1
|
Zhang L, Meggers E. Chiral-at-metal catalysts: history, terminology, design, synthesis, and applications. Chem Soc Rev 2025. [PMID: 39836047 PMCID: PMC11749197 DOI: 10.1039/d4cs01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 01/22/2025]
Abstract
For decades, advances in chiral transition metal catalysis have been closely tied to the development of customized chiral ligands. Recently, however, an alternative approach to this traditional metal-plus-chiral-ligand method has emerged. In this new strategy, chiral transition metal catalysts are composed entirely of achiral ligands, with the overall chirality originating exclusively from a stereogenic metal center. This "chiral-at-metal" approach offers the benefit of structural simplicity. More importantly, by removing the need for chiral elements within the ligand framework, it opens up new possibilities for designing innovative catalyst architectures with unique properties. As a result, chiral-at-metal catalysis is becoming an increasingly important area of research. This review offers a comprehensive overview and detailed insights into asymmetric chiral-at-metal catalysis, encouraging scientists to explore new avenues in asymmetric transition metal catalysis and driving innovation in both fundamental and applied research.
Collapse
Affiliation(s)
- Lilu Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany.
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany.
| |
Collapse
|
2
|
Pham LN, Olding A, Ho CC, Bissember AC, Coote ML. Investigating Competing Inner- and Outer-Sphere Electron-Transfer Pathways in Copper Photoredox-Catalyzed Atom-Transfer Radical Additions: Closing the Cycle. Angew Chem Int Ed Engl 2025; 64:e202415792. [PMID: 39317646 DOI: 10.1002/anie.202415792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
This integrated computational and experimental study comprehensively examines the viability of competing inner-sphere electron transfer (ISET) and outer-sphere electron transfer (OSET) processes in [Cu(dap)2]+-mediated atom-transfer radical additions (ATRA) of olefins and CF3SO2Cl that can deliver both R-SO2Cl and R-Cl products. Five sterically- and electronically-varied representative alkenes were selected from which to explore and reconcile a range of experimentally observed outcomes. Findings are consistent with photoexcited [Cu(dap)2]+ initiating photoelectron transfer via ISET and the subsequent regeneration of the oxidized catalyst via ISET in the ground state to close the catalytic cycle and liberate products. R-SO2Cl/R-Cl product ratios appear to be primarily governed by the relative rates of direct catalyst regeneration {i.e., [Cu(dap)2SO2Cl]⋅++R⋅} and ligand exchange {i.e., [Cu(dap)2SO2Cl]⋅++Cl- }. Through this work, a more consistent and more complete conceptual framework has been developed to better understand this chemistry and how catalyst regeneration occurs. It is this important ground state process, which closes the catalytic cycle, and ultimately controls the enantioselectivity of ATRA reactions employing chiral copper photocatalysts.
Collapse
Affiliation(s)
- Le Nhan Pham
- Institute for Nanoscale Science and Technology, Flinders University, South Australia, Australia
| | - Angus Olding
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, South Australia, Australia
| |
Collapse
|
3
|
Liu X, An X, Zhao X, Luo S, Xu L, Zhan M. Diastereoselective Homocoupling of Benzylic C(sp 3)-H Bonds Enabled by Halogen Transfer. Org Lett 2024; 26:9257-9262. [PMID: 39422513 DOI: 10.1021/acs.orglett.4c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A transition-metal- and harsh-oxidant-free strategy for diastereoselective homocoupling of benzylic α-boryl carbanions has been developed. Central to this methodology is the ability of the halogen transfer reagent to seamlessly integrate halogenation and substitution within a compatible process. Additionally, this methodology is also applicable to the homocoupling of diarylmethanes and alkylheteroarenes. Substrates bearing oxidatively sensitive functional groups were well-tolerated. Preliminary studies suggest that the hydrogen bond between two boryl groups contributes to the high diastereoselectivities.
Collapse
Affiliation(s)
- Xirong Liu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xin An
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Shuda Luo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Miao Zhan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Prieto-Pascual U, Bustos I, Salcedo-Abraira P, Vitorica-Yrezabal IJ, Landa A, Freixa Z, Huertos MA. Unsaturated chiral-only-at-metal rhodium(III) complexes bearing SiN-type ligands. Chem Commun (Camb) 2024; 60:11299-11302. [PMID: 39292191 DOI: 10.1039/d4cc03665d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Enantiopure chiral-at-metal rhodium(III) unsaturated 16e complexes have been obtained from racemic [Rh(SiN)2Cl] (SiN= 8-(dimethylsilyl)quinoline) using a readily accessible chiral spiroborate as chiral resolution agent. This strategy allows an easy access to enantiopure neutral Δ/Λ-Rh(SiN)2Cl and cationic Δ/Λ-Rh(SiN)2[BAr4F] unsaturated complexes, wherein rhodium(III) is coordinated to two inert silylquinoline ligands in a propeller-like arrangement.
Collapse
Affiliation(s)
- Unai Prieto-Pascual
- Facultad de Química de San Sebastián, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastián, Spain.
| | - Itxaso Bustos
- Facultad de Química de San Sebastián, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastián, Spain.
| | - Pablo Salcedo-Abraira
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Iñigo J Vitorica-Yrezabal
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Aitor Landa
- Facultad de Química de San Sebastián, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastián, Spain.
| | - Zoraida Freixa
- Facultad de Química de San Sebastián, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastián, Spain.
- IKERBASQUE, Basque Fundation for Science, 48011, Bilbao, Spain
| | - Miguel A Huertos
- Facultad de Química de San Sebastián, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastián, Spain.
- IKERBASQUE, Basque Fundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
5
|
Yang Z, Liu J, Xie L. Stabilized Carbon-Centered Radical-Mediated Carbosulfenylation of Styrenes: Modular Synthesis of Sulfur-Containing Glycine and Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402428. [PMID: 38852190 PMCID: PMC11304285 DOI: 10.1002/advs.202402428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to β-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with β-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
6
|
Wang W, Xuan L, Chen Q, Fan R, Zhao F, Dong J, Wang H, Yan Q, Zhou H, Chen FE. Copper-Catalyzed Asymmetric Remote C(sp 3)-H Alkylation of N-Fluorocarboxamides with Glycine Derivatives and Peptides. J Am Chem Soc 2024; 146:6307-6316. [PMID: 38381876 DOI: 10.1021/jacs.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Rundong Fan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fei Zhao
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jianghu Dong
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
7
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
8
|
Nistanaki SK, Williams CG, Wigman B, Wong JJ, Haas BC, Popov S, Werth J, Sigman MS, Houk KN, Nelson HM. Catalytic asymmetric C-H insertion reactions of vinyl carbocations. Science 2022; 378:1085-1091. [PMID: 36480623 PMCID: PMC9993429 DOI: 10.1126/science.ade5320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
From the preparation of pharmaceuticals to enzymatic construction of natural products, carbocations are central to molecular synthesis. Although these reactive intermediates are engaged in stereoselective processes in nature, exerting enantiocontrol over carbocations with synthetic catalysts remains challenging. Many resonance-stabilized tricoordinated carbocations, such as iminium and oxocarbenium ions, have been applied in catalytic enantioselective reactions. However, their dicoordinated counterparts (aryl and vinyl carbocations) have not, despite their emerging utility in chemical synthesis. We report the discovery of a highly enantioselective vinyl carbocation carbon-hydrogen (C-H) insertion reaction enabled by imidodiphosphorimidate organocatalysts. Active site confinement featured in this catalyst class not only enables effective enantiocontrol but also expands the scope of vinyl cation C-H insertion chemistry, which broadens the utility of this transition metal-free C(sp3)-H functionalization platform.
Collapse
Affiliation(s)
- Sepand K. Nistanaki
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chloe G. Williams
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brittany C. Haas
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Stasik Popov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacob Werth
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hosea M. Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Hou L, Zhou Y, Yu H, Zhan T, Cao W, Feng X. Enantioselective Radical Addition to Ketones through Lewis Acid-Enabled Photoredox Catalysis. J Am Chem Soc 2022; 144:22140-22149. [PMID: 36414018 DOI: 10.1021/jacs.2c09691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photocatalysis opens up a new window for carbonyl chemistry. Despite a multitude of photochemical reactions of carbonyl compounds, visible light-induced catalytic asymmetric transformations remain elusive and pose a formidable challenge. Accordingly, the development of simple, efficient, and economic catalytic systems is the ideal pursuit for chemists. Herein, we report an enantioselective radical photoaddition to ketones through a Lewis acid-enabled photoredox catalysis wherein the in situ formed chiral N,N'-dioxide/Sc(III)-ketone complex serves as a temporary photocatalyst to trigger single-electron transfer oxidation of silanes for the generation of nucleophilic radical species, including primary, secondary, and tertiary alkyl radicals, giving various enantioenriched aza-heterocycle-based tertiary alcohols in good to excellent yields and enantioselectivities. The results of electron paramagnetic resonance (EPR) and high-resolution mass spectrum (HRMS) measurements provided favorable evidence for the stereocontrolled radical addition process involved in this reaction.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Yin Q, Li Z, Wu F, Ji M, Fu C, Wu X. Conjugate Addition of α‐Substituted Acyl Imidazoles to Nitroalkenes Catalyzed by Nickel Bisoxazoline and B(C6F5)3. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Chowdhury R. Eosin-Y/Cu(OAc) 2-catalyzed aerobic oxidative coupling reactions of glycine esters in the dark. Org Biomol Chem 2022; 20:5387-5392. [PMID: 35748811 DOI: 10.1039/d2ob00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic aerobic oxidative coupling reactions of glycine esters with β-keto acids, indoles, naphthols, and pyrrole have been realized at ambient temperature via the manipulation of the ground state reactivity of eosin-Y in the presence of Cu(OAc)2 in the dark. This method delivers structurally diverse unnatural amino acid derivatives under mild reaction conditions. UV-vis absorption spectroscopy, cyclic voltammetry, X-ray photoelectron spectroscopy, high-resolution mass spectrometry, and control experiments were performed to formulate a plausible mechanistic pathway. The step economy, broad substrate scope, use of air as a green oxidant, and operationally simple set-up make this protocol highly appealing for both academic and industrial applications.
Collapse
Affiliation(s)
- Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktingar, Mumbai-94, India
| |
Collapse
|
12
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
13
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
14
|
Long CJ, He YH, Guan Z. Asymmetric oxidative Mannich reactions promoted by photocatalysis and electrochemistry. Org Biomol Chem 2022; 20:2544-2561. [PMID: 35266948 DOI: 10.1039/d2ob00054g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The asymmetric Mannich reaction is an essential method in contemporary organic chemistry. As a representative of clean and green synthesis methods, photochemical and electrochemical oxidation strategies have re-emerged in recent years, providing new ideas for asymmetric Mannich reactions. Numerous chiral β-amino carbonyl compounds have been accessed in satisfactory yields with excellent enantioselectivity via such novel asymmetric oxidative Mannich reactions. This minireview highlights plentiful advances in asymmetric oxidative Mannich reactions that rely on photoredox or anodic-oxidation and covers the literature from 2014 to date. Furthermore, the future development of this field is envisaged.
Collapse
Affiliation(s)
- Chao-Jiu Long
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
16
|
Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chem Rev 2022; 122:1654-1716. [PMID: 34606251 PMCID: PMC8792375 DOI: 10.1021/acs.chemrev.1c00467] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.
Collapse
Affiliation(s)
- Matthew J Genzink
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
18
|
Cheng X, Li D, Yang B, Lin Y, Gong L. Recent Advances in Visible-Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Zheng L, Yan Z, Ren Q. DFT study on the mechanisms of α‐C cross coupling of π‐bonds catalyzed by iron complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lin Zheng
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| | - Zhengwei Yan
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| | - Qinghua Ren
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| |
Collapse
|
20
|
Wang ZH, Gao PS, Wang X, Gao JQ, Xu XT, He Z, Ma C, Mei TS. TEMPO-Enabled Electrochemical Enantioselective Oxidative Coupling of Secondary Acyclic Amines with Ketones. J Am Chem Soc 2021; 143:15599-15605. [PMID: 34533943 DOI: 10.1021/jacs.1c08671] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An electrochemical asymmetric coupling of secondary acyclic amines with ketones via a Shono-type oxidation has been described, affording the corresponding amino acid derivatives with good to excellent diastereoselectivity and enantioselectivity. The addition of an N-oxyl radical as a redox mediator could selectively oxidize the substrate rather than the product, although their oxidation potential difference is subtle (about 13 mV). This electrochemical transformation proceeds in the absence of stoichiometric additives, including metals, oxidants, and electrolytes, which gives it good functional group compatibility. Mechanistic studies suggest that proton-mediated racemization of the product is prevented by the reduction of protons at the cathode.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Pei-Sen Gao
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiu Wang
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jun-Qing Gao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Zeng He
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
21
|
Emelyanov MA, Stoletova NV, Smol'yakov AF, Il'in MM, Maleev VI, Larionov VA. Synthesis and a Catalytic Study of Diastereomeric Cationic Chiral-at-Cobalt Complexes Based on ( R, R)-1,2-Diphenylethylenediamine. Inorg Chem 2021; 60:13960-13967. [PMID: 34449202 DOI: 10.1021/acs.inorgchem.1c00855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the first synthesis of two diastereomeric cationic octahedral Co(III) complexes based on commercially available (R,R)-1,2-diphenylethylenediamine and salicylaldehyde. Both diastereoisomers with opposite chiralities at the metal center (Λ and Δ configurations) were prepared. The new Co(III) complexes possessed both acidic hydrogen-bond donating (HBD) NH moieties and nucleophilic counteranions and operate as bifunctional chiral catalysts for the challenging kinetic resolution of terminal and disubstituted epoxides by the reaction with CO2 under mild conditions. The highest selectivity factor (s) of 2.8 for the trans-chalcone epoxide was achieved at low catalyst loading (2 mol %) in chlorobenzene, which is the best achieved result currently for this type of substrate.
Collapse
Affiliation(s)
- Mikhail A Emelyanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Nadezhda V Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Mikhail M Il'in
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Victor I Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
22
|
Liu X, Zhao C, Zhu R, Liu L. Construction of Vicinal Quaternary Carbon Stereocenters Through Diastereo- and Enantioselective Oxidative 1,6-Conjugate Addition. Angew Chem Int Ed Engl 2021; 60:18499-18503. [PMID: 34278672 DOI: 10.1002/anie.202105594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/01/2021] [Indexed: 12/23/2022]
Abstract
The asymmetric construction of vicinal quaternary carbon stereocenters with at least one moiety in acyclic systems is a formidable challenge. We disclose a solution involving diastereo- and enantioselective oxidative 1,6-conjugate addition. The practical asymmetric cross-dehydrogenative coupling of 2,2-diarylacetonitriles and diverse α-substituted cyclic 1,3-dicarbonyls proceeds, for vicinal quaternary carbon stereocenters with one center in acyclic systems, in excellent yields and stereoselectivities. The generality of the approach is further demonstrated by the stereoselective creation of vicinal quaternary carbon stereocenters with both centers in acyclic systems using acyclic β-ketoesters as coupling partners. Computational studies elucidate the origins of both diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Xigong Liu
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Changyin Zhao
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rongxiu Zhu
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lei Liu
- School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
23
|
Liu X, Zhao C, Zhu R, Liu L. Construction of Vicinal Quaternary Carbon Stereocenters Through Diastereo‐ and Enantioselective Oxidative 1,6‐Conjugate Addition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xigong Liu
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Changyin Zhao
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Rongxiu Zhu
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
24
|
Proctor RJ, Chuentragool P, Colgan AC, Phipps RJ. Hydrogen Atom Transfer-Driven Enantioselective Minisci Reaction of Amides. J Am Chem Soc 2021; 143:4928-4934. [PMID: 33780237 PMCID: PMC8033566 DOI: 10.1021/jacs.1c01556] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Minisci-type reactions constitute one of the most powerful methods for building up complexity around basic heteroarenes. The most desirable variants involve formal oxidative coupling of a C-H bond on each partner, leading back to the simplest possible starting materials. We herein disclose a method that enables such a coupling of linear amides and heteroarenes with full control of enantioselectivity at the newly formed stereocenter as well as site selectivity on both the heteroarene and the amide. This is achieved by the use of a chiral phosphoric acid catalyst in conjunction with diacetyl as a combined hydrogen atom transfer reagent and oxidant. Diacetyl is directly photoexcitable, and thus, no extraneous photocatalyst is required: an added feature that contributes to the simplicity and practicality of the protocol.
Collapse
Affiliation(s)
- Rupert
S. J. Proctor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Avene C. Colgan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
Jang S, Kim H. Understanding the Origin of the Chiral Recognition of Esters with Octahedral Chiral Cobalt Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sumin Jang
- Department of Chemistry Korea Advanced Instituted of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry Korea Advanced Instituted of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
26
|
Che C, Li Y, Cheng X, Lu Y, Wang C. Visible‐Light‐Enabled Enantioconvergent Synthesis of α‐Amino Acid Derivatives via Synergistic Brønsted Acid/Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 60:4698-4704. [DOI: 10.1002/anie.202012909] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Chao Che
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yi‐Nan Li
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yi‐Nan Lu
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
27
|
Che C, Li Y, Cheng X, Lu Y, Wang C. Visible‐Light‐Enabled Enantioconvergent Synthesis of α‐Amino Acid Derivatives via Synergistic Brønsted Acid/Photoredox Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Che
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yi‐Nan Li
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yi‐Nan Lu
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
28
|
Ping YJ, Zhou YM, Wu LL, Li ZR, Gu X, Wan XL, Xu ZJ, Che CM. Fe-BPsalan complex catalyzed highly enantioselective Diels–Alder reaction of alkylidene β-ketoesters. Org Chem Front 2021. [DOI: 10.1039/d1qo00158b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A practical Fe-BPsalan-catalyzed asymmetric Diels–Alder reaction of various alkylidene β-ketoesters and dienes was developed to afford estrone analogues in excellent yields, good to high diastereoselectivities and excellent enantioselectivities.
Collapse
Affiliation(s)
- Yuan-Ji Ping
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- Shanghai 200032
- China
| | - Yi-Ming Zhou
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- Shanghai 200032
- China
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
| | - Zong-Rui Li
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- Shanghai 200032
- China
| | - Xin Gu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- Shanghai 200032
- China
| | - Xiao-Long Wan
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- Shanghai 200032
- China
| | - Zhen-Jiang Xu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- Shanghai 200032
- China
| | - Chi-Ming Che
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- Shanghai 200032
- China
- State Key Laboratory of Synthetic Chemistry
| |
Collapse
|
29
|
Rostoll‐Berenguer J, Blay G, Pedro JR, Vila C. Asymmetric Oxidative Mannich Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jaume Rostoll‐Berenguer
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - José R. Pedro
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Carlos Vila
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| |
Collapse
|
30
|
Xin HL, Pang B, Choi J, Akkad W, Morimoto H, Ohshima T. C-C Bond Cleavage of Unactivated 2-Acylimidazoles. J Org Chem 2020; 85:11592-11606. [PMID: 32819091 DOI: 10.1021/acs.joc.0c01458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
2-Acylimidazoles are widely used as post-transformable carboxylic acid equivalents in chemoselective and enantioselective reactions. Their transformations, however, require pretreatment with highly reactive, toxic methylating reagents to facilitate C-C bond cleavage. Here, we demonstrate that such pretreatment can be avoided and the C-C bond cleaved under neutral conditions without the use of additional reagents or catalysts. The scope of the reaction, including the use of products reported in the literature as substrates, and some mechanistic insights are described.
Collapse
Affiliation(s)
- Hai-Long Xin
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Bo Pang
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeesoo Choi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Walaa Akkad
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
An XD, Yang S, Qiu B, Yang TT, Li XJ, Xiao J. Photoredox-Enabled Synthesis of β-Substituted Pyrroles from Pyrrolidines. J Org Chem 2020; 85:9558-9565. [PMID: 32567860 DOI: 10.1021/acs.joc.0c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The merger of photoredox-initiated enamine-imine tautomerization and nucleophilic addition processes to access β-substituted pyrroles from pyrrolidines has been achieved. The significant advantage of this method is suppressing the Friedel-Crafts reaction, which usually occurs between N-aryl pyrrolidines and the highly electrophilic ketoesters. The good functional group tolerance, high atom economy, and high regioselectivity as well as easy handling conditions make it an appealing alternative to synthesize β-substituted pyrroles.
Collapse
Affiliation(s)
- Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting-Ting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou 256500, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
32
|
|
33
|
Saha D. Catalytic Enantioselective Radical Transformations Enabled by Visible Light. Chem Asian J 2020; 15:2129-2152. [PMID: 32463981 DOI: 10.1002/asia.202000525] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Visible light has been recognized as an economical and environmentally benign source of energy that enables chemoselective molecular activation of chemical reactions and hence reveal a new horizon for the design and discovery of novel chemical transformations. On the other hand, asymmetric catalysis represents an economic method to satisfy the increasing need for enantioenriched compounds in the chemical and pharmaceutical industries. Therefore, combining visible light photocatalysis with asymmetric catalysis creates a wider range of opportunities for the development of mechanistically unique reaction schemes. However, there arise two main problems like undesirable photochemical background reactions and difficulties in controlling the stereochemistry with highly reactive photochemical intermediates which can pose a serious challenge to the development of asymmetric visible light photocatalysis. In recent years, several methods have been developed to overcome these challenges. This review summarizes the recent advances in visible light-induced enantioselective reactions. We divide our discussion into four categories: Asymmetric photoredox organocatalysis, asymmetric transition metal photoredox catalysis, asymmetric photoredox Lewis acid catalysis and asymmetric photoinduced energy transfer catalysis. Special emphasis has been given to different catalytic activation modes that enable the construction of challenging carbon-carbon and carbon-heteroatom bond in an enantioselective fashion. A brief analysis of substrate scope and limitation as well as reaction mechanism of these reactions has been included.
Collapse
Affiliation(s)
- Debajyoti Saha
- Department of Chemistry, Krishnagar Govt. College, Krishnagar, Nadia, 741101, India
| |
Collapse
|
34
|
Hong BC. Enantioselective synthesis enabled by visible light photocatalysis. Org Biomol Chem 2020; 18:4298-4353. [PMID: 32458948 DOI: 10.1039/d0ob00759e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Enantioselective photoreaction has been a synthetic challenge for decades. With the continuous development of modern visible light photocatalysis and asymmetric catalysis, remarkable advances have been achieved through the synergistic action of these catalytic reactions, allowing the construction of various enantiomerically enriched molecules that were once inaccessible using photocatalytic reactions. This review presents some of the contemporary developments in enantioselective visible-light photocatalysis reactions, covering the period from 2008 to March 2020, with the contents classified by catalysis type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, Republic of China.
| |
Collapse
|
35
|
Yang X, Xie Z, Li Y, Zhang Y. Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes via cooperative photoredox catalysis and organocatalysis. Chem Sci 2020; 11:4741-4746. [PMID: 34122929 PMCID: PMC8159221 DOI: 10.1039/d0sc00683a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes, which provides an efficient approach for the rapid synthesis of enantiopure unnatural α-alkyl α-amino acid derivatives in good yield with excellent diastereo- (up to >99 : 1) and enantioselectivities (up to 97% ee). This process includes the direct photoinduced oxidation of glycine derivatives to an imine intermediate, followed by the asymmetric Mannich-type reaction with an enamine intermediate generated in situ from a ketone or aldehyde and a chiral secondary amine organocatalyst. This mild method allows the direct formation of a C–C bond with simultaneous installation of two new stereocenters without wasteful removal of functional groups. A visible-light-induced enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes is achieved.![]()
Collapse
Affiliation(s)
- Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| |
Collapse
|
36
|
Zhang Y, Li S, Zhu Y, Yang X, Zhou H, Li Y. Visible Light-Induced Oxidative Cross Dehydrogenative Coupling of Glycine Esters with β-Naphthols: Access to 1,3-Benzoxazines. J Org Chem 2020; 85:6261-6270. [DOI: 10.1021/acs.joc.9b01440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Huang Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
37
|
Wang S, Li X, Zang J, Liu M, Zhang S, Jiang G, Ji F. Palladium-Catalyzed Multistep Tandem Carbonylation/N-Dealkylation/Carbonylation Reaction: Access to Isatoic Anhydrides. J Org Chem 2020; 85:2672-2679. [PMID: 31887040 DOI: 10.1021/acs.joc.9b02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel and efficient synthesis of isatoic anhydride derivatives was developed via palladium-catalyzed multistep tandem carbonylation/N-dealkylation/carbonylation reaction with alkyl as the leaving group and tertiary anilines as nitrogen nucleophiles. This approach features good functional group compatibility and readily available starting materials. Furthermore, it provided a convenient approach for the synthesis of biologically and medicinally useful evodiamine.
Collapse
Affiliation(s)
- Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Jiawang Zang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Meichen Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Siyu Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| |
Collapse
|
38
|
Synthesis of Chiral Triarylmethanes Bearing All‐Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross‐Coupling of 2,2‐Diarylacetonitriles and (Hetero)arenes. Angew Chem Int Ed Engl 2020; 59:3053-3057. [DOI: 10.1002/anie.201912739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/31/2019] [Indexed: 02/06/2023]
|
39
|
Zhang Y, Sun Y, Chen B, Xu M, Li C, Zhang D, Zhang G. Copper-Catalyzed Photoinduced Enantioselective Dual Carbofunctionalization of Alkenes. Org Lett 2020; 22:1490-1494. [DOI: 10.1021/acs.orglett.0c00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajing Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Youwen Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Meichen Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Chen Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Dayong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
40
|
Pan X, Wang Z, Kan L, Mao Y, Zhu Y, Liu L. Cross-dehydrogenative coupling enables enantioselective access to CF 3-substituted all-carbon quaternary stereocenters. Chem Sci 2020; 11:2414-2419. [PMID: 34084405 PMCID: PMC8157275 DOI: 10.1039/c9sc05894j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
A cross-dehydrogenative coupling strategy for enantioselective access to acyclic CF3-substituted all-carbon quaternary stereocenters has been established. By using catalytic DDQ with MnO2 as an inexpensive terminal oxidant, asymmetric cross coupling of racemic δ-CF3-substituted phenols with indoles proceeded smoothly, providing CF3-bearing all-carbon quaternary stereocenters with excellent chemo- and enantioselectivities. The generality of the strategy is further demonstrated by efficient construction of all-carbon quaternary stereocenters bearing other polyfluoroalkyl and perfluoroalkyl groups such as CF2Cl, C2F5, and C3F7.
Collapse
Affiliation(s)
- Xiaoguang Pan
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Zehua Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Linglong Kan
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Ying Mao
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Yasheng Zhu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|
41
|
Wang Z, Zhu Y, Pan X, Wang G, Liu L. Synthesis of Chiral Triarylmethanes Bearing All‐Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross‐Coupling of 2,2‐Diarylacetonitriles and (Hetero)arenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zehua Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yasheng Zhu
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Xiaoguang Pan
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Gang Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| |
Collapse
|
42
|
Betori RC, Scheidt KA. Reductive Arylation of Arylidene Malonates Using Photoredox Catalysis. ACS Catal 2019; 9:10350-10357. [DOI: 10.1021/acscatal.9b03608] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rick C. Betori
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A. Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Tang X, Zhao J, Wu Y, Feng S, Yang F, Yu Z, Meng Q. Visible‐Light‐Driven Enantioselective Aerobic Oxidation of β‐Dicarbonyl Compounds Catalyzed by Cinchona‐Derived Phase Transfer Catalysts in Batch and Semi‐Flow. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Fei Tang
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Jing‐Nan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Yu‐Feng Wu
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Shi‐Hao Feng
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Fan Yang
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Zong‐Yi Yu
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Qing‐Wei Meng
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| |
Collapse
|
44
|
Grell Y, Demirel N, Harms K, Meggers E. Chiral Bis(oxazoline) Ligands as C2-Symmetric Chiral Auxiliaries for the Synthesis of Enantiomerically Pure Bis-Cyclometalated Rhodium(III) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yvonne Grell
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Nemrud Demirel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
45
|
Rostoll-Berenguer J, Blay G, Muñoz MC, Pedro JR, Vila C. A Combination of Visible-Light Organophotoredox Catalysis and Asymmetric Organocatalysis for the Enantioselective Mannich Reaction of Dihydroquinoxalinones with Ketones. Org Lett 2019; 21:6011-6015. [DOI: 10.1021/acs.orglett.9b02157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jaume Rostoll-Berenguer
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - José R. Pedro
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
46
|
Lauberteaux J, Pichon D, Baslé O, Mauduit M, Marcia de Figueiredo R, Campagne J. Acyl‐Imidazoles: A Privileged Ester Surrogate for Enantioselective Synthesis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jimmy Lauberteaux
- ICGM – UMR 5253Univ Montpellier, CNRS, ENSCM 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier Cedex 5 France
| | - Delphine Pichon
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 11 Allée de Beaulieu CS 50837, 35708 Rennes Cedex 7 France
| | - Olivier Baslé
- Laboratoire de Chimie de Coordination, CNRS, UPR 8241 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Marc Mauduit
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 11 Allée de Beaulieu CS 50837, 35708 Rennes Cedex 7 France
| | - Renata Marcia de Figueiredo
- ICGM – UMR 5253Univ Montpellier, CNRS, ENSCM 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier Cedex 5 France
| | - Jean‐Marc Campagne
- ICGM – UMR 5253Univ Montpellier, CNRS, ENSCM 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier Cedex 5 France
| |
Collapse
|
47
|
Shariati M, Imanzadeh G, Rostami A, Ghoreishy N, Kheirjou S. Application of laccase/DDQ as a new bioinspired catalyst system for the aerobic oxidation of tetrahydroquinazolines and Hantzsch 1,4-dihydropyridines. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Abstract
Aspects of sustainability are playing an increasingly important role for the development of new synthetic methods. In this context, the combination of asymmetric catalysis, which is considered one of the most economic strategies to generate nonracemic chiral compounds, and visible light as an abundant source of energy to induce or activate chemical reactions has recently gained much attention. Furthermore, the combination of photochemistry with asymmetric catalysis provides new opportunity for the development of mechanistically unique reaction schemes. However, the development of such asymmetric photocatalysis is very challenging and two main problems can be pinpointed to undesirable photochemical background reactions and to difficulties in controlling the stereochemistry with photochemically generated highly reactive intermediates. In this Account, we present and discuss asymmetric photocatalysis using one of the currently most versatile photoactivatable asymmetric catalysts, namely, reactive bis-cyclometalated rhodium(III) complexes. The catalysts contain two inert cyclometalating 5-( tert-butyl)-2-phenyl benzoxazole or benzothiazole ligands together with two labile acetonitriles, and the overall chirality is due to a stereogenic metal center. The bis-cyclometalated rhodium complexes serve as excellent chiral Lewis acids for substrates such as 2-acyl imidazoles and N-acyl pyrazoles, which, upon replacement of the two labile acetonitrile ligands, coordinate to the rhodium center in a 2-point fashion. These rhodium-substrate intermediates display unique photophysical and photochemical properties and are often the photoactive intermediates in the developed asymmetric photocatalysis reaction schemes. This combination of visible light excitation to generate long-lived photoexcited states and intrinsic Lewis acid reactivity opens the door for a multitude of visible-light-induced asymmetric conversions. In a first mode of reactivity, bis-cyclometalated rhodium complexes function as chiral Lewis acids to control asymmetric radical reactions of rhodium enolates with electron-deficient radicals, rhodium-coordinated enones with electron-rich radicals, or rhodium-bound radicals generated by photoinduced single electron transfer. The rhodium-substrate complexes in their ground states are key intermediates of the asymmetric catalysis, while separate photoredox cycles initiate radical generations via single electron transfer with either the rhodium-substrate complexes or additional photoactive compounds serving as the photoredox catalyst (secondary asymmetric photocatalysis). In a second mode of reactivity, the rhodium-substrate complexes serve as photoexcited intermediates within the asymmetric catalysis cycle (primary asymmetric photocatalysis) and undergo stereocontrolled chemistry either upon single electron transfer or by direct bond forming reactions out of the excited state. These multiple modes of intertwining photochemistry with asymmetric catalysis have been applied to asymmetric α- and β-alkylations, α- and β-aminations, β-C-H functionalization of carbonyl compounds, [3 + 2] photocycloadditions between cyclopropanes and alkenes or alkynes, [2 + 2] photocycloadditions of enones with alkenes, dearomative [2 + 2] photocycloadditions, and [2 + 3] photocycloadditions of enones with vinyl azides. We anticipate that these reaction schemes of chiral bis-cyclometalated rhodium complexes as (photoactive) chiral Lewis acids will spur the development of new photocatalysts for visible-light-induced asymmetric catalysis.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| |
Collapse
|
49
|
Catalytic enantioselective oxidative coupling of saturated ethers with carboxylic acid derivatives. Nat Commun 2019; 10:559. [PMID: 30718486 PMCID: PMC6362111 DOI: 10.1038/s41467-019-08473-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/15/2019] [Indexed: 11/23/2022] Open
Abstract
Catalytic enantioselective C–C bond forming process through cross-dehydrogenative coupling represents a promising synthetic strategy, but it remains a long-standing challenge in chemistry. Here, we report a formal catalytic enantioselective cross-dehydrogenative coupling of saturated ethers with diverse carboxylic acid derivatives involving an initial oxidative acetal formation, followed by nickel(II)-catalyzed asymmetric alkylation. The one-pot, general, and modular method exhibits wide compatibility of a broad range of saturated ethers not only including prevalent tetrahydrofuran and tetrahydropyran, but also including medium- and large-sized cyclic moieties and acyclic ones with excellent enantioselectivity and functional group tolerance. The application in the rapid preparation of biologically active molecules that are difficult to access with existing methods is also demonstrated. Cross-dehydrogenative coupling (CDC) is a powerful method for C-C bond formation however the enantioselective variant is underdeveloped. Here, the authors show a formal enantioselective CDC method involving unactivated ethers and carboxylic acid derivatives allowing for the rapid preparation of biologically active molecules.
Collapse
|
50
|
Xin X, Pan X, Meng Z, Liu X, Liu L. Catalytic enantioselective cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with aldehydes. Org Chem Front 2019. [DOI: 10.1039/c9qo00123a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first catalytic asymmetric cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans and aldehydes with excellent enantioselectivity is described.
Collapse
Affiliation(s)
- Xiaodong Xin
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
| | - Xinhui Pan
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Zhilin Meng
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Xigong Liu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- P.R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P.R. China
- School of Pharmaceutical Sciences
| |
Collapse
|