1
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
2
|
Fergusson CH, Saulog J, Paulo BS, Wilson DM, Liu DY, Morehouse NJ, Waterworth S, Barkei J, Gray CA, Kwan JC, Eustaquio AS, Linington RG. Discovery of a lagriamide polyketide by integrated genome mining, isotopic labeling, and untargeted metabolomics. Chem Sci 2024; 15:8089-8096. [PMID: 38817573 PMCID: PMC11134395 DOI: 10.1039/d4sc00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Microorganisms from the order Burkholderiales have been the source of a number of important classes of natural products in recent years. For example, study of the beetle-associated symbiont Burkholderia gladioli led to the discovery of the antifungal polyketide lagriamide; an important molecule from the perspectives of both biotechnology and chemical ecology. As part of a wider project to sequence Burkholderiales genomes from our in-house Burkholderiales library we identified a strain containing a biosynthetic gene cluster (BGC) similar to the original lagriamide BGC. Structure prediction failed to identify any candidate masses for the products of this BGC from untargeted metabolomics mass spectrometry data. However, genome mining from publicly available databases identified fragments of this BGC from a culture collection strain of Paraburkholderia. Whole genome sequencing of this strain revealed the presence of a homologue of this BGC with very high sequence identity. Stable isotope feeding of the two strains in parallel using our newly developed IsoAnalyst platform identified the product of this lagriamide-like BGC directly from the crude fermentation extracts, affording a culturable supply of this interesting compound class. Using a combination of bioinformatic, computational and spectroscopic methods we defined the absolute configurations for all 11 chiral centers in this new metabolite, which we named lagriamide B. Biological testing of lagriamide B against a panel of 21 bacterial and fungal pathogens revealed antifungal activity against the opportunistic human pathogen Aspergillus niger, while image-based Cell Painting analysis indicated that lagriamide B also causes actin filament disruption in U2-OS osteosarcoma cells.
Collapse
Affiliation(s)
- Claire H Fergusson
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Julia Saulog
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Bruno S Paulo
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Darryl M Wilson
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Nicholas J Morehouse
- Department of Biological Sciences, University of New Brunswick Saint John NB Canada
| | - Samantha Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - John Barkei
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick Saint John NB Canada
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - Alessandra S Eustaquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| |
Collapse
|
3
|
Skala LE, Philmus B, Mahmud T. Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis. Chembiochem 2024; 25:e202400056. [PMID: 38386898 PMCID: PMC11021167 DOI: 10.1002/cbic.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.
Collapse
Affiliation(s)
- Leigh E Skala
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
4
|
Kries H, Trottmann F, Hertweck C. Novel Biocatalysts from Specialized Metabolism. Angew Chem Int Ed Engl 2024; 63:e202309284. [PMID: 37737720 DOI: 10.1002/anie.202309284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Enzymes are increasingly recognized as valuable (bio)catalysts that complement existing synthetic methods. However, the range of biotransformations used in the laboratory is limited. Here we give an overview on the biosynthesis-inspired discovery of novel biocatalysts that address various synthetic challenges. Prominent examples from this dynamic field highlight remarkable enzymes for protecting-group-free amide formation and modification, control of pericyclic reactions, stereoselective hetero- and polycyclizations, atroposelective aryl couplings, site-selective C-H activations, introduction of ring strain, and N-N bond formation. We also explore unusual functions of cytochrome P450 monooxygenases, radical SAM-dependent enzymes, flavoproteins, and enzymes recruited from primary metabolism, which offer opportunities for synthetic biology, enzyme engineering, directed evolution, and catalyst design.
Collapse
Affiliation(s)
- Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
5
|
Kim MC, Winter JM, Cullum R, Smith AJ, Fenical W. Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium. Mar Drugs 2023; 21:367. [PMID: 37367692 DOI: 10.3390/md21060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Alexander J Smith
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
6
|
Magar RT, Pham VTT, Poudel PB, Nguyen HT, Bridget AF, Sohng JK. Biosynthetic pathway of peucemycin and identification of its derivative from Streptomyces peucetius. Appl Microbiol Biotechnol 2023; 107:1217-1231. [PMID: 36680588 DOI: 10.1007/s00253-023-12385-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Streptomyces peucetius ATCC 27952 is a well-known producer of important anticancer compounds, daunorubicin and doxorubicin. In this study, we successfully identified a new macrolide, 25-hydroxy peucemycin, that exhibited an antibacterial effect on some pathogens. Based on the structure of a newly identified compound and through the inactivation of a polyketide synthase gene, we successfully identified its biosynthetic gene cluster which was considered to be the cryptic biosynthetic gene cluster. The biosynthetic gene cluster spans 51 kb with 16 open reading frames. Five type I polyketide synthase (PKS) genes encode eight modules that synthesize the polyketide chain of peucemycin before undergoing post-PKS tailoring steps. In addition to the regular starter and extender units, some modules have specificity towards ethylmalonyl-CoA and unusual butylmalonyl-CoA. A credible explanation for the specificity of the unusual extender unit has been searched for. Moreover, the enzyme responsible for the final tailoring pathway was also identified. Based on all findings, a plausible biosynthetic pathway is here proposed. KEY POINTS: • Identification of a new macrolide, 25-hydroxy peucemycin. • An FMN-dependent monooxygenase is responsible for the hydroxylation of peucemycin. • The module encoded by peuC is unique to accept the butylmalonyl-CoA as an unusual extender unit.
Collapse
Affiliation(s)
- Rubin Thapa Magar
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Purna Bahadur Poudel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Adzemye Fovennso Bridget
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea.
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea.
| |
Collapse
|
7
|
Wagner L, Stang J, Derra S, Hollmann T, Hahn F. Towards understanding oxygen heterocycle-forming biocatalysts: a selectivity study of the pyran synthase PedPS7. Org Biomol Chem 2022; 20:9645-9649. [PMID: 36412217 DOI: 10.1039/d2ob02064e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intramolecular oxa-Michael addition-catalysing cyclases are widespread in polyketide biosynthetic pathways. Although they have significant potential in biotechnology and chemoenzymatic synthesis of chiral heterocycles, they have only scarcely been studied. Here, we present detailed investigations on the selectivity profile of the pyran synthase PedPS7 showing that it combines broad substrate tolerance with high selectivity for the formation of up to two new stereocentres and relaxed precursor stereoisomer discrimination. Two of the four possible tetrahydropyran stereoisomers are reliably accessible by this enzyme. The results indicate fundamental differences between the individual subtypes of intramolecular oxa-Michael addition-catalysing cyclases.
Collapse
Affiliation(s)
- Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Jörg Stang
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Sebastian Derra
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
8
|
Xu Y, Han H, Jie Liu Q, Zhao Y, Zhang M, Jiao RH, Zhang B, Ge HM. Salinopyridins A and B, two novel polyethers with a unique pyridine moiety from Streptomyces sp. NA4227. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Li D, Tian Y, Liu X, Wang W, Li Y, Tan H, Zhang J. Reconstitution of a mini-gene cluster combined with ribosome engineering led to effective enhancement of salinomycin production in Streptomyces albus. Microb Biotechnol 2021; 14:2356-2368. [PMID: 33270372 PMCID: PMC8601195 DOI: 10.1111/1751-7915.13686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Salinomycin, an FDA-approved polyketide drug, was recently identified as a promising anti-tumour and anti-viral lead compound. It is produced by Streptomyces albus, and the biosynthetic gene cluster (sal) spans over 100 kb. The genetic manipulation of large polyketide gene clusters is challenging, and approaches delivering reliable efficiency and accuracy are desired. Herein, a delicate strategy to enhance salinomycin production was devised and evaluated. We reconstructed a minimized sal gene cluster (mini-cluster) on pSET152 including key genes responsible for tailoring modification, antibiotic resistance, positive regulation and precursor supply. These genes were overexpressed under the control of constitutive promoter PkasO* or Pneo . The pks operon was not included in the mini-cluster, but it was upregulated by SalJ activation. After the plasmid pSET152::mini-cluster was introduced into the wild-type strain and a chassis host strain obtained by ribosome engineering, salinomycin production was increased to 2.3-fold and 5.1-fold compared with that of the wild-type strain respectively. Intriguingly, mini-cluster introduction resulted in much higher production than overexpression of the whole sal gene cluster. The findings demonstrated that reconstitution of sal mini-cluster combined with ribosome engineering is an efficient novel approach and may be extended to other large polyketide biosynthesis.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuqing Tian
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Xiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wenxi Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yue Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Huarong Tan
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jihui Zhang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
10
|
Bottino GF, Ferrari AJR, Gozzo FC, Martínez L. Structural discrimination analysis for constraint selection in protein modeling. Bioinformatics 2021; 37:3766-3773. [PMID: 34086840 DOI: 10.1093/bioinformatics/btab425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein structure modeling can be improved by the use of distance constraints between amino acid residues, provided such data reflects-at least partially-the native tertiary structure of the target system. In fact, only a small subset of the native contact map is necessary to successfully drive the model conformational search, so one important goal is to obtain the set of constraints with the highest true-positive rate, lowest redundancy, and greatest amount of information. In this work, we introduce a constraint evaluation and selection method based on the point-biserial correlation coefficient, which utilizes structural information from an ensemble of models to indirectly measure the power of each constraint in biasing the conformational search towards consensus structures. RESULTS Residue contact maps obtained by direct coupling analysis are systematically improved by means of discriminant analysis, reaching in some cases accuracies often seen only in modern deep-learning based approaches. When combined with an iterative modeling workflow, the proposed constraint classification optimizes the selection of the constraint set and maximizes the probability of obtaining successful models. The use of discriminant analysis for the valorization of the information of constraint data sets is a general concept with possible applications to other constraint types and modeling problems. AVAILABILITY AND IMPLEMENTATION scripts and procedures to implement the methodology presented herein are available at https://github.com/m3g/2021_Bottino_Biserial. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guilherme F Bottino
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| | - Allan J R Ferrari
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
11
|
Reddy DS, Srinivas B, Rachineni K, Jagadeesh B, Sarotti AM, Mohapatra DK. BF 3·OEt 2-Catalyzed Unexpected Stereoselective Formation of 2,4- trans-Diallyl-2-methyl-6-aryltetrahydro-2 H-pyrans with Quaternary Stereocenters. J Org Chem 2021; 86:6518-6527. [PMID: 33904736 DOI: 10.1021/acs.joc.1c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present manuscript describes a convenient, mild, and highly stereoselective method for the allylation of δ-hydroxy-α,β-unsaturated ketones having a benzylic hydroxyl group at the δ-position using allyltrimethylsilane mediated by BF3·OEt2, leading to 2,4-diallyl-2-methyl-6-aryltetrahydro-2H-pyran ring systems with quaternary carbon stereogenic centers. This represents the first example of a tandem isomerization followed by one C-O and two C-C bond-forming reactions in one pot. The isolation of TMS-protected lactol as an intermediate from the reaction strongly supports the proposed mechanistic pathway.
Collapse
Affiliation(s)
- D Srinivas Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Beduru Srinivas
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Kavitha Rachineni
- Centre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Bharatam Jagadeesh
- Centre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Debendra K Mohapatra
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
An JS, Lee JY, Kim E, Ahn H, Jang YJ, Shin B, Hwang S, Shin J, Yoon YJ, Lee SK, Oh DC. Formicolides A and B, Antioxidative and Antiangiogenic 20-Membered Macrolides from a Wood Ant Gut Bacterium. JOURNAL OF NATURAL PRODUCTS 2020; 83:2776-2784. [PMID: 32892623 DOI: 10.1021/acs.jnatprod.0c00772] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two new macrolides, formicolides A (1) and B (2), were isolated from Streptomyces sp. BA01, a gut bacterial strain of the wood ant (Formica yessensis). Their 20-membered macrocyclic lactone structures were established using NMR and mass spectrometric data. The relative configurations of the formicolides were determined by J-based configuration analysis utilizing ROESY, HETLOC, and HECADE NMR spectroscopic data. Genomic and bioinformatics analysis of the bacterial strain enabled us to identify the type-I polyketide synthase pathway employing a trans-acyltransferase system. The absolute configurations of 1 and 2 are proposed based on detailed analysis of the sequences of the ketoreductases in the modular gene cluster and statistical comparative analysis of the experimental NMR chemical shifts and quantum mechanical calculations. Formicolides A and B (1 and 2) induced quinone reductase activity in murine Hepa-1c1c7 cells and antiangiogenic activity by suppression of tube formation in human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungju Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Joon Jang
- Natura Center of Life and Environment, Seoul 08826, Republic of Korea
| | - Bora Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Hollmann T, Berkhan G, Wagner L, Sung KH, Kolb S, Geise H, Hahn F. Biocatalysts from Biosynthetic Pathways: Enabling Stereoselective, Enzymatic Cycloether Formation on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Protein Facility, ILAb Co., Ltd. NP513, The Catholic University of Korea, 420-743 Bucheon, Republic of Korea
| | - Simon Kolb
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hendrik Geise
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
14
|
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C-H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5'-deoxyadenosyl radical as a powerful oxidant to initiate C-H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as "thwarted oxygenases".
Collapse
Affiliation(s)
- Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
He BB, Zhou T, Bu XL, Weng JY, Xu J, Lin S, Zheng JT, Zhao YL, Xu MJ. Enzymatic Pyran Formation Involved in Xiamenmycin Biosynthesis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bei-Bei He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Ting Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xu-Liang Bu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jing-Yi Weng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jian-Ting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
16
|
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H)Stanford University Stanford CA 94305 USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
17
|
Ferrari AJR, Gozzo FC, Martínez L. Statistical force-field for structural modeling using chemical cross-linking/mass spectrometry distance constraints. Bioinformatics 2019; 35:3005-3012. [DOI: 10.1093/bioinformatics/btz013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Motivation
Chemical cross-linking/mass spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms.
Results
A force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. First, the strategy suggests that XL constraints should be set to shorter distances than usually assumed. Second, the complete statistical force-field improves the models obtained and can be easily incorporated into current modeling methods and software. The force-field was implemented and is distributed to be used within the Rosetta ab initio relax protocol.
Availability and implementation
Force-field parameters and usage instructions are freely available online (http://m3g.iqm.unicamp.br/topolink/xlff).
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Allan J R Ferrari
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
- Center for Computing in Engineering & Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
18
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
19
|
Wang L, Parnell A, Williams C, Bakar NA, Challand MR, van der Kamp MW, Simpson TJ, Race PR, Crump MP, Willis CL. A Rieske oxygenase/epoxide hydrolase-catalysed reaction cascade creates oxygen heterocycles in mupirocin biosynthesis. Nat Catal 2018. [DOI: 10.1038/s41929-018-0183-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Meng S, Tang GL, Pan HX. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis. Chembiochem 2018; 19:2002-2022. [PMID: 30039582 DOI: 10.1002/cbic.201800225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
Collapse
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
21
|
Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun 2018; 9:2478. [PMID: 29946103 PMCID: PMC6018673 DOI: 10.1038/s41467-018-04955-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Microbial symbionts are often a source of chemical novelty and can contribute to host defense against antagonists. However, the ecological relevance of chemical mediators remains unclear for most systems. Lagria beetles live in symbiosis with multiple strains of Burkholderia bacteria that protect their offspring against pathogens. Here, we describe the antifungal polyketide lagriamide, and provide evidence supporting that it is produced by an uncultured symbiont, Burkholderia gladioli Lv-StB, which is dominant in field-collected Lagria villosa. Interestingly, lagriamide is structurally similar to bistramides, defensive compounds found in marine tunicates. We identify a gene cluster that is probably involved in lagriamide biosynthesis, provide evidence for horizontal acquisition of these genes, and show that the naturally occurring symbiont strains on the egg are protective in the soil environment. Our findings highlight the potential of microbial symbionts and horizontal gene transfer as influential sources of ecological innovation.
Collapse
Affiliation(s)
- Laura V Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Ian J Miller
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP-São Paulo State University, Av. 24A, n. 1515-Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Jason C Kwan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
- Natural Product Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| |
Collapse
|
22
|
Abstract
Enzymes in biosynthetic pathways, especially in plant and microbial metabolism, generate structural and functional group complexity in small molecules by conversion of acyclic frameworks to cyclic scaffolds via short, efficient routes. The distinct chemical logic used by several distinct classes of cyclases, oxidative and non-oxidative, has recently been elucidated by genome mining, heterologous expression, and genetic and mechanistic analyses. These include enzymes performing pericyclic transformations, pyran synthases, tandem acting epoxygenases, and epoxide "hydrolases", as well as oxygenases and radical S-adenosylmethionine enzymes that involve rearrangements of substrate radicals under aerobic or anaerobic conditions.
Collapse
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
| |
Collapse
|
23
|
Fioramonte M, de Jesus HCR, Ferrari AJR, Lima DB, Drekener RL, Correia CRD, Oliveira LG, Neves-Ferreira AGDC, Carvalho PC, Gozzo FC. XPlex: An Effective, Multiplex Cross-Linking Chemistry for Acidic Residues. Anal Chem 2018; 90:6043-6050. [PMID: 29565564 DOI: 10.1021/acs.analchem.7b05135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross-linking/Mass spectrometry (XLMS) is a consolidated technique for structural characterization of proteins and protein complexes. Despite its success, the cross-linking chemistry currently used is mostly based on N-hydroxysuccinimide (NHS) esters, which react primarily with lysine residues. One way to expand the current applicability of XLMS into several new areas is to increase the number of cross-links obtainable for a target protein. We introduce a multiplex chemistry (denoted XPlex) that targets Asp, Glu, Lys, and Ser residues. XPlex can generate significantly more cross-links with reactions occurring at lower temperatures and enables targeting proteins that are not possible with NHS ester-based cross-linkers. We demonstrate the effectiveness of our approach in model proteins as well as a target Lys-poor protein, SalBIII. Identification of XPlex spectra requires a search engine capable of simultaneously considering multiple cross-linkers on the same run; to achieve this, we updated the SIM-XL search algorithm with a search mode tailored toward XPlex. In summary, we present a complete chemistry/computational solution for significantly increasing the number of possible distance constraints by mass spectrometry experiments, and thus, we are convinced that XPlex poses as a real complementary approach for structural proteomics studies.
Collapse
Affiliation(s)
- Mariana Fioramonte
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | | | - Diogo Borges Lima
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteu , Paris , France
| | - Roberta Lopes Drekener
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | - Luciana Gonzaga Oliveira
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | - Paulo Costa Carvalho
- Laboratory for Proteomics and Protein Engineering , Carlos Chagas Institute , Fiocruz , Parana , Brazil
| | - Fabio Cesar Gozzo
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| |
Collapse
|
24
|
Wagner DT, Zhang Z, Meoded RA, Cepeda AJ, Piel J, Keatinge-Clay AT. Structural and Functional Studies of a Pyran Synthase Domain from a trans-Acyltransferase Assembly Line. ACS Chem Biol 2018; 13:975-983. [PMID: 29481043 DOI: 10.1021/acschembio.8b00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.
Collapse
Affiliation(s)
- Drew T. Wagner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhicheng Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Roy A. Meoded
- Institut für Mikrobiologie, Eidgenössiche Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Alexis J. Cepeda
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jörn Piel
- Institut für Mikrobiologie, Eidgenössiche Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Sung KH, Berkhan G, Hollmann T, Wagner L, Blankenfeldt W, Hahn F. Einblicke in die duale Aktivität einer bifunktionalen Dehydratase-Cyclase-Domäne. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH; Inhoffenstraße 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig; Spielmannstraße 7 38106 Braunschweig Deutschland
| | - Gesche Berkhan
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
- Zentrum für Biomolekulare Wirkstoffe, BMWZ; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Deutschland
| | - Tim Hollmann
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Lisa Wagner
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Wulf Blankenfeldt
- Helmholtz-Zentrum für Infektionsforschung GmbH; Inhoffenstraße 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig; Spielmannstraße 7 38106 Braunschweig Deutschland
| | - Frank Hahn
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
- Zentrum für Biomolekulare Wirkstoffe, BMWZ; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Deutschland
| |
Collapse
|
26
|
Sung KH, Berkhan G, Hollmann T, Wagner L, Blankenfeldt W, Hahn F. Insights into the Dual Activity of a Bifunctional Dehydratase-Cyclase Domain. Angew Chem Int Ed Engl 2017; 57:343-347. [PMID: 29084363 DOI: 10.1002/anie.201707774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are a common structural motif in polyketide natural products and contribute significantly to their biological activity. Here, we report structural and mechanistic investigations on AmbDH3, a polyketide synthase domain with dual activity as dehydratase (DH) and pyran-forming cyclase in ambruticin biosynthesis. AmbDH3 is similar to monofunctional DH domains, using H51 and D215 for dehydration. V173 was confirmed as a diagnostic residue for cyclization activity by a mutational study and enzymatic in vitro experiments. Similar motifs were observed in the seemingly monofunctional AmbDH2, which also shows an unexpected cyclase activity. Our results pave the way for mining of hidden cyclases in biosynthetic pathways. They also open interesting prospects for the generation of novel biocatalysts for chemoenzymatic synthesis and pyran-polyketides by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.,Centre for Biomolecular Drug Research, BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Tim Hollmann
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Lisa Wagner
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Wulf Blankenfeldt
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Frank Hahn
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.,Centre for Biomolecular Drug Research, BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
27
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
28
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
29
|
Walther E, Boldt S, Kage H, Lauterbach T, Martin K, Roth M, Hertweck C, Sauerbrei A, Schmidtke M, Nett M. Zincophorin - biosynthesis in Streptomyces griseus and antibiotic properties. GMS INFECTIOUS DISEASES 2016; 4:Doc08. [PMID: 30671322 PMCID: PMC6301713 DOI: 10.3205/id000026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zincophorin is a polyketide antibiotic that possesses potent activity against Gram-positive bacteria, including human pathogens. While a number of total syntheses of this highly functionalized natural product were reported since its initial discovery, the genetic basis for the biosynthesis of zincophorin has remained unclear. In this study, the co-linearity inherent to polyketide pathways was used to identify the zincophorin biosynthesis gene cluster in the genome of the natural producer Streptomyces griseus HKI 0741. Interestingly, the same locus is fully conserved in the streptomycin-producing actinomycete S. griseus IFO 13350, suggesting that the latter bacterium is also capable of zincophorin biosynthesis. Biological profiling of zincophorin revealed a dose-dependent inhibition of the Gram-positive bacterium Streptococcus pneumoniae. The antibacterial effect, however, is accompanied by cytotoxicity. Antibiotic and cytotoxic activities were completely abolished upon esterification of the carboxylic acid group in zincophorin.
Collapse
Affiliation(s)
- Elisabeth Walther
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Sabrina Boldt
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Hirokazu Kage
- Technical University Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
| | - Tom Lauterbach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Karin Martin
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Jena, Germany
| | - Markus Nett
- Technical University Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany
| |
Collapse
|
30
|
The Draft Genome Sequence of Actinokineospora bangkokensis 44EHW T Reveals the Biosynthetic Pathway of the Antifungal Thailandin Compounds with Unusual Butylmalonyl-CoA Extender Units. Molecules 2016; 21:molecules21111607. [PMID: 27886115 PMCID: PMC6273641 DOI: 10.3390/molecules21111607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/16/2022] Open
Abstract
We report the draft genome sequence of Actinokineospora bangkokensis 44EHWT, the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There are three gene clusters encoding large polyketide synthases of type I. Annotation of the ORF functions and targeted gene disruption enabled us to identify the cluster for thailandin biosynthesis. We propose a plausible biosynthetic pathway for thailandin, where the unusual butylmalonyl-CoA extender unit is incorporated and results in an untypical side chain.
Collapse
|
31
|
Hong H, Sun Y, Zhou Y, Stephens E, Samborskyy M, Leadlay PF. Evidence for an iterative module in chain elongation on the azalomycin polyketide synthase. Beilstein J Org Chem 2016; 12:2164-2172. [PMID: 27829923 PMCID: PMC5082578 DOI: 10.3762/bjoc.12.206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022] Open
Abstract
The assembly-line synthases that produce bacterial polyketide natural products follow a modular paradigm in which each round of chain extension is catalysed by a different set or module of enzymes. Examples of deviation from this paradigm, in which a module catalyses either multiple extensions or none are of interest from both a mechanistic and an evolutionary viewpoint. We present evidence that in the biosynthesis of the 36-membered macrocyclic aminopolyol lactones (marginolactones) azalomycin and kanchanamycin, isolated respectively from Streptomyces malaysiensis DSM4137 and Streptomyces olivaceus Tü4018, the first extension module catalyses both the first and second cycles of polyketide chain extension. To confirm the integrity of the azl gene cluster, it was cloned intact on a bacterial artificial chromosome and transplanted into the heterologous host strain Streptomyces lividans, which does not possess the genes for marginolactone production. When furnished with 4-guanidinobutyramide, a specific precursor of the azalomycin starter unit, the recombinant S. lividans produced azalomycin, showing that the polyketide synthase genes in the sequenced cluster are sufficient to accomplish formation of the full-length polyketide chain. This provides strong support for module iteration in the azalomycin and kanchanamycin biosynthetic pathways. In contrast, re-sequencing of the gene cluster for biosynthesis of the polyketide β-lactone ebelactone in Streptomyces aburaviensis has shown that, contrary to a recently-published proposal, the ebelactone polyketide synthase faithfully follows the colinear modular paradigm.
Collapse
Affiliation(s)
- Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Yongjun Zhou
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Emily Stephens
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Markiyan Samborskyy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| |
Collapse
|
32
|
Hemmerling F, Hahn F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J Org Chem 2016; 12:1512-50. [PMID: 27559404 PMCID: PMC4979870 DOI: 10.3762/bjoc.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Hahn
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
33
|
Abstract
Most of the stereocenters of polyketide natural products are established during assembly line biosynthesis. The body of knowledge for how stereocenters are set is now large enough to begin constructing physical models of key reactions. Interactions between stereocenter-forming enzymes and polyketide intermediates are examined here at atomic resolution, drawing from the most current structural and functional information of ketosynthases (KSs), ketoreductases (KRs), dehydratases (DHs), enoylreductases (ERs), and related enzymes. While many details remain to be experimentally determined, our understanding of the chemical and physical mechanisms utilized by the chirality-molding enzymes of modular PKSs is rapidly advancing.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA. and Department of Chemistry, The University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, TX 78712, USA
| |
Collapse
|
34
|
Yang L, Lin Z, Huang SH, Hong R. Stereodivergent Synthesis of Functionalized Tetrahydropyrans Accelerated by Mechanism-Based Allylboration and Bioinspired Oxa-Michael Cyclization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
| | - Zuming Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
| | - Sha-Hua Huang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
35
|
Yang L, Lin Z, Huang SH, Hong R. Stereodivergent Synthesis of Functionalized Tetrahydropyrans Accelerated by Mechanism-Based Allylboration and Bioinspired Oxa-Michael Cyclization. Angew Chem Int Ed Engl 2016; 55:6280-4. [DOI: 10.1002/anie.201600558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
| | - Zuming Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
| | - Sha-Hua Huang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances; Shanghai Institute of Organic Chemistry (CAS); 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
36
|
Sundaram S, Hertweck C. On-line enzymatic tailoring of polyketides and peptides in thiotemplate systems. Curr Opin Chem Biol 2016; 31:82-94. [DOI: 10.1016/j.cbpa.2016.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 11/26/2022]
|
37
|
Abstract
A personal selection of 33 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pseudellone A from Pseudallescheria ellipsoidea.
Collapse
|