1
|
Wang Y, Tang Z, Zhao T, Yang J, Zhang W, Li X, Huan T. BreathXplorer: Processing Online Breathomics Data Generated from Direct Analysis Using High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1818-1825. [PMID: 39052287 DOI: 10.1021/jasms.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nontargeted breath analysis in real time using high-resolution mass spectrometry (HRMS) is a promising approach for high coverage profiling of metabolites in human exhaled breath. However, the information-rich and unique non-Gaussian metabolic signal shapes of real-time HRMS-based data pose a significant challenge for efficient data processing. This work takes a typical real-time HRMS technique as an example, i.e. secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS), and presents BreathXplorer, an open-source Python package designed for the processing of real-time exhaled breath data comprising multiple exhalations. BreathXplorer is composed of four main modules. The first module applies either a topological algorithm or a Gaussian mixture model (GMM) to determine the start and end points of each exhalation. Next, density-based spatial clustering of applications with noise (DBSCAN) is employed to cluster m/z values belonging to the same metabolic feature, followed by applying an intensity relative standard deviation (RSD) filter to extract real breath metabolic features. BreathXplorer also offers functions of (1) feature alignment across the samples and (2) associating MS/MS spectra with their corresponding metabolic features for downstream compound annotation. Manual inspection of the metabolic features extracted from SESI-HRMS breath data suggests that BreathXplorer can achieve 100% accuracy in identifying the start and end points of each exhalation and acquire accurate quantitative measurements of each breath feature. In a proof-of-concept study on exercise breathomics using SESI-HRMS, BreathXplorer successfully reveals the significantly changed metabolites that are pertinent to exercise. BreathXplorer is publicly available on GitHub (https://github.com/HuanLab/breathXplorer). It provides a powerful and convenient-to-use tool for the researchers to process breathomics data obtained by directly analysis using HRMS.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Zhifeng Tang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Jianming Yang
- Guangdong Provincial Key Laboratory of Speed Capability Research; Su Bingtian Center for Speed Research and Training; School of Physical Education, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Guangdong A-HealthX Technologies Co., Ltd, Dongguan 523830, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| |
Collapse
|
2
|
MacLean MA, Muradov JH, Greene R, Van Hameren G, Clarke DB, Dreier JP, Okonkwo DO, Friedman A. Memantine inhibits cortical spreading depolarization and improves neurovascular function following repetitive traumatic brain injury. SCIENCE ADVANCES 2023; 9:eadj2417. [PMID: 38091390 PMCID: PMC10848720 DOI: 10.1126/sciadv.adj2417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Cortical spreading depolarization (CSD) is a promising target for neuroprotective therapy in traumatic brain injury (TBI). We explored the effect of NMDA receptor antagonism on electrically triggered CSDs in healthy and brain-injured animals. Rats received either one moderate or four daily repetitive mild closed head impacts (rmTBI). Ninety-three animals underwent craniectomy with electrocorticographic (ECoG) and local blood flow monitoring. In brain-injured animals, ketamine or memantine inhibited CSDs in 44 to 88% and 50 to 67% of cases, respectively. Near-DC/AC-ECoG amplitude was reduced by 44 to 75% and 52 to 67%, and duration by 39 to 87% and 61 to 78%, respectively. Daily memantine significantly reduced spreading depression and oligemia following CSD. Animals (N = 31) were randomized to either memantine (10 mg/kg) or saline with daily neurobehavioral testing. Memantine-treated animals had higher neurological scores. We demonstrate that memantine improved neurovascular function following CSD in sham and brain-injured animals. Memantine also prevented neurological decline in a blinded, preclinical randomized rmTBI trial.
Collapse
Affiliation(s)
- Mark A. MacLean
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
| | - Jamil H. Muradov
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Ryan Greene
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Gerben Van Hameren
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - David B. Clarke
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charite University, Berlin, Germany
| | - David O. Okonkwo
- Division of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alon Friedman
- Division of Neurosurgery, Dalhousie University, Halifax, Canada
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
- Departments of Brain and Cognitive Sciences, Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Lan J, Greter G, Streckenbach B, Wanner B, Arnoldini M, Zenobi R, Slack E. Non-invasive monitoring of microbiota and host metabolism using secondary electrospray ionization-mass spectrometry. CELL REPORTS METHODS 2023; 3:100539. [PMID: 37671025 PMCID: PMC10475793 DOI: 10.1016/j.crmeth.2023.100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023]
Abstract
The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.
Collapse
Affiliation(s)
- Jiayi Lan
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Giorgia Greter
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Markus Arnoldini
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
In vivo detection of metabolic 2H-incorporation upon ingestion of 2H2O. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Matsushima M, Tanihata S, Kusakabe J, Okahira M, Ito H, Yamamoto A, Yamamoto M, Yamamoto R, Kawabe T. Correlation of theophylline levels in rat exhaled breath and lung tissue after its intravenous injection. J Breath Res 2022; 16. [PMID: 35483336 DOI: 10.1088/1752-7163/ac6b4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
It is important to know the drug level in the target tissue to determine its dose. Some methods rely on blood levels of a drug to estimate its concentration in the tissues, which can be inaccurate. We thought that drug levels in exhaled breath aerosol (EBA) to give a more accurate value of the level of a test drug in the lung. Rats were intravenously injected with the bronchodilator theophylline and exhaled breath was collected up to 10-20 min after administration. Immediately after breath collection, lung, liver, kidney, and blood were collected and the pharmacokinetics were examined using these samples. Awake free-moving rats were used to efficiently collect exhaled breath from rats with low tidal volume. The amount of exhaled breath of rats was estimated by the amount of exhaled water vapor, and the drug concentration in exhaled breath sample was expressed by the amount of water vapor as the denominator. By using the active sampling method in which the adsorbent is sucked by a pump, theophylline in rat exhaled breath could be measured accurately. When the correlation of theophylline concentration in each sample was examined, a high correlation (r2= 0.74) was found only in exhaled breath and lung tissue. EBA was considered better than blood in pharmacokinetic analysis of lung tissue.
Collapse
Affiliation(s)
- Miyoko Matsushima
- Graduate School of Medicine, Nagoya Univerisity, 1-20 Daikou-minami 1-chome, Higashi-ku, Nagoya, 461-8673, JAPAN
| | - Souma Tanihata
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Junpei Kusakabe
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Momoha Okahira
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Hiroshi Ito
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Atsushi Yamamoto
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Kasugai, 487-8501, JAPAN
| | - Masanori Yamamoto
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Ryohei Yamamoto
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Tsutomu Kawabe
- Graduate School of Medicine, Nagoya Univerisity, 1-20 Daikou-minami 1-chome, Higashi-ku, Nagoya, 461-8673, JAPAN
| |
Collapse
|
6
|
Liu C, Zeng J, Sinues P, Fang M, Zhou Z, Li X. Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry. Anal Chim Acta 2021; 1180:338876. [PMID: 34538336 DOI: 10.1016/j.aca.2021.338876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Secondary electrospray ionization coupled with high resolution mass spectrometry (SESI-HRMS) is a direct mass spectrometry technique, which can identify trace volatile organic compounds (VOCs) in real time without sample pretreatment and chromatographic separation. SESI-HRMS has been successfully applied in multiple applications, including breath analysis, animals and plants VOCs emissions, analysis of headspace of cell cultures and indoor and outdoor air. The range of areas where the technique can potentially have a substantial impact is very broad. However, one critical aspect that requires further development to consolidate the technique is absolute quantification. Therefore, in this study we aim to develop a quantitative method for eight representative VOCs, including ketones (acetone, 2-butanone and 2-pentanone), alkenes (isoprene and α-terpinene) and aromatics (toluene, styrene and mesitylene). The mass spectrometric platform includes a commercial SESI source hyphenated with a Q-Exactive hybrid quadrupole Orbitrap high resolution mass spectrometer. Within the concentration range of 0-100 ppbv studied, the optimal coefficient of determination for linear regression (R2 = 0.993-0.999) between signal intensity and concentration is obtained in the range of 0-10 ppbv for all eight VOCs. The detection limits range between 3 (2-Pentanone) and 15 (Acetone) pptv. The intra-day (n = 10) and inter-day (n = 30) coefficients of variation (CV) are ≤ 6% and ≤10%, respectively. Finally the method is applied for the fast evaluation (<5 min) of different materials widely used for the collection, storage or pretreatment of gas sample. Better recovery of trace levels of eight VOCs is observed for PTFE gas sampling bag as compared to Nalophan and Tedlar bags; when Nafion tube is used to pretreat the gas sample, recovery of ≤50% are obtained for 2-pentanone, α-terpinene and all three aromatics.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
| | - Jiafa Zeng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China; Department of Biomedical Engineering, Basel University, Allschwil, 4123, Switzerland; University of Basel Children's Hospital (UKBB), Basel, 4056, Switzerland
| | - Pablo Sinues
- Department of Biomedical Engineering, Basel University, Allschwil, 4123, Switzerland; University of Basel Children's Hospital (UKBB), Basel, 4056, Switzerland
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China; Guangzhou Hexin Instrument Co., LTD., Guangzhou, 510530, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China; Guangzhou Hexin Instrument Co., LTD., Guangzhou, 510530, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China.
| |
Collapse
|
7
|
López-Lorente CI, Awchi M, Sinues P, García-Gómez D. Real-time pharmacokinetics via online analysis of exhaled breath. J Pharm Biomed Anal 2021; 205:114311. [PMID: 34403867 DOI: 10.1016/j.jpba.2021.114311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
Abstract
The advantages that on-line breath analysis has shown in different fields have already made it stand as an interesting tool for pharmacokinetic studies. This review summarizes recent progress in the field, diving into the different analytical methods and the different advantages and hurdles encountered. We conclude that there is a wealth of limitations in the application of this technique, and key aspects like standardization are still outstanding. Nevertheless, this is an experimental field that has not yet been fully explored; and the advantages it offers for animal welfare, decrease in the amount of drug needed in experimental studies, and complementary insights to current pharmacological studies, warrant further exploration. Further studies are needed to overcome current limitations and incorporate this technique into the toolbox of pharmacological studies, both at an industrial and academic level.
Collapse
Affiliation(s)
| | - Mo Awchi
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Diego García-Gómez
- Department of Analytical Chemistry, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
8
|
Singh KD, Osswald M, Ziesenitz VC, Awchi M, Usemann J, Imbach LL, Kohler M, García-Gómez D, van den Anker J, Frey U, Datta AN, Sinues P. Personalised therapeutic management of epileptic patients guided by pathway-driven breath metabolomics. COMMUNICATIONS MEDICINE 2021; 1:21. [PMID: 35602217 PMCID: PMC9053280 DOI: 10.1038/s43856-021-00021-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Therapeutic management of epilepsy remains a challenge, since optimal systemic antiseizure medication (ASM) concentrations do not always correlate with improved clinical outcome and minimal side effects. We tested the feasibility of noninvasive real-time breath metabolomics as an extension of traditional therapeutic drug monitoring for patient stratification by simultaneously monitoring drug-related and drug-modulated metabolites. METHODS This proof-of-principle observational study involved 93 breath measurements of 54 paediatric patients monitored over a period of 2.5 years, along with an adult's cohort of 37 patients measured in two different hospitals. Exhaled breath metabolome of epileptic patients was measured in real time using secondary electrospray ionisation-high-resolution mass spectrometry (SESI-HRMS). RESULTS We show that systemic ASM concentrations could be predicted by the breath test. Total and free valproic acid (VPA, an ASM) is predicted with concordance correlation coefficient (CCC) of 0.63 and 0.66, respectively. We also find (i) high between- and within-subject heterogeneity in VPA metabolism; (ii) several amino acid metabolic pathways are significantly enriched (p < 0.01) in patients suffering from side effects; (iii) tyrosine metabolism is significantly enriched (p < 0.001), with downregulated pathway compounds in non-responders. CONCLUSIONS These results show that real-time breath analysis of epileptic patients provides reliable estimations of systemic drug concentrations along with risk estimates for drug response and side effects.
Collapse
Affiliation(s)
- Kapil Dev Singh
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Martin Osswald
- grid.7400.30000 0004 1937 0650University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victoria C. Ziesenitz
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Mo Awchi
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jakob Usemann
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Lukas L. Imbach
- grid.7400.30000 0004 1937 0650University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- grid.7400.30000 0004 1937 0650University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Diego García-Gómez
- grid.11762.330000 0001 2180 1817Department of Analytical Chemistry, University of Salamanca, Salamanca, Spain
| | - Johannes van den Anker
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Urs Frey
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alexandre N. Datta
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Pablo Sinues
- grid.6612.30000 0004 1937 0642University Children’s Hospital Basel, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Tang Y, Zhao S, Peng Z, Li Z, Chen L, Gan P. Cu 2O nanoparticles anchored on carbon for the efficient removal of propofol from operating room wastewater via peroxymonosulfate activation: efficiency, mechanism, and pathway. RSC Adv 2021; 11:20983-20991. [PMID: 35479351 PMCID: PMC9034049 DOI: 10.1039/d1ra03049c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/29/2021] [Indexed: 11/29/2022] Open
Abstract
Anesthetic drug wastage has increasingly become the main resource of operating room sewage, which poses a great risk to the safety of humans and other organisms. Propofol is the most widely used anesthetic drug in the world, and also occupies the largest proportion of the total anesthetic wastage in the operating room. In this work, a 2D Cu2O anchored carbon catalyst (Cu2O@NC) was prepared by the assembly-pyrolysis process and successfully applied to peroxymonosulfate (PMS) activation. We took propofol as a typical example and investigated the removal activity through heterostructure-enhanced advanced oxidation processes (AOPs). Through the degradation process, propofol can be removed from 20 ppm to ultralow levels within 5 min using the PMS/Cu2O@NC system. The degradation pathway of propofol was deduced through quantum chemical calculation and LC/GC-MS results. The final products were verified as CO2 and H2O. Moreover, sulfate radicals (SO4˙-) proved to be the dominant reactive oxidation species by radical scavenger experiments and ESR results. In addition, it has great universality for various pharmaceuticals such as tetracycline (TC), amoxicillin (AMX), cephalexin (CPX), and norfloxacin (NFX). Our work provided the possibility to treat operation room sewage in a rapid, high-efficiency, and feasible way.
Collapse
Affiliation(s)
- Yujie Tang
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 P. R. China
| | - Shiyin Zhao
- Faculty of Health Sciences, University of Macau Macau SAR 999078 P. R. China
| | - Zemin Peng
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 P. R. China
| | - Zhen Li
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 P. R. China
| | - Liang Chen
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 P. R. China
| | - Pei Gan
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 P. R. China
| |
Collapse
|
10
|
Yin Z, Huang W, Singh KD, Chen Z, Chen X, Zhou Z, Yang Z, Sinues P, Li X. In vivo monitoring of volatile metabolic trajectories enables rapid diagnosis of influenza A infection. Chem Commun (Camb) 2021; 57:4791-4794. [PMID: 33982681 DOI: 10.1039/d1cc01061a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report that influenza A virus infection induces changes in odor traits that could be captured by real-time high-resolution mass spectrometry in a living mouse model. The most striking changes in the volatile metabolites may be associated mostly to glyoxylate/dicarboxylate metabolism.
Collapse
Affiliation(s)
- Zhihong Yin
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abu Bakar NH, Yu KC, Urban PL. Robotized Noncontact Open-Space Mapping of Volatile Organic Compounds Emanating from Solid Specimens. Anal Chem 2021; 93:6889-6894. [PMID: 33885278 DOI: 10.1021/acs.analchem.1c01509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analysis of volatile organic compounds (VOCs) is normally preceded by sample homogenization and solvent extraction. This methodology does not provide spatial resolution of the analyzed VOCs in the examined matrix. Here, we present a robotized pen-shaped probe for open-space sampling and mapping of VOCs emanating from solid specimens (dubbed "PENVOC"). The system combines vacuum-assisted suction probe, mass spectrometry, and robotic handling of the probe. The VOCs are scavenged from the sample surface by a gentle hydrodynamic flow of air sustained by a vacuum pump. The sampled gas is transferred to the proximity of corona discharge in an atmospheric pressure chemical ionization source of a tandem mass spectrometer. The PENVOC has been attached to a robotic arm to enable unattended scanning of flat surfaces. The specimens can be placed away from the mass spectrometer during the scan. The robotized PENVOC has been characterized using chemical standards (benzaldehyde, limonene, 2-nonanone, and ethyl octanoate). The limits of detection are in the range from 2.33 × 10-5 to 2.68 × 10-4 mol m-2. The platform has further been used for mapping of VOCs emanating from a variety of specimens: flowers, glove exposed to smoke, fuel stains, worn medical face mask, worn clothing, cheese, ham, and fruits. The chemical maps show unique distributions of the VOCs on the scanned surfaces. Obtaining comparable results (VOC maps) using other techniques (e.g., repetitive headspace sampling prior to offline analysis) would be time-consuming. The presented mapping technique may find applications in environmental, forensic, and food science.
Collapse
Affiliation(s)
- Noor Hidayat Abu Bakar
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Kai-Chiang Yu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
12
|
Chen X, Zhang K, Yin Z, Fang M, Pu W, Liu Z, Li L, Sinues P, Dallmann R, Zhou Z, Li X. Online Real-Time Monitoring of Exhaled Breath Particles Reveals Unnoticed Transport of Nonvolatile Drugs from Blood to Breath. Anal Chem 2021; 93:5005-5008. [DOI: 10.1021/acs.analchem.1c00509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xing Chen
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhihong Yin
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Weidan Pu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhening Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Pablo Sinues
- University of Basel Children’s Hospital, Basel 4056, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Lan J, Gisler A, Bruderer T, Sinues P, Zenobi R. Monitoring peppermint washout in the breath metabolome by secondary electrospray ionization-high resolution mass spectrometry. J Breath Res 2020; 15. [PMID: 32575094 DOI: 10.1088/1752-7163/ab9f8a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
In this study, a secondary electrospray ionization-high resolution mass spectrometer (SESI-HRMS) system was employed to profile the real-time exhaled metabolome of ten subjects who had ingested a peppermint oil capsule. In total, six time points were sampled during the experiment. Using an untargeted way of profiling breath metabolome, 2333 m/z unique metabolite features were determined in positive mode, and 1322 in negative mode. To benchmark the performance of the SESI-HRMS setup, several additional checks were done, including determination of the technical variation, the biological variation of one subject within three days, the variation within a time point, and the variation across all samples, taking all m/z features into account. Reproducibility was good, with the median technical variation being 18% and the median variation within biological replicates being 34%. Both variations were lower than the variation across individuals. Washout profiles of compounds from the peppermint oil, including menthone, limonene, pulegone, menthol and menthofuran were determined in all subjects. Metabolites of the peppermint oil were also determined in breath, for example, cis/trans-carveol, perillic acid and menthol glucuronide. Butyric acid was found to be the major metabolite that reduce the uptake rate of limonene. Pathways related to limonene metabolism were examined, and meaningful pathways were identified from breath metabolomics data acquired by SESI using an untargeted analysis.
Collapse
Affiliation(s)
- Jiayi Lan
- Laboratory of Organic Chemistry, ETH Zürich, Zurich, SWITZERLAND
| | - Amanda Gisler
- University of Basel Children's Hospital, Basel, BS, SWITZERLAND
| | - Tobias Bruderer
- Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften, Zurich, ZH, SWITZERLAND
| | - Pablo Sinues
- University of Basel Children's Hospital, Basel, BS, SWITZERLAND
| | - Renato Zenobi
- Laboratory of Organic Chemistry, ETH Zürich, HCI E 325, CH - 8093, Zurich, Zurich, 8092, SWITZERLAND
| |
Collapse
|
14
|
Srienc AI, Chiang PP, Schmitt AJ, Newman EA. Cortical spreading depolarizations induced by surgical field blood in a mouse model of neurosurgery. J Neurosurg 2020; 132:1820-1828. [PMID: 30952117 PMCID: PMC7306253 DOI: 10.3171/2018.12.jns181130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/11/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cortical spreading depolarization (CSD) has been linked to poor clinical outcomes in the setting of traumatic brain injury, malignant stroke, and subarachnoid hemorrhage. There is evidence that electrocautery during neurosurgical procedures can also evoke CSD waves in the brain. It is unknown whether blood contacting the cortical surface during surgical bleeding affects the frequency of spontaneous or surgery-induced CSDs. Using a mouse neurosurgical model, the authors tested the hypothesis that electrocautery can induce CSD waves and that surgical field blood (SFB) is associated with more CSDs. The authors also investigated whether CSD can be reliably observed by monitoring the fluorescence of GCaMP6f expressed in neurons. METHODS CSD waves were monitored by using confocal microscopy to detect fluorescence increases at the cortical surface in mice expressing GCaMP6f in CamKII-positive neurons. The cortical surface was electrocauterized through an adjacent burr hole. SFB was simulated by applying a drop of tail vein blood to the brain through the same burr hole. RESULTS CSD waves were readily detected in GCaMP6f-expressing mice. Monitoring GCaMP6f fluorescence provided far better sensitivity and spatial resolution than detecting CSD events by observing changes in the intrinsic optical signal (IOS). Forty-nine percent of the CSD waves identified by GCaMP6f had no corresponding IOS signal. Electrocautery evoked CSD waves. On average, 0.67 ± 0.08 CSD events were generated per electrocautery episode, and multiple CSD waves could be induced in the same mouse by repeated cauterization (average, 7.9 ± 1.3 events; maximum number in 1 animal, 13 events). In the presence of SFB, significantly more spontaneous CSDs were generated (1.35 ± 0.37 vs 0.13 ± 0.16 events per hour, p = 0.002). Ketamine effectively decreased the frequency of spontaneous CSD waves (1.35 ± 0.37 to 0.36 ± 0.15 CSD waves per hour, p = 0.016) and electrocautery-stimulated CSD waves (0.80 ± 0.05 to 0.18 ± 0.08 CSD waves per electrocautery, p = 0.00002). CONCLUSIONS CSD waves are detected with far greater sensitivity and fidelity by monitoring GCaMP6f signals in neurons than by monitoring IOSs. Electrocautery reliably evokes CSD waves, and the frequency of spontaneous CSD waves is increased when blood is applied to the cortical surface. These experimental conditions recapitulate common scenarios in the neurosurgical operating room. Ketamine, a clinically available pharmaceutical agent, can block stimulated and spontaneous CSDs. More research is required to understand the clinical importance of intraoperative CSD.
Collapse
Affiliation(s)
- Anja I. Srienc
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota
| | - Pei-Pei Chiang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Abby J. Schmitt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Eric A. Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
15
|
McKendrick G, Garrett H, Jones HE, McDevitt DS, Sharma S, Silberman Y, Graziane NM. Ketamine Blocks Morphine-Induced Conditioned Place Preference and Anxiety-Like Behaviors in Mice. Front Behav Neurosci 2020; 14:75. [PMID: 32508606 PMCID: PMC7253643 DOI: 10.3389/fnbeh.2020.00075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Patients suffering from opioid use disorder often relapse during periods of abstinence, which is posited to be caused by negative affective states that drive motivated behaviors. Here, we explored whether conditioning mice with morphine in a conditioned place preference (CPP) training paradigm evoked anxiety-like behavior during morphine abstinence. To do this, mice were conditioned with morphine (10 mg/kg, i.p.) for 5 days. Twenty-four hours following conditioning, anxiety levels were tested by measuring time in the open arms of the elevated plus-maze. The next day, mice were placed in the three-compartment chamber to measure morphine-induced CPP. Our results show that following morphine conditioning, mice spent significantly less time in the open arm of the elevated plus-maze and expressed robust morphine CPP on CPP test day. Furthermore, we found that an acute treatment with (R,S)-ketamine (10 mg/kg, i.p.), a medication demonstrating promise for preventing anxiety-related phenotypes, 30 min before testing on post-conditioning day 1, increased time spent in the open arm of the elevated plus-maze in saline- and morphine-conditioned mice. Additionally, we found that the second injection of ketamine 30 min before CPP tests on post-conditioning day 2 prevented morphine-induced CPP, which lasted for up to 28 days post-conditioning. Furthermore, we found that conditioning mice with 10% (w/v) sucrose using an oral self-administration procedure did not evoke anxiety-like behavior, but elicited robust CPP, which was attenuated by ketamine treatment 30 min before CPP tests. Overall, our results suggest that the ketamine-induced block of morphine CPP may not be attributed solely to alleviating negative affective states, but potentially through impaired memory of morphine-context associations.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Hannah Garrett
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Holly E Jones
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States.,Summer Undergraduate Research Internship Program, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S McDevitt
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Summer Undergraduate Research Internship Program, Penn State College of Medicine, Hershey, PA, United States
| | - Sonakshi Sharma
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
16
|
Abstract
Breathing air is a fundamental human need, yet its safety, when challenged by various harmful or lethal substances, is often not properly guarded. For example, air toxicity is currently monitored only for a single or a limited number of known toxicants, thus failing to warn against possible hazardous air fully. Here, we discovered that, within minutes, living rats emitted distinctive profiles of volatile organic compounds (VOCs) via breath when exposed to various airborne toxicants such as endotoxin, O3, ricin, and CO2. Compared to background indoor air, when exposed to ricin or endotoxin aerosols, breath-borne VOC levels, especially that of carbon disulfide, were shown to decrease, while their elevated levels were observed for exposure to O3 and CO2. A clear contrast in breath-borne VOC profiles of rats exposed to different toxicants was observed with a statistical significance. Differences in microRNA regulations such as miR-33, miR-146a, and miR-155 from rats' blood samples revealed different mechanisms used by rats in combating different air toxicant challenges. Similar to dogs, rats were found here to be able to sniff off toxic air by releasing a specific breath-borne VOC profile. The discovered science opens a new arena for online monitoring of air toxicity and health effects of pollutants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Thompson SL, Welch AC, Iourinets J, Dulawa SC. Ketamine induces immediate and delayed alterations of OCD-like behavior. Psychopharmacology (Berl) 2020; 237:627-638. [PMID: 31927606 DOI: 10.1007/s00213-019-05397-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by intrusive obsessive thoughts and/or compulsive behaviors. Currently, serotonin reuptake inhibitors (SRIs) provide the only pharmacological monotherapy for OCD, but response rates are insufficient. Ketamine, a noncompetitive NMDA receptor antagonist, was reported to have rapid, sustained therapeutic effects in OCD patients. However, the mechanisms remain unknown. OBJECTIVES Here, we aimed to provide a platform for investigating mechanisms underlying anti-OCD effects of ketamine treatment by assessing whether ketamine pretreatment could alleviate 5-HT1B receptor (5-HT1BR)-induced OCD-like behavior in mice. METHODS We assessed whether acute ketamine (0, 3, 10, 30 mg/kg), administered at two pretreatment time points (30 min, 24 h), would modulate 5-HT1BR-induced OCD-like behavior in mice. Behavioral measures were perseverative hyperlocomotion in the open field and deficits in prepulse inhibition (PPI) induced by acute pharmacological 5-HT1BR challenge. RESULTS Three milligrams per kilogram of ketamine reduced 5-HT1BR-induced perseverative hyperlocomotion, but not PPI deficits, 24 h postinjection. In contrast, higher doses of ketamine were either ineffective (10 mg/kg) or exacerbated (30 mg/kg) 5-HT1BR-induced perseverative hyperlocomotion 30 min postinjection. At 24 h postinjection, 30 mg/kg ketamine reduced perseverative hyperlocomotion across all groups. CONCLUSIONS Our results suggest that the 5-HT1BR-induced model of OCD-like behavior is sensitive to a low dose of ketamine, a potential fast-acting anti-OCD treatment, and may provide a tool for studying mechanisms underlying the rapid therapeutic effects of ketamine in OCD patients.
Collapse
Affiliation(s)
- Summer L Thompson
- Committee on Neurobiology, University of Chicago, Chicago, IL, 60637, USA.,Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Amanda C Welch
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Julia Iourinets
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Wu C, Wang Y, He Y, Wu S, Xie Z, Zhang J, Shen J, Wang Z, He L. Sub-anesthetic and anesthetic ketamine produce different long-lasting behavioral phenotypes (24 h post-treatment) via inducing different brain-derived neurotrophic factor (BDNF) expression level in the hippocampus. Neurobiol Learn Mem 2019; 167:107136. [PMID: 31812581 DOI: 10.1016/j.nlm.2019.107136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/16/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Clinical and preclinical researches have shown that sub-anesthetic ketamine elicits sustained antidepressant effects for up to 1-2 weeks. Pharmacokinetics studies (t1/2 = 23 min) in mice showed no ketamine residue at 24 h after sub-anesthetic or anesthetic ketamine administration. Therefore, this study aims to reveal the mechanism underlying these different biological functions at 24 h after sub-anesthetic and anesthetic ketamine treatment. First, at the animal behavioral level, we found that sub-anesthetic ketamine induced antidepressant and anxiolytic effects while anesthetic ketamine induced depressive-like phenotypes and cognitive impairment. Second, we examined the correlation between behavior phenotype and protein expression, and found that the Brain-derived neurotrophic factor (BDNF) level is oppositely regulated by sub-anesthetic and anesthetic ketamine. Sub-anesthetic ketamine significantly increased the BDNF level, correlating to antidepressant effects; whereas anesthetic dose reduced BDNF expression in the hippocampus, correlating to depressive-like behaviors, anxiety-like behaviors and cognitive impairment. Third, the antidepressant effects of sub-anesthetic ketamine were prevented by pre-treatment of ANA-12, a Tropomyosin receptor kinase B (TrkB) inhibitor. Thus, we conclude that BDNF may be the key factor underlying antidepressant and anxiolytic effects of sub-anesthetic ketamine at 24 h after treatment. These results may shed light on future studies and the development of long-lasting anti-depressant drugs and therapies.
Collapse
Affiliation(s)
- Chunhui Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Yu Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Yang He
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Song Wu
- Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Zhifei Xie
- Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Jian Zhang
- Department of Pharmacology, Topharman Shanghai Co., Ltd., Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Zhen Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Bruderer T, Gaisl T, Gaugg MT, Nowak N, Streckenbach B, Müller S, Moeller A, Kohler M, Zenobi R. On-Line Analysis of Exhaled Breath Focus Review. Chem Rev 2019; 119:10803-10828. [PMID: 31594311 DOI: 10.1021/acs.chemrev.9b00005] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
On-line analysis of exhaled breath offers insight into a person's metabolism without the need for sample preparation or sample collection. Due to its noninvasive nature and the possibility to sample continuously, the analysis of breath has great clinical potential. The unique features of this technology make it an attractive candidate for applications in medicine, beyond the task of diagnosis. We review the current methodologies for on-line breath analysis, discuss current and future applications, and critically evaluate challenges and pitfalls such as the need for standardization. Special emphasis is given to the use of the technology in diagnosing respiratory diseases, potential niche applications, and the promise of breath analysis for personalized medicine. The analytical methodologies used range from very small and low-cost chemical sensors, which are ideal for continuous monitoring of disease status, to optical spectroscopy and state-of-the-art, high-resolution mass spectrometry. The latter can be utilized for untargeted analysis of exhaled breath, with the capability to identify hitherto unknown molecules. The interpretation of the resulting big data sets is complex and often constrained due to a limited number of participants. Even larger data sets will be needed for assessing reproducibility and for validation of biomarker candidates. In addition, molecular structures and quantification of compounds are generally not easily available from on-line measurements and require complementary measurements, for example, a separation method coupled to mass spectrometry. Furthermore, a lack of standardization still hampers the application of the technique to screen larger cohorts of patients. This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.
Collapse
Affiliation(s)
- Tobias Bruderer
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland.,Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Thomas Gaisl
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Martin T Gaugg
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Nora Nowak
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Simona Müller
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Malcolm Kohler
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Center for Integrative Human Physiology , University of Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| |
Collapse
|
20
|
Gaugg MT, Engler A, Bregy L, Nussbaumer-Ochsner Y, Eiffert L, Bruderer T, Zenobi R, Sinues P, Kohler M. Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis. Respirology 2019; 24:437-444. [PMID: 30681243 DOI: 10.1111/resp.13465] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/18/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Diagnosis of idiopathic pulmonary fibrosis (IPF) is complex and its pathogenesis is poorly understood. Recent findings indicate elevated levels of proline and other amino acids in lung tissue of IPF patients which may also be of diagnostic value. Following these findings, we hypothesized that such altered metabolic profiles would be mirrored in exhaled breath and could therefore be captured non-invasively in real time. METHODS We aimed to validate these results using real-time exhaled breath analysis by secondary electrospray ionization-mass spectrometry, which can provide a non-invasive, painless and fast insight into the metabolism. Breath analysis was performed in a matched 1:1 case-control study involving 21 patients with IPF and 21 control subjects. RESULTS We found significantly (P < 0.05) elevated levels of proline, 4-hydroxyproline, alanine, valine, leucine/isoleucine and allysine in breath of IPF patients, whereas pyroglutamic acid and phenylalanine did not show significant differences. This coincides with the amino acid's abundance in pulmonary tissue indicating that our observations reflect progressing fibrosis. In addition, amino acid levels correlated across subjects, further supporting a common underlying pathway. We were able to obtain a cross-validated area under the curve of 0.86, suggesting that these increased amino acid levels in exhaled breath have the potential to be used as biomarkers for IPF. CONCLUSION We could validate previous findings of elevated lung tissue amino acid levels in IPF and show that online breath analysis might be a practical tool for a rapid screening for IPF.
Collapse
Affiliation(s)
- Martin Thomas Gaugg
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Anna Engler
- Department of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Lukas Bregy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | - Lara Eiffert
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Tobias Bruderer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland.,Division of Respiratory Medicine, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Pablo Sinues
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland.,University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital of Zurich, Zurich, Switzerland.,Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Li X, Huang D, Zeng J, Chan CK, Zhou Z. Positive matrix factorization: A data preprocessing strategy for direct mass spectrometry-based breath analysis. Talanta 2018; 192:32-39. [PMID: 30348397 DOI: 10.1016/j.talanta.2018.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 12/27/2022]
Abstract
Interest in exhaled breath has grown considerably in recent years, as breath biosampling has shown promise for non-invasive disease diagnosis, therapeutic drug monitoring, and environmental exposure. Real time breath analysis can be accomplished via direct online mass spectrometry (MS)-based methods, which can provide more accurate and detailed data and an enhanced understanding of the temporal evolution of exhaled VOCs in the breath; however, the complicated chemical composition and large raw datasets involved in breath analysis have hindered the discovery of sources contributing to the exhaled VOCs. The positive matrix factorization (PMF) receptor model has been widely used for source apportionment in atmospheric studies. Since the exhaled VOCs contain compounds from various sources, such as alveolar air, mouth air and respiratory dead-space air, PMF may be also helpful for source apportionment of exhaled VOCs in the breath. Thus, this study explores the application of PMF in the pretreatment of direct breath measurement data. The results indicate that (i) endogenous compounds and background contaminants sources can be readily distinguished by PMF in data obtained from replicate measurements of human exhaled breath at single time points (~30 s/measurement), which may benefit both exhalome investigations and the identification of exposure biomarkers; (ii) sources resolved from online measurement data collected over longer periods (1.5 h) can be used to isolate the evolution of exhaled VOCs and investigate processes such as the pharmacokinetics of ketamine and its major metabolites. Therefore, PMF has shown promise for both data processing and subsequent data mining for the ambient MS-based breath analysis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China; Atmospheric Pollution Online Source Analysis Engineering Research Center of Guangdong Province, Jinan University, Guangzhou 510632, China.
| | - Dandan Huang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China; State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai 200233, China
| | - Jiafa Zeng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China; Atmospheric Pollution Online Source Analysis Engineering Research Center of Guangdong Province, Jinan University, Guangzhou 510632, China
| | - Chak Keung Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China; Atmospheric Pollution Online Source Analysis Engineering Research Center of Guangdong Province, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Chen H, Li J, Zhang X, Li X, Yao M, Zheng G. Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers. NANO LETTERS 2018; 18:4716-4726. [PMID: 29995423 DOI: 10.1021/acs.nanolett.8b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Toxicology and bedside medical condition monitoring is often desired to be both ultrasensitive and noninvasive. However, current biomarker analyses for these purposes are mostly offline and fail to detect low marker quantities. Here, we report a system called dLABer (detection of living animal's exhaled breath biomarker) that integrates living rats, breath sampling, microfluidics, and biosensors for the automated tracking of breath-borne biomarkers. Our data show that dLABer could selectively detect (online) and report differences (of up to 103-fold) in the levels of inflammation agent interleukin-6 (IL-6) exhaled by rats injected with different ambient particulate matter (PM). The dLABer system was further shown to have an up to 104 higher signal-to-noise ratio than that of the enzyme-linked immunosorbent assay (ELISA) when analyzing the same breath samples. In addition, both blood-borne IL-6 levels analyzed via ELISA in rats injected with different PM extracts and PM toxicity determined by a dithiothreitol (DTT) assay agreed well with those determined by the dLABer system. Video recordings further verified that rats exposed to PM with higher toxicity (according to a DTT assay and as revealed by dLABer) appeared to be less physically active. All the data presented here suggest that the dLABer system is capable of real-time, noninvasive monitoring of breath-borne biomarkers with ultrasensitivity. The dLABer system is expected to revolutionize pollutant health effect studies and bedside disease diagnosis as well as physiological condition monitoring at the single-protein level.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Jing Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xiangyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 200438 , China
| |
Collapse
|
23
|
|
24
|
Bijlsma L, Gil-Solsona R, Hernández F, Sancho JV. What about the herb? A new metabolomics approach for synthetic cannabinoid drug testing. Anal Bioanal Chem 2018; 410:5107-5112. [PMID: 29909458 DOI: 10.1007/s00216-018-1182-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Synthetic cannabinoids (SCs) are consumed as legal alternative to cannabis and often allow passing drug-screening tests. Their rapid transience on the drug scene, combined with their mostly unknown metabolic profiles, creates a scenario with constantly moving analytical targets, making their monitoring and identification challenging. The development of fast screening strategies for SCs, not directly focused on their chemical structure, as an alternative to the commonly applied target acquisition methods, would be highly appreciated in forensic and public health laboratories. An innovative untargeted metabolomics approach, focused on herbal components commonly used for 'spice' products, was applied. Saliva samples of healthy volunteers were collected at pre-dose and after smoking herbal components and analysed by high-resolution mass spectrometry. The data obtained, combined with appropriate statistical analysis, allowed to highlight and elucidate two markers (scopoletin and N,N-bis(2-hydroxyethyl)dodecylamine), which ratio permitted to differentiate herbal smokers from non-smokers. The proposed strategy will allow discriminating potential positives, on the basis of the analysis of two markers identified in the herbal blends. This work is presented as a step forward in SC drug testing, promoting a smart first-line screening approach, which will allow reducing the number of samples to be further investigated by more sophisticated HRMS methods. Graphical abstract The development of an alternative, generic screening methods of synthetic cannabinoids, not directly based on the chemical structure, in order to provide fast response on its potential consumption.
Collapse
Affiliation(s)
- Lubertus Bijlsma
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain.
| | - Rubén Gil-Solsona
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain
| | - Juan Vicente Sancho
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
25
|
Development and validation of brain target controlled infusion of propofol in mice. PLoS One 2018; 13:e0194949. [PMID: 29684039 PMCID: PMC5912730 DOI: 10.1371/journal.pone.0194949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanisms through which anesthetics disrupt neuronal activity are incompletely understood. In order to study anesthetic mechanisms in the intact brain, tight control over anesthetic pharmacology in a genetically and neurophysiologically accessible animal model is essential. Here, we developed a pharmacokinetic model that quantitatively describes propofol distribution into and elimination out of the brain. To develop the model, we used jugular venous catheters to infuse propofol in mice and measured propofol concentration in serial timed brain and blood samples using high performance liquid chromatography (HPLC). We then used adaptive fitting procedures to find parameters of a three compartment pharmacokinetic model such that all measurements collected in the blood and in the brain across different infusion schemes are fit by a single model. The purpose of the model was to develop target controlled infusion (TCI) capable of maintaining constant brain propofol concentration at the desired level. We validated the model for two different targeted concentrations in independent cohorts of experiments not used for model fitting. The predictions made by the model were unbiased, and the measured brain concentration was indistinguishable from the targeted concentration. We also verified that at the targeted concentration, state of anesthesia evidenced by slowing of the electroencephalogram and behavioral unresponsiveness was attained. Thus, we developed a useful tool for performing experiments necessitating use of anesthetics and for the investigation of mechanisms of action of propofol in mice.
Collapse
|
26
|
Li X, Huang DD, Du R, Zhang ZJ, Chan CK, Huang ZX, Zhou Z. Real-time Breath Analysis by Using Secondary Nanoelectrospray Ionization Coupled to High Resolution Mass Spectrometry. J Vis Exp 2018. [PMID: 29578507 DOI: 10.3791/56465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Exhaled volatile organic compounds (VOCs) have aroused considerable interest, since they can serve as biomarkers for disease diagnosis and environmental exposure in a non-invasive manner. In this work, we present a protocol to characterize the exhaled VOCs in real time by using secondary nanoelectrospray ionization coupled to high resolution mass spectrometry (Sec-nanoESI-HRMS). The homemade Sec-nanoESI source was readily set up based on a commercial nanoESI source. Hundreds of peaks were observed in the background-subtracted mass spectra of exhaled breath, and the mass accuracy values are -4.0-13.5 ppm and -20.3-1.3 ppm in the positive and negative ion detection modes, respectively. The peaks were assigned with accurate elemental composition according to the accurate mass and isotopic pattern. Less than 30 s is used for one exhalation measurement, and it takes approximately 7 min for six replicated measurements.
Collapse
Affiliation(s)
- Xue Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution;
| | - Dan D Huang
- School of Energy and Environment, City University of Hong Kong
| | - Rui Du
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution
| | - Zhi J Zhang
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong
| | - Zheng X Huang
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution
| | - Zhen Zhou
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution
| |
Collapse
|
27
|
Singh KD, Del Miguel GV, Gaugg MT, Ibañez AJ, Zenobi R, Kohler M, Frey U, Sinues PML. Translating secondary electrospray ionization-high-resolution mass spectrometry to the clinical environment. J Breath Res 2018; 12:027113. [PMID: 29411710 DOI: 10.1088/1752-7163/aa9ee3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While there has been progress in making use of breath tests to guide clinical decision making, the full potential of exhaled breath analysis still remains to be exploited. Here we summarize some of the reasons why this is the case, what we have done so far to overcome some of the existing obstacles, and our vision of how we think breath analysis will play a more prominent role in the coming years. In particular, we envision that real-time high-resolution mass spectrometry will provide valuable information in biomarker discovery studies. However, this can only be achieved by a coordinated effort, using standardized equipment and methods in multi-center studies to eventually deliver tangible advances in the field of breath analysis in a clinical setting. Concrete aspects such as sample integrity, compound identification, quantification and standardization are discussed. Novel secondary electrospray ionization developments with the aim of facilitating inter-groups comparisons and biomarker validation studies are also presented.
Collapse
Affiliation(s)
- Kapil Dev Singh
- University of Basel Children's Hospital, Basel, Switzerland. Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bos LDJ. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:33. [PMID: 29430450 DOI: 10.21037/atm.2018.01.17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is a complication of critical illness that is characterized by acute onset, protein rich, pulmonary edema. There is no treatment for ARDS, other than the reduction of additional ventilator induced lung injury. Prediction or earlier recognition of ARDS could result in preventive measurements and might decrease mortality and morbidity. Exhaled breath contains volatile organic compounds (VOCs), a collection of hundreds of small molecules linked to several physiological and pathophysiological processes. Analysis of exhaled breath through gas-chromatography and mass-spectrometry (GC-MS) has resulted in an accurate diagnosis of ARDS in several studies. Most identified markers are linked to lipid peroxidation. Octane is one of the few markers that was validated as a marker of ARDS and is pathophysiologically likely to be increased in ARDS. None of the currently studied breath analysis methods is directly applicable in clinical practice. Two steps have to be taken before any breath test can be allowed into the intensive care unit. External validation in a multi-center study is a prerequisite for any of the candidate breath markers and the breath test should outperform clinical prediction scores. Second, the technology for breath analysis should be adapted so that it is available at a decentralized lab inside the intensive care unit and can be operated by trained nurses, in order to reduce the analysis time. In conclusion, exhaled analysis might be used for the early diagnosis and prediction of ARDS in the near future but several obstacles have to be taken in the coming years. Most of the candidate markers can be linked to lipid peroxidation. Only octane has been validated in a temporal external validation cohort and is, at this moment, the top-ranking breath biomarker for ARDS.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Department of Respiratory Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Mansurova M, Ebert BE, Blank LM, Ibáñez AJ. A breath of information: the volatilome. Curr Genet 2017; 64:959-964. [DOI: 10.1007/s00294-017-0800-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
|
30
|
Abstract
While yeast is one of the most studied organisms, its intricate biology remains to be fully mapped and understood. This is especially the case when it comes to capture rapid, in vivo fluctuations of metabolite levels. Secondary electrospray ionization-high resolution mass spectrometry SESI-HRMS is introduced here as a sensitive and noninvasive analytical technique for online monitoring of microbial metabolic activity. The power of this technique is exemplarily shown for baker’s yeast fermentation, for which the time-resolved abundance of about 300 metabolites is demonstrated. The results suggest that a large number of metabolites produced by yeast from glucose neither are reported in the literature nor are their biochemical origins deciphered. With the technique demonstrated here, researchers interested in distant disciplines such as yeast physiology and food quality will gain new insights into the biochemical capability of this simple eukaryote.
Collapse
|
31
|
Zhang Y, Sun W, Shang D, Gao H, Zhou Z, Li X. Investigation on the influence of time-of-day on benzene metabolic pharmacokinetics by direct breath analysis in mice. CHEMOSPHERE 2017; 184:93-98. [PMID: 28582768 DOI: 10.1016/j.chemosphere.2017.05.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/07/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Benzene, well known as a ubiquitous environmental pollutant, can lead to increasing risk of cancer, bone marrow failure as well as other serious diseases. Benzene has been classified as carcinogenic to humans with no recommended safe level of exposure. In this study, the influence of time-of-day on benzene metabolism has been tentatively explored in a mouse model based on direct real-time breath analysis by using membrane inlet single photon ionization time of flight mass spectrometry (MI-SPI-TOFMS). The exhaled breath of eight mice was monitored at a time resolution of less than 20 s after intraperitoneal (I.P.) injection of benzene in the morning, afternoon and evening on different days, and two rounds of experiments were carried out in total. The pharmacokinetic parameters such as total exposure AUC0-∞ (h ng/mL), peak level Cmax (ng/mL), time of peak level tmax (h), and terminal half-life t1/2z (h) were calculated and discussed. The values of individual parameter varied greatly among the eight mice, e.g., AUC0-∞ in the morning of the first round of experiment ranged from 10.66 to 162.17 h ng/mL and the mean ± SD was 103.72 ± 99.72 h ng/mL (n = 8). Significant difference has also been observed between two rounds of experiments, implying the damage in the liver caused by the benzene exposure. However, there is no significant difference among the results from the morning, afternoon and evening for each round of the experiment. In our follow-up study, the influence of time-of-day will be further investigated, in which the metabolites of benzene as well as endogenous metabolites will be considered.
Collapse
Affiliation(s)
- Yuling Zhang
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, China; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, China; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, China
| | - Wanyang Sun
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, China
| | - Dewei Shang
- Guangzhou Huiai Hospital (The Affiliated Brain Hospital of Guangzhou Medical University), China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, China
| | - Zhen Zhou
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, China; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, China
| | - Xue Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, China; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, China; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, China.
| |
Collapse
|
32
|
Gaugg MT, Bruderer T, Nowak N, Eiffert L, Martinez-Lozano Sinues P, Kohler M, Zenobi R. Mass-Spectrometric Detection of Omega-Oxidation Products of Aliphatic Fatty Acids in Exhaled Breath. Anal Chem 2017; 89:10329-10334. [DOI: 10.1021/acs.analchem.7b02092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Thomas Gaugg
- Department
of Chemistry and Applied Biosciences, Federal Institute of Technology, Zurich, Switzerland
| | - Tobias Bruderer
- Department
of Chemistry and Applied Biosciences, Federal Institute of Technology, Zurich, Switzerland
- Division
of Respiratory Medicine, University Children’s Hospital Zurich and Children’s Research Center Zurich, Zurich, Switzerland
| | - Nora Nowak
- Department
of Chemistry and Applied Biosciences, Federal Institute of Technology, Zurich, Switzerland
| | - Lara Eiffert
- Department
of Chemistry and Applied Biosciences, Federal Institute of Technology, Zurich, Switzerland
| | | | - Malcolm Kohler
- Department
of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- Center
for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Zurich
Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
33
|
Gaugg MT, Engler A, Nussbaumer-Ochsner Y, Bregy L, Stöberl AS, Gaisl T, Bruderer T, Zenobi R, Kohler M, Martinez-Lozano Sinues P. Metabolic effects of inhaled salbutamol determined by exhaled breath analysis. J Breath Res 2017; 11:046004. [DOI: 10.1088/1752-7163/aa7caa] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Meher AK, Chen YC. Analysis of volatile compounds by open-air ionization mass spectrometry. Anal Chim Acta 2017; 966:41-46. [PMID: 28372725 DOI: 10.1016/j.aca.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 01/14/2023]
Abstract
This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
35
|
Li X, Huang L, Zhu H, Zhou Z. Direct human breath analysis by secondary nano-electrospray ionization ultrahigh-resolution mass spectrometry: Importance of high mass resolution and mass accuracy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:301-308. [PMID: 27859758 DOI: 10.1002/rcm.7794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/02/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Direct mass spectrometry (MS)-based methods make it possible to monitor the molecular compositions of hundreds of volatile organic compounds (VOCs) in exhaled human breath in real time. Mass resolution and mass accuracy play important roles for direct MS analysis, especially for the low-concentration isobaric compounds in non-target research. METHODS Direct detection of VOCs in exhaled breath of four healthy subjects (3 males and 1 female aged between 25 to 35 years old) has been performed by using secondary nano-electrospray ionization mass spectrometry (Sec-nanoESI-UHRMS) at resolutions (R) of 15,000, 30,000, 60,000 and 120,000. RESULTS For some low-intensity isobaric ions, they could be distinguished only when R ≥ 60,000, e.g., signals at m/z 96.9591 (sulfate/sulfuric acid), m/z 96.9687 (phosphate/phosphoric acid) and m/z 96.9756 ([C4 H2 O7 S]- ), m/z 234.1161 ([C10 H20 O3 NS]+ ) and m/z 234.1338 ([C10 H20 O5 N]+ ), m/z 119.0686 (isotope of indole) and m/z 119.0705 (an interfering signal), respectively. At R 120,000, the mass errors were obtained from a set of reference ions, and the values were ≤0.6 mDa for ions detected in positive detection mode and in the range of -1.0-1.1 mDa for the negative mode. These mass errors were used to exclusively identify unknown compounds detected in the breath samples. By utilizing the present setup, besides the normal VOCs reported previously, we detected non-volatile species (sulfate/sulfuric acid, silicate/silicic acid, phosphate/phosphoric acid and nitrate/nitric acid), dichlorobenzene and an ammonium adduct ([(C2 H6 SiO)6 + NH4 ]+ ), which were ascribed to exhaled particles, indoor air pollution and an endogenous source, respectively. CONCLUSIONS For direct breath analysis, high mass resolution of ≥60,000 and mass errors of 1.0 mDa (absolute value) covering the mass range of interests (e.g., m/z 50-500) are necessary for the exploration and accurate identification of low-intensity unknown isobaric compounds in non-target research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
| | - Lei Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
| | - Hui Zhu
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou, 510530, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
| |
Collapse
|
36
|
Martinez-Lozano Sinues P, Kohler M, Brown SA, Zenobi R, Dallmann R. Gauging circadian variation in ketamine metabolism by real-time breath analysis. Chem Commun (Camb) 2017; 53:2264-2267. [DOI: 10.1039/c6cc09061c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time in vivo pharmacokinetics to investigate time-of-day variation in drug metabolism.
Collapse
Affiliation(s)
| | - M. Kohler
- Pulmonary Division
- University Hospital Zurich
- Zurich
- Switzerland
| | - S. A. Brown
- Institute of Pharmacology and Toxicology
- University of Zurich
- Switzerland
| | - R. Zenobi
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- Zurich
- Switzerland
| | - R. Dallmann
- Institute of Pharmacology and Toxicology
- University of Zurich
- Switzerland
| |
Collapse
|
37
|
García-Gómez D, Gaisl T, Bregy L, Cremonesi A, Sinues PML, Kohler M, Zenobi R. Real-Time Quantification of Amino Acids in the Exhalome by Secondary Electrospray Ionization–Mass Spectrometry: A Proof-of-Principle Study. Clin Chem 2016; 62:1230-7. [DOI: 10.1373/clinchem.2016.256909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023]
Abstract
Abstract
BACKGROUND
Amino acids are frequently determined in clinical chemistry. However, current analysis methods are time-consuming, invasive, and suffer from artifacts during sampling, sample handling, and sample preparation. We hypothesized in this proof-of-principle study that plasma concentrations of amino acids can be estimated by measuring their concentrations in exhaled breath. A novel breath analysis technique described here allows such measurements to be carried out in real-time and noninvasively, which should facilitate efficient diagnostics and give insights into human physiology.
METHODS
The amino acid profiles in 37 individuals were determined by ion-exchange HPLC in blood plasma and simultaneously in breath by secondary electrospray ionization coupled to high-resolution mass spectrometry. Participants were split into training and test sets to validate the analytical accuracy. Longitudinal profiles in 3 individuals were additionally obtained over a 12-h period.
RESULTS
Concentrations of 8 slightly volatile amino acids (A, V, I, G, P, K, F, Orn) could be determined in exhaled breath with a CV of <10%. Exhalome validation studies yielded high accuracies for each of these amino acids, on average only 3% less compared to plasma concentrations (95% CI ±13%). Higher variations were found only for amino acids with a low plasma concentration.
CONCLUSIONS
This study demonstrates for the first time that amino acids can be quantified in the human breath and that their concentrations correlate with plasma concentrations. Although this noninvasive technique needs further investigation, exhalome analysis may provide significant benefits over traditional, offline analytical methods.
Collapse
Affiliation(s)
- Diego García-Gómez
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Thomas Gaisl
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- Hospital Zollikerberg, Zollikerberg, Switzerland
| | - Lukas Bregy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
38
|
Brown SA. Circadian Metabolism: From Mechanisms to Metabolomics and Medicine. Trends Endocrinol Metab 2016; 27:415-426. [PMID: 27113082 DOI: 10.1016/j.tem.2016.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/28/2022]
Abstract
The circadian clock directs nearly all aspects of diurnal physiology, including metabolism. Current research identifies several major axes by which it exerts these effects, including systemic signals as well as direct control of cellular processes by local clocks. This redundant network can transmit metabolic and timing information bidirectionally for optimal synchrony of metabolic processes. Recent advances in cellular profiling and metabolomics technologies have yielded unprecedented insights into the mechanisms behind this control. They have also helped to illuminate individual variation in these mechanisms that could prove important in personalized therapy for metabolic disease. Finally, these technologies have provided platforms with which to screen for the first potential drugs affecting clock-modulated metabolic function.
Collapse
Affiliation(s)
- Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 190 Winterthurerstrasse, 8057 Zürich, Switzerland.
| |
Collapse
|
39
|
Dallmann R, Okyar A, Lévi F. Dosing-Time Makes the Poison: Circadian Regulation and Pharmacotherapy. Trends Mol Med 2016; 22:430-445. [PMID: 27066876 DOI: 10.1016/j.molmed.2016.03.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
Daily rhythms in physiology significantly modulate drug pharmacokinetics and pharmacodynamics according to the time-of-day, a finding that has led to the concept of chronopharmacology. The importance of biological clocks for xenobiotic metabolism has gained increased attention with the discovery of the molecular circadian clockwork. Mechanistic understanding of the cell-autonomous molecular circadian oscillator and the circadian timing system as a whole has opened new conceptual and methodological lines of investigation to understand first, the clock's impact on a specific drug's daily variations or the effects/side effects of environmental substances, and second, how clock-controlled pathways are coordinated within a given tissue or organism. Today, there is an increased understanding of the circadian modulation of drug effects. Moreover, several molecular strategies are being developed to treat disease-dependent and drug-induced clock disruptions in humans.
Collapse
Affiliation(s)
- Robert Dallmann
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; Warwick Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Francis Lévi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; Warwick Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
40
|
Barrios-Collado C, García-Gómez D, Zenobi R, Vidal-de-Miguel G, Ibáñez AJ, Martinez-Lozano Sinues P. Capturing in Vivo Plant Metabolism by Real-Time Analysis of Low to High Molecular Weight Volatiles. Anal Chem 2016; 88:2406-12. [PMID: 26814403 DOI: 10.1021/acs.analchem.5b04452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have deployed an efficient secondary electrospray ionization source coupled to an Orbitrap mass analyzer (SESI-MS) to investigate the emissions of a Begonia semperflorens. We document how hundreds of species can be tracked with an unparalleled time resolution of 2 min during day-night cycles. To further illustrate the capabilities of this system for volatile organic compounds (VOCs) analysis, we subjected the plant to mechanical damage and monitored its response. As a result, ∼1200 VOCs were monitored displaying different kinetics. To validate the soundness of our in vivo measurements, we fully characterized some key compounds via tandem mass spectrometry (MS/MS) and confirmed their expected behavior based on prior gas chromatography/mass spectrometry (GC/MS) studies. For example, β-caryophyllene, which is directly related to photosynthesis, was found to show a periodic day-night pattern with highest concentrations during the day. We conclude that the capability of SESI-MS to capture highly dynamic VOC emissions and wide analyte coverage makes it an attractive tool to complement GC/MS in plant studies.
Collapse
Affiliation(s)
- César Barrios-Collado
- Department of Energy Engineering and Fluid Dynamics, University of Valladolid , 47002 Valladolid, Spain.,SEADM S.L., 28036 Madrid, Spain.,Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Diego García-Gómez
- Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Guillermo Vidal-de-Miguel
- Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland.,Fossil Ion Technology S.L., 28036 Madrid, Spain
| | - Alfredo J Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland.,Science Zurich - Zurich PhD Program Molecular Life Sciences, 8093 Zurich, Switzerland
| | | |
Collapse
|
41
|
García-Gómez D, Bregy L, Nussbaumer-Ochsner Y, Gaisl T, Kohler M, Zenobi R. Detection and Quantification of Benzothiazoles in Exhaled Breath and Exhaled Breath Condensate by Real-Time Secondary Electrospray Ionization-High-Resolution Mass Spectrometry and Ultra-High Performance Liquid Chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12519-12524. [PMID: 26390299 DOI: 10.1021/acs.est.5b03809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
2-Subtituted benzothiazoles are widely used industrial chemicals whose occurrence in environmental samples has been shown to be ubiquitous. However, knowledge about human exposure to these compounds and their excretion route is still scarce. Here, we demonstrate for the first time the detection of benzothiazole derivatives in exhaled breath. Real-time analysis of breath was carried out by means of secondary electrospray ionization coupled to high-resolution mass spectrometry. This coupling allowed not only the detection of these compounds in breath with a sensitivity in the pptv range but also their robust identification by comparing tandem high-resolution mass spectra from breath and standards. For further confirmation, benzothiazoles were also determined in exhaled breath condensate samples by means of ultra high-performance liquid chromatography. This approach strengthened the identification as a result of excellent matches in retention times and also allowed quantification. An estimated total daily exhalation of ca. 20 μg day(-1) was calculated for the six benzothiazole derivatives found in breath.
Collapse
Affiliation(s)
- Diego García-Gómez
- Department of Chemistry and Applied Biosciences, ETH Zurich , CH-8093 Zurich, Switzerland
| | - Lukas Bregy
- Department of Chemistry and Applied Biosciences, ETH Zurich , CH-8093 Zurich, Switzerland
| | | | - Thomas Gaisl
- Pulmonary Division, University Hospital Zurich , CH-8091 Zurich, Switzerland
| | - Malcolm Kohler
- Pulmonary Division, University Hospital Zurich , CH-8091 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich , CH-8093 Zurich, Switzerland
| |
Collapse
|
42
|
Preise der Gesellschaft Deutscher Chemiker Adolf-von-Baeyer-Denkmünze für Carsten Bolm / Wöhler-Preis für Nachhaltige Chemie an Matthias Beller / Karl-Ziegler-Preis für Helmut Schwarz / Ehrenmitgliedschaft für Henning Hopf / August-Wilhelm-von-Hofmann-Vor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Gesellschaft Deutscher Chemiker Awards: Adolf von Baeyer Memorial Medal for Carsten Bolm / Wöhler Prize for Sustainable Chemistry to Matthias Beller / Karl Ziegler Prize for Helmut Schwarz / Honorary Membership for Henning Hopf / August Wilhelm von Hofman. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201505944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|