1
|
Zubova E, Pokluda A, Dvořáková H, Krupička M, Cibulka R. Exploring the Reactivity of Flavins with Nucleophiles Using a Theoretical and Experimental Approach. Chempluschem 2024; 89:e202300547. [PMID: 38064649 DOI: 10.1002/cplu.202300547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Covalent adducts of flavin cofactors with nucleophiles play an important role in non-canonical function of flavoenzymes as well as in flavin-based catalysis. Herein, the interaction of flavin derivatives including substituted flavins (isoalloxazines), 1,10-ethylene-bridged flavinium salts, and non-substituted alloxazine and deazaflavin with selected nucleophiles was investigated using an experimental and computational approach. Triphenylphosphine or trimethylphosphine, 1-nitroethan-1-ide, and methoxide were selected as representatives of neutral soft, anionic soft, and hard nucleophiles, respectively. The interactions were investigated using UV/Vis and 1H NMR spectroscopy as well as by DFT calculations. The position of nucleophilic attack estimated using the calculated Gibbs free energy values was found to correspond with the experimental data, favouring the addition of phosphine and 1-nitroethan-1-ide into position N(5) and methoxide into position C(10a) of 1,10-ethylene-bridged flavinium salts. The calculated Gibbs free energy values were found to correlate with the experimental redox potentials of the flavin derivatives tested. These findings can be utilized as valuable tools for the design of artificial flavin-based catalytic systems or investigating the mechanism of flavoenzymes.
Collapse
Affiliation(s)
- Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Hana Dvořáková
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
2
|
Price NJ, Nakamura A, Castagnoli N, Tanko JM. Why Does Monoamine Oxidase (MAO) Catalyze the Oxidation of Some Tetrahydropyridines? Chembiochem 2024; 25:e202400126. [PMID: 38602445 DOI: 10.1002/cbic.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Results pertaining to the mechanism of the oxidation of the tertiary amine 1-methyl-4-(1-methyl-1-H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP, a close analog of the Parkinsonism inducing compound MPTP) by 3-methyllumiflavin (3MLF), a chemical model for the FAD cofactor of monoamine oxidase, are reported. MMTP and related compounds are among the few tertiary amines that are monoamine oxidase B (MAO-B) substrates. The MMTP/3MLF reaction is catalytic in the presence of O2 and the results under anaerobic conditions strongly suggest the involvement of radical intermediates, consistent with a single electron transfer mechanism. These observations support a new hypothesis to explain the MAO-catalyzed oxidations of amines. In general, electron transfer is thermodynamically unfavorable, and as a result, most 1° and 2° amines react via one of the currently accepted polar pathways. Steric constraints prevent 3° amines from reacting via a polar pathway. Those select 3° amines that are MAO substrates possess certain structural features (e. g., a C-H bond that is α- both to nitrogen and a C=C) that dramatically lower the pKa of the corresponding radical cation. Consequently, the thermodynamically unfavorable electron transfer equilibrium is driven towards products by an extremely favorable deprotonation step in the context of Le Chatelier's principle.
Collapse
Affiliation(s)
- Nathan J Price
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Akiko Nakamura
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Neal Castagnoli
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James M Tanko
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
3
|
Yang Z, Zhong T, Mo Q, He J, Chong J, Hu X, Zhao S, Qin J. Monoamine oxidase B activatable red fluorescence probe for bioimaging in cells and zebrafish. Bioorg Chem 2024; 145:107156. [PMID: 38387393 DOI: 10.1016/j.bioorg.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
A real-time and specific for the detection of Monoamine Oxidase B (MAO-B) to investigate the MAO-B-relevant disease development and treatment process is urgently desirable. Here, we utilized MAO-B to catalyze the conversion of propylamino groups to aldehyde groups, which was then quickly followed by a β-elimination process to produce fluorescent probes (FNJP) that may be used to detect MAO-B in vitro and in vivo. The FNJP probe possesses unique properties, including favorable reactivity (Km = 10.8 μM), high cell permeability, and NIR characteristics (λem = 610 nm). Moreover, the FNJP probe showed high selectivity for MAO-B and was able to detect endogenous MAO-B levels from a mixed population of NIH-3 T3 and HepG2 cells. MAO-B expression was found to be increased in cells under lipopolysaccharide-stimulated cellular oxidative stress in neuronal-like SH-SY5Y cells. In addition, the visualization of FNJP for MAO-B activity in zebrafish can be an effective tool for exploring the biofunctions of MAO-B. Considering these excellent properties, the FNJP probe may be a powerful tool for detecting MAO-B levels in living organisms and can be used for accurate clinical diagnoses of related diseases.
Collapse
Affiliation(s)
- Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Tiantian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Qingyuan Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jiman He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jia Chong
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Xianyun Hu
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jiangke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
4
|
Guo H, Qiu Y, Liu S, Zhang X, Zhao J. Tailoring flavin-based photosensitizers for efficient photooxidative coupling of benzylic amines. Phys Chem Chem Phys 2023; 26:161-173. [PMID: 38086643 DOI: 10.1039/d3cp04579j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Photooxidative coupling of benzylic amines using naturally abundant O2 as an oxidant under visible light irradiation is an alternative green approach to synthesis imines and is of both fundamental and practical significance. We investigated the photophysical properties of flavin (FL) that is a naturally available sensitizer and its derivatives, i.e. 9-bromoflavin (MB-FL), 7,8-dibromoflavin (DB-FL) and 10-phenylflavin (Ph-FL), as well as the performance of these FL-based sensitizers (FLPSs) in the photooxidative coupling of benzylic amines to imines combining experimental and theoretical efforts. We showed that chemical functionalization with Br and phenyl effectively improves the photophysical properties of these FLPSs, in terms of absorption in the visible light range, singlet oxygen quantum yields, triplet lifetime, etc. Apart from nearly quantitative selectivity for the production of imines, the performance of DB-FL is superior to those of other FLPSs, and it is among the best photocatalysts for imine synthesis. Specifically, 0.5 mol% DB-FL is capable of converting 91% of 0.2 mmol benzylamine and more than 80% of 0.2 mmol fluorobenzylic amine derivatives into their corresponding imines in 5 h batch runs. Mechanistic investigation finely explained the observed photophysical properties of FLPSs and highlighted the dominant role of electron transfer in FLPS sensitized coupling of benzylic amines to imines. This work not only helps to understand the pathways for photocatalysis with FLPSs but also paves the way for the design of novel and efficient PSs to promote organic synthesis.
Collapse
Affiliation(s)
- Huimin Guo
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Yang Qiu
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Siyu Liu
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Xiangyu Zhang
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Jianzhang Zhao
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| |
Collapse
|
5
|
Pokluda A, Zubova E, Chudoba J, Krupička M, Cibulka R. Catalytic artificial nitroalkane oxidases - a way towards organocatalytic umpolung. Org Biomol Chem 2023; 21:2768-2774. [PMID: 36919409 DOI: 10.1039/d3ob00101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nitroalkane oxidases (NAOs) are flavoenzymes that catalyse the oxidation of nitroalkanes to their corresponding carbonyl compounds while producing nitrite anions. Herein, we present an artificial catalytic system using flavins or ethylene-bridged flavinium salts that works via an NAO-like process. Under conditions optimised in terms of solvent, base, temperature and oxygen pressure, primary nitroalkanes were transformed to aldehydes. In our system, aldehydes immediately reacted with other nitroalkane molecules to form β-nitroalcohols. The reduced flavin catalyst was re-oxidised by oxygen. An alternative mechanism towards β-nitroalcohols via 5-(2-nitrobutyl)-1,5-dihydroflavin was suggested through quantum chemical calculations and by trapping and characterising this dihydroflavin intermediate. Interestingly, 5-(2-nitrobutyl)-1,5-dihydroflavin is an analogue of the flavin adenine dinucleotide adduct previously observed in an NAO X-ray structure. In both mechanistic pathways, flavin-5-iminium species is formed by nitroalkanide addition to flavin. This process represents flavin-based umpolung of an original donor to an acceptor.
Collapse
Affiliation(s)
- Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Josef Chudoba
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
6
|
Yamamoto Y, Kodama S, Nomoto A, Ogawa A. Innovative green oxidation of amines to imines under atmospheric oxygen. Org Biomol Chem 2022; 20:9503-9521. [PMID: 36218331 DOI: 10.1039/d2ob01421a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, the development of environmentally benign molecular construction methods has been of great importance, and especially, resource recycling, high atomic efficiency, and low environmental impact are in high demand. From this point of view, attention has also been focused on the development of one-pot synthesis of pharmaceuticals and functional molecules. Imines are excellent synthetic intermediates of these useful molecules, and the environmentally friendly oxidative synthesis of imines from amines has been energetically developed using oxygen (or air), which is abundantly available on the Earth, as an oxidant. This review focuses on the latest innovative and green oxidation systems of amines to imines under atmospheric oxygen, and their application to one-pot/eco-friendly and sustainable synthesis of pharmaceuticals and functional molecules. In particular, catalytic systems that activate molecular oxygen are categorized and described in detail as transition metal catalytic systems, photoirradiated catalytic systems, and organocatalytic systems.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
7
|
Mizushima T, Oka M, Imada Y, Iida H. Low‐Voltage‐Driven Electrochemical Aerobic Oxygenation with Flavin Catalysis: Chemoselective Synthesis of Sulfoxides from Sulfides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Taiga Mizushima
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| | - Marina Oka
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| | - Yasushi Imada
- Department of Applied Chemistry Tokushima University Minamijosanjima Tokushima 770-8506 Japan
| | - Hiroki Iida
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| |
Collapse
|
8
|
Pancrazzi F, Maestri G, Maggi R, Viscardi R. Oxidative Dearomatization of Phenols and Polycyclic Aromatics with Hydrogen Peroxide Triggered by Heterogeneous Sulfonic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Francesco Pancrazzi
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Rosanna Viscardi
- Casaccia Research Center ENEA Santa Maria di Galera 00123 Roma Italy
| |
Collapse
|
9
|
Hassan Tolba A, Krupička M, Chudoba J, Cibulka R. Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative. Org Lett 2021; 23:6825-6830. [PMID: 34424722 DOI: 10.1021/acs.orglett.1c02391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report an effective, operationally simple, and environmentally friendly system for the synthesis of tertiary amides by the oxidative coupling of aromatic or aliphatic aldehydes with amines mediated by riboflavin tetraacetate (RFTA), an inexpensive organic photocatalyst, and visible light using oxygen as the sole oxidant. The method is based on the oxidative power of an excited flavin catalyst and the relatively low oxidation potential of the hemiaminal formed by amine to aldehyde addition.
Collapse
|
10
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University 410082 Changsha China
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University Holmgatan 10 SE-85170 Sundsvall Sweden
| |
Collapse
|
11
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021; 60:15686-15704. [PMID: 33368909 PMCID: PMC9545650 DOI: 10.1002/anie.202012707] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
This Minireview presents recent important homogenous aerobic oxidative reactions which are assisted by electron transfer mediators (ETMs). Compared with direct oxidation by molecular oxygen (O2 ), the use of a coupled catalyst system with ETMs leads to a lower overall energy barrier via stepwise electron transfer. This cooperative catalytic process significantly facilitates the transport of electrons from the reduced form of the substrate-selective redox catalyst (SSRCred ) to O2 , thereby increasing the efficiency of the aerobic oxidation. In this Minireview, we have summarized the advances accomplished in recent years in transition-metal-catalyzed as well as metal-free aerobic oxidations of organic molecules in the presence of ETMs. In addition, the recent progress of photochemical and electrochemical oxidative functionalization using ETMs and O2 as the terminal oxidant is also highlighted. Furthermore, the mechanisms of these transformations are showcased.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University410082ChangshaChina
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10SE-85170SundsvallSweden
| |
Collapse
|
12
|
Kumar I, Kumar R, Gupta SS, Sharma U. C 70 Fullerene Catalyzed Photoinduced Aerobic Oxidation of Benzylamines to Imines and Aldehydes. J Org Chem 2021; 86:6449-6457. [PMID: 33886326 DOI: 10.1021/acs.joc.1c00297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C70 fullerene catalyzed photoinduced oxidation of benzylic amines at ambient conditions has been explored here. The developed strategy's main feature includes the additive/oxidant-free conversion of benzylic amine to corresponding imine and aldehydes. The reaction manifests broad substrate scope with excellent function group leniency and is applicable up to the gram scale. Further, symmetrical secondary amines can also be synthesized from benzylic amine in a one-pot two-step process. Various experiments and density functional theory studies revealed that the current reaction involves the generation of reactive oxygen species, single electron transfer reaction, and benzyl radical formation as key steps under photocatalytic conditions.
Collapse
Affiliation(s)
- Inder Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
| | - Shiv Shankar Gupta
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Pokluda A, Anwar Z, Boguschová V, Anusiewicz I, Skurski P, Sikorski M, Cibulka R. Robust Photocatalytic Method Using Ethylene‐Bridged Flavinium Salts for the Aerobic Oxidation of Unactivated Benzylic Substrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Pokluda
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Zubair Anwar
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Veronika Boguschová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Iwona Anusiewicz
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Piotr Skurski
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Marek Sikorski
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
14
|
Berger KJ, Levin MD. Reframing primary alkyl amines as aliphatic building blocks. Org Biomol Chem 2021; 19:11-36. [PMID: 33078799 DOI: 10.1039/d0ob01807d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While primary aliphatic amines are ubiquitous in natural products, they are traditionally considered inert to substitution chemistry. This review highlights historical and recent advances in the field of aliphatic deamination chemistry which demonstrate these moieties can be harnessed as valuable C(sp3) synthons. Cross-coupling and photocatalyzed transformations proceeding through polar and radical mechanisms are compared with oxidative deamination and other transition metal catalyzed reactions.
Collapse
Affiliation(s)
- Kathleen J Berger
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
15
|
Srivastava V, Singh PK, Srivastava A, Singh PP. Synthetic applications of flavin photocatalysis: a review. RSC Adv 2021. [DOI: 10.1039/d1ra00925g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Encouraging developments in the field of photocatalysis in last decades, biomolecules namely flavins have been observed to act as a catalyst in several photoredox-catalysed synthetic methodologies.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Pravin K. Singh
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Arjita Srivastava
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Praveen P. Singh
- Department of Chemistry
- United College of Engineering & Research
- Prayagraj 211010
- India
| |
Collapse
|
16
|
Cotman AE. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori-Ikariya Transfer Hydrogenation. Chemistry 2020; 27:39-53. [PMID: 32691439 DOI: 10.1002/chem.202002779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Indexed: 01/12/2023]
Abstract
Noyori-Ikariya-type ruthenium(II)-catalysts for asymmetric transfer hydrogenation (ATH) have been known for 25 years and have proved as a well-behaved and user-friendly platform for the synthesis of chiral secondary alcohols. A progress has been made in the past five years in understanding the asymmetric reduction of complex ketones, where up to four stereocenters can be controlled in a single chemical transformation. Intriguing multi-chiral molecular architectures are therefore available in few well understood and robust synthetic steps from commercially available building blocks and possess handles for additional functionalization. The aim of this Review is to showcase the availability of three-dimensional scaffolds and homochiral lead-like compounds via ATH and inspire their direct use in drug discovery endeavors. Basic mechanistic insights are provided to demystify the stereo-chemical outcomes, as well as examples of diastereoselective transformations of enantiopure alcohols to give a feeling of how these rigid non-planar molecules can be further elaborated.
Collapse
Affiliation(s)
- Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. J Org Chem 2020; 85:9096-9105. [PMID: 32569467 DOI: 10.1021/acs.joc.0c01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomimetic flavin organocatalysts oxidize nitromethane to formaldehyde and NOx-providing a relatively nontoxic, noncaustic, and inexpensive source for catalytic NO2 for aerobic TEMPO oxidations of alcohols, diols, and ethers. Alcohols were oxidized to aldehydes or ketones, cyclic ethers to esters, and terminal diols to lactones. In situ trapping of NOx and formaldehyde suggest an oxidative Nef process reminiscent of flavoprotein nitroalkane oxidase reactivity, which is achieved by relatively stable 1,10-bridged flavins. The metal-free flavin/NOx/TEMPO catalytic cycles are uniquely compatible, especially compared to other Nef and NOx-generating processes, and reveal selectivity over flavin-catalyzed sulfoxide formation. Aliphatic ethers were oxidized by this method, as demonstrated by the conversion of (-)-ambroxide to (+)-sclareolide.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Bikash Chouhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Thanh Thuy Vuong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
18
|
Petsi M, Zografos AL. 2,5-Diketopiperazine Catalysts as Activators of Dioxygen in Oxidative Processes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marina Petsi
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros L. Zografos
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
19
|
Baker Dockrey SA, Narayan ARH. Photocatalytic Oxidative Dearomatization of Orcinaldehyde Derivatives. Org Lett 2020; 22:3712-3716. [PMID: 32293185 DOI: 10.1021/acs.orglett.0c01207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For decades, oxidative dearomatization has been employed as a key step in the synthesis of complex molecules. Challenges in controlling the chemo- and site-selectivity of this transformation have sparked the development of a variety of specialized oxidants; however, these result in stoichiometric amounts of organic byproducts. Herein, we describe a photocatalytic method for oxidative dearomatization using molecular oxygen as the stoichiometric oxidant. This provides environmentally benign entry to highly substituted o-quinols, reactive intermediates which can be elaborated to a number of natural product families.
Collapse
Affiliation(s)
- Summer A Baker Dockrey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Nakamura A, Latif MA, Deck PA, Castagnoli N, Tanko JM. Evidence for a Proton-Coupled Electron Transfer Mechanism in a Biomimetic System for Monoamine Oxidase B Catalysis. Chemistry 2020; 26:823-829. [PMID: 31658386 DOI: 10.1002/chem.201904634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 11/11/2022]
Abstract
Mechanistic studies with 5-ethyl-3-methyllumiflavinium (Fl+ ) perchlorate, a biomimetic model for flavoenzyme monoamine oxidase B (MAO-B) catalysis, and the tertiary, allyl amine 1-methyl-4-(1-methyl-1 H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP) reveal that proton-coupled electron transfer (PCET) may be an important pathway for MAO catalysis. The first step involves a single-electron transfer (SET) leading to the free radicals Fl. and MMTP. , the latter produced by deprotonation of the initially formed and highly acidic MMTP.+ . Molecular oxygen (O2 ) is found to play a hitherto unrecognized role in the early steps of the oxidation. MMTP and several structurally similar tertiary amines are the only tertiary amines oxidized by MAO, and their structural/electronic properties provide the key to understanding this behavior. A general hypothesis about the role of SET in MAO catalysis, and the recognition that PCET occurs with appropriately substituted substrates is presented.
Collapse
Affiliation(s)
- Akiko Nakamura
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| | | | - Paul A Deck
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Neal Castagnoli
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| | - James M Tanko
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
21
|
Zhang W, Carpenter KL, Lin S. Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angew Chem Int Ed Engl 2020; 59:409-417. [PMID: 31617271 PMCID: PMC6923568 DOI: 10.1002/anie.201910300] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Indexed: 11/10/2022]
Abstract
Riboflavin-derived photocatalysts have been extensively studied in the context of alcohol oxidation. However, to date, the scope of this catalytic methodology has been limited to benzyl alcohols. In this work, mechanistic understanding of flavin-catalyzed oxidation reactions, in either the absence or presence of thiourea as a cocatalyst, was obtained. The mechanistic insights enabled development of an electrochemically driven photochemical oxidation of primary and secondary aliphatic alcohols using a pair of flavin and dialkylthiourea catalysts. Electrochemistry makes it possible to avoid using O2 and an oxidant and generating H2 O2 as a byproduct, both of which oxidatively degrade thiourea under the reaction conditions. This modification unlocks a new mechanistic pathway in which the oxidation of unactivated alcohols is achieved by thiyl radical mediated hydrogen-atom abstraction.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Keith L Carpenter
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Zhang S, Li G, Li L, Deng X, Zhao G, Cui X, Tang Z. Alloxan-Catalyzed Biomimetic Oxidations with Hydrogen Peroxide or Molecular Oxygen. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiqi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guangxun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Ling Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiongfei Deng
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Gang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
23
|
Zhang W, Carpenter KL, Lin S. Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910300] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Zhang
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Keith L. Carpenter
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Song Lin
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
24
|
Le T, Courant T, Merad J, Allain C, Audebert P, Masson G. Aerobic Tetrazine‐Catalyzed Oxidative Nitroso‐Diels‐Alder Reaction of N‐Arylhydroxylamines with Dienecarbamates: Access to Functionalized 1,6‐Dihydro‐1,2‐oxazines. ChemCatChem 2019. [DOI: 10.1002/cctc.201901373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tuan Le
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Thibaut Courant
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| | - Jérémy Merad
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| | - Clémence Allain
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Pierre Audebert
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| |
Collapse
|
25
|
März M, Babor M, Cibulka R. Flavin Catalysis Employing an N(5)-Adduct: an Application in the Aerobic Organocatalytic Mitsunobu Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michal März
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| | - Martin Babor
- Department of Solid State Chemistry; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Prague Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| |
Collapse
|
26
|
Jones HBL, Crean RM, Mullen A, Kendrick EG, Bull SD, Wells SA, Carbery DR, MacMillan F, van der Kamp MW, Pudney CR. Exposing the Interplay Between Enzyme Turnover, Protein Dynamics, and the Membrane Environment in Monoamine Oxidase B. Biochemistry 2019; 58:2362-2372. [PMID: 30964996 DOI: 10.1021/acs.biochem.9b00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an increasing realization that structure-based drug design may show improved success by understanding the ensemble of conformations accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson's disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear, and routes to drugging this target would be valuable. Evidence of a radical in either the transition state or the resting state of MAO-B is present throughout the literature and is suggested to be a flavin semiquinone, a tyrosyl radical, or both. Here we see evidence of a resting-state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. On the basis of enzyme kinetic studies, enzyme variants, and molecular dynamics simulations, we find evidence for the importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity and protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these targets.
Collapse
Affiliation(s)
| | | | - Anna Mullen
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | | | | | | | | | - Fraser MacMillan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | - Marc W van der Kamp
- School of Biochemistry , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | | |
Collapse
|
27
|
Wongnate T, Surawatanawong P, Chuaboon L, Lawan N, Chaiyen P. The Mechanism of Sugar C−H Bond Oxidation by a Flavoprotein Oxidase Occurs by a Hydride Transfer Before Proton Abstraction. Chemistry 2019; 25:4460-4471. [DOI: 10.1002/chem.201806078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thanyaporn Wongnate
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence, for Innovation in ChemistryMahidol University Bangkok 10400 Thailand
| | - Litavadee Chuaboon
- Department of Biochemistry and Center for Excellence, in Protein and Enzyme Technology, Faculty of ScienceMahidol University Bangkok 10400 Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
28
|
Tang S, Liu Y, Li L, Ren X, Li J, Yang G, Li H, Yuan B. Scalable electrochemical oxidant-and metal-free dehydrogenative coupling of S-H/N-H. Org Biomol Chem 2019; 17:1370-1374. [PMID: 30648724 DOI: 10.1039/c8ob03211d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A practical and scalable electrochemical oxidation of S-H and N-H was developed. This oxidant- and catalyst-free electrochemical process enables S-N bond formation with inexpensive nickel electrodes in an undivided cell. This procedure exhibits broad substrate scopes and good functional-group compatibility. A 50 g scale oxidative coupling augurs well for industrial applications.
Collapse
Affiliation(s)
- Shanyu Tang
- Department of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, China 450001.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hudwekar AD, Verma PK, Kour J, Balgotra S, Sawant SD. Transition Metal-Free Oxidative Coupling of Primary Amines in Polyethylene Glycol at Room Temperature: Synthesis of Imines, Azobenzenes, Benzothiazoles, and Disulfides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801610] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Abhinandan D. Hudwekar
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road -180001 Jammu India
- Anusandhan Bhawan; Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg 110001 New Delhi India
| | - Praveen K. Verma
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road -180001 Jammu India
| | - Jaspreet Kour
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road -180001 Jammu India
- Anusandhan Bhawan; Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg 110001 New Delhi India
| | - Shilpi Balgotra
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road -180001 Jammu India
- Anusandhan Bhawan; Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg 110001 New Delhi India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road -180001 Jammu India
- Anusandhan Bhawan; Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg 110001 New Delhi India
| |
Collapse
|
30
|
Zelenka J, Svobodová E, Tarábek J, Hoskovcová I, Boguschová V, Bailly S, Sikorski M, Roithová J, Cibulka R. Combining Flavin Photocatalysis and Organocatalysis: Metal-Free Aerobic Oxidation of Unactivated Benzylic Substrates. Org Lett 2018; 21:114-119. [PMID: 30582822 DOI: 10.1021/acs.orglett.8b03547] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a system with ethylene-bridged flavinium salt 2b which catalyzes the aerobic oxidation of toluenes and benzyl alcohols with high oxidation potential ( Eox > +2.5 V vs SCE) to give the corresponding benzoic acids under visible light irradiation. This is caused by the high oxidizing power of excited 2b ( E(2b*) = +2.67 V vs SCE) involved in photooxidation and by the accompanying dark organocatalytic oxygenation provided by the in situ formed flavin hydroperoxide 2b-OOH.
Collapse
Affiliation(s)
- Jan Zelenka
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | | | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry , Academy of Science of the Czech Republic , Flemingovo náměstí 542/2 , 16610 Prague , Czech Republic
| | | | | | | | - Marek Sikorski
- Faculty of Chemistry ; Adam Mickiewicz University in Poznan , Umultowska 89b , 61614 Poznan , Poland
| | - Jana Roithová
- Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | | |
Collapse
|
31
|
Brišar R, Unglaube F, Hollmann D, Jiao H, Mejía E. Aerobic Oxidative Homo- and Cross-Coupling of Amines Catalyzed by Phenazine Radical Cations. J Org Chem 2018; 83:13481-13490. [DOI: 10.1021/acs.joc.8b02345] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rok Brišar
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Felix Unglaube
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Dirk Hollmann
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Haijun Jiao
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
32
|
Sakai T, Kumoi T, Ishikawa T, Nitta T, Iida H. Comparison of riboflavin-derived flavinium salts applied to catalytic H 2O 2 oxidations. Org Biomol Chem 2018; 16:3999-4007. [PMID: 29766194 DOI: 10.1039/c8ob00856f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of flavinium salts, 5-ethylisoalloxazinium, 5-ethylalloxazinium, and 1,10-ethylene-bridged alloxazinium triflates, were prepared from commercially available riboflavin. This study presents a comparison between their optical and redox properties, and their catalytic activity in H2O2 oxidations of sulfide, tertiary amine, and cyclobutanone. Reflecting the difference between the π-conjugated ring structures, the flavinium salts displayed very different redox properties, with reduction potentials in the order of: 5-ethylisoalloxazinium > 5-ethylalloxazinium > 1,10-ethylene-bridged alloxazinium. A comparison of their catalytic activity revealed that 5-ethylisoalloxazinium triflate specifically oxidises sulfide and cyclobutanone, and 5-ethylalloxazinium triflate smoothly oxidises tertiary amine. 1,10-Bridged alloxazinium triflate, which can be readily obtained from riboflavin in large quantities, showed moderate catalytic activity for the H2O2 oxidation of sulfide and cyclobutanone.
Collapse
Affiliation(s)
- Takuya Sakai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.
| | | | | | | | | |
Collapse
|
33
|
Hall AMR, Broomfield-Tagg R, Camilleri M, Carbery DR, Codina A, Whittaker DTE, Coombes S, Lowe JP, Hintermair U. Online monitoring of a photocatalytic reaction by real-time high resolution FlowNMR spectroscopy. Chem Commun (Camb) 2018; 54:30-33. [PMID: 29139489 DOI: 10.1039/c7cc07059d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate how FlowNMR spectroscopy can readily be applied to investigate photochemical reactions that require sustained input of light and air to yield mechanistic insight under realistic conditions. The Eosin Y mediated photo-oxidation of N-allylbenzylamine is shown to produce imines as primary reaction products from which undesired aldehydes form after longer reaction times. Facile variation of reaction conditions during the reaction in flow allows for probe experiments that give information about the mode of action of the photocatalyst.
Collapse
Affiliation(s)
- Andrew M R Hall
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chiral ethylene-bridged flavinium salts: the stereoselectivity of flavin-10a-hydroperoxide formation and the effect of substitution on the photochemical properties. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Ishikawa T, Kimura M, Kumoi T, Iida H. Coupled Flavin-Iodine Redox Organocatalysts: Aerobic Oxidative Transformation from N-Tosylhydrazones to 1,2,3-Thiadiazoles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01535] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tatsuro Ishikawa
- Department of Chemistry,
Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Maasa Kimura
- Department of Chemistry,
Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Takuma Kumoi
- Department of Chemistry,
Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry,
Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
36
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
37
|
Largeron M. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications. Org Biomol Chem 2017; 15:4722-4730. [DOI: 10.1039/c7ob00507e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, chemists have developed aerobic quinone-based catalytic systems in order to reproduce enzymatic activity and selectivity of copper amine oxidases but also to expand the scope of amine substrates.
Collapse
Affiliation(s)
- Martine Largeron
- UMR 8638 CNRS-Université Paris Descartes
- Sorbonne Paris Cité
- Faculté de Pharmacie de Paris
- 75270 Paris cedex 06
- France
| |
Collapse
|
38
|
Murray AT, Challinor JD, Gulácsy CE, Lujan C, Hatcher LE, Pudney CR, Raithby PR, John MP, Carbery DR. Modelling flavoenzymatic charge transfer events: development of catalytic indole deuteration strategies. Org Biomol Chem 2016; 14:3787-92. [PMID: 27005963 DOI: 10.1039/c6ob00361c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The formation and chemistry of flavin-indole charge transfer (CT) complexes has been studied using a model cationic flavin. The ability to form a CT complex is sensitive to indole structure as gauged by spectroscopic, kinetics and crystallographic studies. Single crystals of sufficient quality of a flavin-indole CT complex, suitable for X-ray diffraction, have been grown, allowing solid-state structural analysis. When CT complex formation is conducted in d4-methanol, an efficient and synthetically useful C-3 indole deuteration is observed.
Collapse
Affiliation(s)
| | | | | | - Cristina Lujan
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | | | - Paul R Raithby
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Matthew P John
- GlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage, UK
| | - David R Carbery
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
39
|
Cheng X, Yang B, Hu X, Xu Q, Lu Z. Visible-Light-Promoted Metal-Free Aerobic Oxidation of Primary Amines to Acids and Lactones. Chemistry 2016; 22:17566-17570. [DOI: 10.1002/chem.201604440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaokai Cheng
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310058 P. R. China
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Bo Yang
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310058 P. R. China
| | - Xingen Hu
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Qing Xu
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Zhan Lu
- Department of Chemistry; Zhejiang University, Hangzhou; Zhejiang 310058 P. R. China
| |
Collapse
|
40
|
Moro F, Turyanska L, Wilman J, Williams HEL, Fielding AJ, Patanè A. Surface Sensing of Quantum Dots by Electron Spins. NANO LETTERS 2016; 16:6343-6348. [PMID: 27624349 DOI: 10.1021/acs.nanolett.6b02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nanoscale design of quantum dots (QDs) requires advanced analytical techniques. However, those that are commonly used do not have sufficient sensitivity or spatial resolution. Here, we use magnetic resonance techniques combined with paramagnetic Mn impurities in PbS QDs for sensitive probing of the QD surface and environment. In particular, we reveal inequivalent proton spin relaxations of the capping ligands and solvent molecules, strengths and anisotropies of the Mn nuclear spin interactions, and Mn nuclei distances with ∼1 Å sensitivity. These findings demonstrate the potential of magnetically doped QDs as sensitive magnetic nanoprobes and the use of electron spins for surface sensing.
Collapse
Affiliation(s)
- Fabrizio Moro
- School of Physics and Astronomy, The University of Nottingham , Nottingham NG7 2RD, United Kingdom
| | - Lyudmila Turyanska
- School of Physics and Astronomy, The University of Nottingham , Nottingham NG7 2RD, United Kingdom
- School of Chemistry, University of Lincoln , Lincoln LN6 7DL, United Kingdom
| | - James Wilman
- School of Physics and Astronomy, The University of Nottingham , Nottingham NG7 2RD, United Kingdom
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, The University of Nottingham , Nottingham NG7 2RD, United Kingdom
| | - Alistair J Fielding
- The Photon Science Institute and School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Amalia Patanè
- School of Physics and Astronomy, The University of Nottingham , Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
41
|
Li LL, Li K, Liu YH, Xu HR, Yu XQ. Red emission fluorescent probes for visualization of monoamine oxidase in living cells. Sci Rep 2016; 6:31217. [PMID: 27499031 PMCID: PMC4976310 DOI: 10.1038/srep31217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022] Open
Abstract
Here we report two novel red emission fluorescent probes for the highly sensitive and selective detection of monoamine oxidase (MAO) with large Stokes shift (227 nm). Both of the probes possess solid state fluorescence and can accomplish the identification of MAO on test papers. The probe MAO-Red-1 exhibited a detection limit down to 1.2 μg mL−1 towards MAO-B. Moreover, the cleavage product was unequivocally conformedby HPLC and LCMS and the result was in accordance with the proposed oxidative deamination mechanism. The excellent photostability of MAO-Red-1 was proved both in vitro and in vivo through fluorescent kinetic experiment and laser exposure experiment of confocal microscopy, respectively. Intracellular experiments also confirmed the low cytotoxity and exceptional cell imaging abilities of MAO-Red-1. It was validated both in HeLa and HepG2 cells that MAO-Red-1 was capable of reporting MAO activity through the variation of fluorescence intensity.
Collapse
Affiliation(s)
- Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Hao-Ran Xu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education,College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
42
|
Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:81-9. [PMID: 26891670 DOI: 10.1016/j.pnpbp.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom.
| |
Collapse
|
43
|
Zeng L, Liu T, He C, Shi D, Zhang F, Duan C. Organized Aggregation Makes Insoluble Perylene Diimide Efficient for the Reduction of Aryl Halides via Consecutive Visible Light-Induced Electron-Transfer Processes. J Am Chem Soc 2016; 138:3958-61. [PMID: 26956083 DOI: 10.1021/jacs.5b12931] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The consecutive photo-induced electron-transfer (conPET) process found with perylene diimide (PDI) overcomes the limitation of visible-light photocatalysis and sheds light on effective solar energy conversion. By the incorporation of PDI into a metal-organic polymer Zn-PDI, a heterogeneous approach was achieved to tackle the poor solubility and strong tendency to aggregate of PDIs that restricted the exploitation of this outstanding homogeneous process. The interplay between metal-PDI coordination and π···π stacking of the organized PDI arrays in Zn-PDI facilitates the conPET process for the visible light-driven reduction of aryl halides by stabilizing the radical-anion intermediate and catalyst-substrate interacted moiety. These synergistic effects between the PDI arrays and Zn sites further render Zn-PDI photoactivity for fundamental oxidation of benzyl alcohols and amines. The tunable and modular nature of the two-dimensional metal-organic polymers makes the catalyst-embedding strategy promising for the development of ideal photocatalysts toward the better utilization of solar energy.
Collapse
Affiliation(s)
- Le Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| | - Dongying Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| | - Feili Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| |
Collapse
|
44
|
Murray AT, King R, Donnelly JVG, Dowley MJH, Tuna F, Sells D, John MP, Carbery DR. Symbiotic Transition-Metal and Organocatalysis for Catalytic Ambient Amine Oxidation and Alkene Reduction Reactions. ChemCatChem 2015. [DOI: 10.1002/cctc.201501153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Rose King
- Department of Chemistry; University of Bath; Claverton Down Bath BA2 7AY UK
| | | | - Myles J. H. Dowley
- Department of Chemistry; University of Bath; Claverton Down Bath BA2 7AY UK
| | - Floriana Tuna
- EPSRC National EPR Facility; Alan Turing Building; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Daniel Sells
- EPSRC National EPR Facility; Alan Turing Building; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Matthew P. John
- GlaxoSmithKline Research and Development; Gunnels Wood Road Stevenage SG1 2NY UK
| | - David R. Carbery
- Department of Chemistry; University of Bath; Claverton Down Bath BA2 7AY UK
| |
Collapse
|