arylboronic ester. Carbohydr Res 2018; 470:42-49. [DOI: 10.1016/j.carres.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
|
32
|
Smajlagic I, Durán R, Pilkington M, Dudding T. Cyclopropenium Enhanced Thiourea Catalysis. J Org Chem 2018; 83:13973-13980. [PMID: 30352160 DOI: 10.1021/acs.joc.8b02321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An integral part of modern organocatalysis is the development and application of thiourea catalysts. Here, as part of our program aimed at developing cyclopropenium catalysts, the synthesis of a thiourea-cyclopropenium organocatalyst with both cationic hydrogen-bond donor and electrostatic character is reported. The utility of the this thiourea organocatalyst is showcased in pyranylation reactions employing phenols, primary, secondary, and tertiary alcohols under operationally simple and mild reaction conditions for a broad substrate scope. The addition of benzoic acid as a co-catalyst facilitating cooperative Brønsted acid catalysis was found to be valuable for reactions involving phenols and higher substituted alcohols. Mechanistic investigations, including kinetic and 1H NMR binding studies in conjunction with density function theory calculations, are described that collectively support a Brønsted acid mode of catalysis.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Rocio Durán
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Melanie Pilkington
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| |
Collapse
|
33
|
Yao H, Vu MD, Liu XW. Recent advances in reagent-controlled stereoselective/stereospecific glycosylation. Carbohydr Res 2018; 473:72-81. [PMID: 30641292 DOI: 10.1016/j.carres.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
The formation of O-glycosidic linkage is arguably one of the most important topics in glycoscience due to the prevalence of O-glycosides in nature. Great efforts have been devoted to this field by many carbohydrate chemists to develop stereoselective/stereospecific glycosylation methodologies. Although glycosyl donor- and acceptor-controlled strategies have significantly progressed, the tedious design and pre-synthesis of substrates could not be avoided. On the other hand, reagent-controlled glycosylation can overcome these challenges and produce the desired selectivity by only altering external factors such as concentration, reagents or other reaction conditions. This mini-review discusses selected recent novel methodologies on reagent-mediated stereo-controlled glycosylation in the last decade, classified by the types of glycosyl donors.
Collapse
Affiliation(s)
- Hui Yao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Minh Duy Vu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| |
Collapse
|
34
|
Xu C, Loh CCJ. An ultra-low thiourea catalyzed strain-release glycosylation and a multicatalytic diversification strategy. Nat Commun 2018; 9:4057. [PMID: 30282986 PMCID: PMC6170412 DOI: 10.1038/s41467-018-06329-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/30/2018] [Indexed: 11/09/2022] Open
Abstract
The utility of thiourea catalysis in selective glycosylation strategies has gained significant momentum lately due to its versatility in hydrogen bonding or anionic recognition activation modes. The use of these non-covalent interactions constitute a powerful means to construct glycosidic linkages as it mimics physiologically occurring glycosyltransferases. However, glycosyl donor activation through the currently employed catalysts is moderate such that, in general, catalyst loadings are rather high in these transformations. In addition, thiourea catalysis has not been well explored for the synthesis of furanosides. Herein, we demonstrate an ultra-low loadings stereoselective and stereospecific thiourea catalyzed strain-release furanosylation and pyranosylation strategy. Our ultra-low organocatalyzed furanosylation enables a multicatalytic strategy, which opens up a unique avenue towards rapid diversification of synthetic glycosides. In-situ NMR monitoring unravel insights into unknown reaction intermediates and initial rate kinetic studies reveal a plausible synergistic hydrogen bonding/Brønsted acid activation mode. Non-covalent glycosyl donor activation often requires high organocatalyst loadings. Here, the authors demonstrate that strain-release glycosylations can take place at very low thiourea catalyst loadings. In addition, the authors developed a one-pot multicatalytic strategy that can diversify glycosides rapidly.
Collapse
Affiliation(s)
- Chunfa Xu
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund,, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany.,Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Charles C J Loh
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund,, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany. .,Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| |
Collapse
|
35
|
Abstract
Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.
Collapse
Affiliation(s)
- Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
36
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
37
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800909] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
38
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018; 57:6120-6124. [DOI: 10.1002/anie.201800909] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
39
|
Liedtke T, Spannring P, Riccardi L, Gansäuer A. Mechanism-Based Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Theresa Liedtke
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| | - Peter Spannring
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| | - Ludovico Riccardi
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
40
|
Liedtke T, Spannring P, Riccardi L, Gansäuer A. Mechanism-Based Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry. Angew Chem Int Ed Engl 2018; 57:5006-5010. [PMID: 29488673 DOI: 10.1002/anie.201800731] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Indexed: 12/16/2022]
Abstract
A cyclic-voltammetry-based screening method for Cp2 TiX-catalyzed reactions is introduced. Our mechanism-based approach enables the study of the influence of various additives on the electrochemically generated active catalyst Cp2 TiX, which is in equilibrium with catalytically inactive [Cp2 TiX2 ]- . Thioureas and ureas are most efficient in the generation of Cp2 TiX in THF. Knowing the precise position of the equilibrium between Cp2 TiX and [Cp2 TiX2 ]- allowed us to identify reaction conditions for the bulk electrolysis of Cp2 TiX2 complexes and for Cp2 TiX-catayzed radical arylations without having to carry out the reactions. Our time- and resource-efficient approach is of general interest for the design of catalytic reactions that proceed in single-electron steps.
Collapse
Affiliation(s)
- Theresa Liedtke
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| | - Peter Spannring
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| | - Ludovico Riccardi
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
41
|
Bandi R, Chalapala S, Chandrasekaran S. 2-Deoxyglycosyl 3-benzoylpropionates as novel donors for the direct and stereoselective synthesis of 2-deoxy-glycosides. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00216a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lewis acid mediated stereoselective synthesis of 2-deoxy-O-glycosides has been demonstrated using 2-deoxyglycosyl 3-benzoylpropionates as novel glycosyl donors.
Collapse
Affiliation(s)
- Ramakrishna Bandi
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Sudharani Chalapala
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | | |
Collapse
|
42
|
Shaw M, Kumar Y, Thakur R, Kumar A. Electron-deficient pyridinium salts/thiourea cooperative catalyzed O-glycosylation via activation of O-glycosyl trichloroacetimidate donors. Beilstein J Org Chem 2017; 13:2385-2395. [PMID: 29181119 PMCID: PMC5687052 DOI: 10.3762/bjoc.13.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/04/2017] [Indexed: 12/05/2022] Open
Abstract
The glycosylation of O-glycosyl trichloroacetimidate donors using a synergistic catalytic system of electron-deficient pyridinium salts/aryl thiourea derivatives at room temperature is demonstrated. The acidity of the adduct formed by the 1,2-addition of alcohol to the electron-deficient pyridinium salt is increased in the presence of an aryl thiourea derivative as an hydrogen-bonding cocatalyst. This transformation occurs under mild reaction conditions with a wide range of O-glycosyl trichloroacetimidate donors and glycosyl acceptors to afford the corresponding O-glycosides in moderate to good yields with predictable selectivity. In addition, the optimized method is also utilized for the regioselective O-glycosylation by using a partially protected acceptor.
Collapse
Affiliation(s)
- Mukta Shaw
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Rima Thakur
- Department of Chemistry, National Institute of Technology Patna, Patna 800005, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| |
Collapse
|
43
|
Palo-Nieto C, Sau A, Galan MC. Gold(I)-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. J Am Chem Soc 2017; 139:14041-14044. [PMID: 28934850 PMCID: PMC5951607 DOI: 10.1021/jacs.7b08898] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Au(I) in combination
with AgOTf enables the unprecedented direct
and α-stereoselective catalytic synthesis of deoxyglycosides
from glycals. Mechanistic investigations suggest that the reaction
proceeds via Au(I)-catalyzed hydrofunctionalization of the enol ether
glycoside. The room temperature reaction is high yielding and amenable
to a wide range of glycal donors and OH nucleophiles.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
44
|
Liu JL, Zhang YT, Liu HF, Zhou L, Chen J. N-Heterocyclic Carbene Catalyzed Stereoselective Glycosylation of 2-Nitrogalactals. Org Lett 2017; 19:5272-5275. [PMID: 28906121 DOI: 10.1021/acs.orglett.7b02543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient N-heterocyclic carbene catalyzed glycosylation of 2-nitrogalactals with alcohols and phenol has been developed for the first time. A wide variety of 1,2-cis-2-nitroglycosides can be obtained with good to excellent yields and high to excellent α-selectivities.
Collapse
Affiliation(s)
- Jia-Lin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710127, P. R. China
| | - Yu-Tong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710127, P. R. China
| | - Hang-Fan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University , Xi'an 710127, P. R. China
| |
Collapse
|
45
|
Mahato S, Chatterjee R, Chakraborty Ghosal N, Majee A. Zwitterionic imidazolium salt: An efficient organocatalyst for tetrahydropyranylation of alcohols. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1356334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sachinta Mahato
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Rana Chatterjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | | | - Adinath Majee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| |
Collapse
|
46
|
Affiliation(s)
- Ryan Williams
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS Bristol U.K
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS Bristol U.K
| |
Collapse
|
47
|
Liao Y, Zhou B, Xia Y, Liu X, Lin L, Feng X. Asymmetric [3 + 2] Cycloaddition of 2,2′-Diester Aziridines To Synthesize Pyrrolidine Derivatives. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuting Liao
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Baixin Zhou
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yong Xia
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
48
|
Zeng J, Xu Y, Wang H, Meng L, Wan Q. Recent progress on the synthesis of 2-deoxy glycosides. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9010-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017; 56:3640-3644. [PMID: 28211228 PMCID: PMC5484376 DOI: 10.1002/anie.201612071] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Palladium(II) in combination with a monodentate phosphine ligand enables the unprecedented direct and α-stereoselective catalytic synthesis of deoxyglycosides from glycals. Initial mechanistic studies suggest that in the presence of N-phenyl-2-(di-tert-butylphosphino)pyrrole as the ligand, the reaction proceeds via an alkoxy palladium intermediate that increases the proton acidity and oxygen nucleophilicity of the alcohol. The method is demonstrated with a wide range of glycal donors and acceptors, including substrates bearing alkene functionalities.
Collapse
Affiliation(s)
- Abhijit Sau
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Ryan Williams
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Carlos Palo‐Nieto
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Sandra Medina
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
50
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium‐Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhijit Sau
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Ryan Williams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Carlos Palo‐Nieto
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Antonio Franconetti
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Sandra Medina
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - M. Carmen Galan
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|