1
|
Ivanov BS, Bridges HR, Jarman OD, Hirst J. Structure of the turnover-ready state of an ancestral respiratory complex I. Nat Commun 2024; 15:9340. [PMID: 39472559 PMCID: PMC11522691 DOI: 10.1038/s41467-024-53679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Respiratory complex I is pivotal for cellular energy conversion, harnessing energy from NADH:ubiquinone oxidoreduction to drive protons across energy-transducing membranes for ATP synthesis. Despite detailed structural information on complex I, its mechanism of catalysis remains elusive due to lack of accompanying functional data for comprehensive structure-function analyses. Here, we present the 2.3-Å resolution structure of complex I from the α-proteobacterium Paracoccus denitrificans, a close relative of the mitochondrial progenitor, in phospholipid-bilayer nanodiscs. Three eukaryotic-type supernumerary subunits (NDUFS4, NDUFS6 and NDUFA12) plus a novel L-isoaspartyl-O-methyltransferase are bound to the core complex. Importantly, the enzyme is in a single, homogeneous resting state that matches the closed, turnover-ready (active) state of mammalian complex I. Our structure reveals the elements that stabilise the closed state and completes P. denitrificans complex I as a unified platform for combining structure, function and genetics in mechanistic studies.
Collapse
Affiliation(s)
- Bozhidar S Ivanov
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Structura Biotechnology Inc., Toronto, Canada
| | - Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
2
|
Otani R, Masuya T, Miyoshi H, Murai M. Mitochondrial respiratory complex I can be inhibited via bypassing the ubiquinone-accessing tunnel. FEBS Lett 2024; 598:1989-1995. [PMID: 38924556 DOI: 10.1002/1873-3468.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) couples electron transfer from NADH to ubiquinone with proton translocation in its membrane part. Structural studies have identified a long (~ 30 Å), narrow, tunnel-like cavity within the enzyme, through which ubiquinone may access a deep reaction site. Although various inhibitors are considered to block the ubiquinone reduction by occupying the tunnel's interior, this view is still debatable. We synthesized a phosphatidylcholine-quinazoline hybrid compound (PC-Qz1), in which a quinazoline-type toxophore was attached to the sn-2 acyl chain to prevent it from entering the tunnel. However, PC-Qz1 inhibited complex I and suppressed photoaffinity labeling by another quinazoline derivative, [125I]AzQ. This study provides further experimental evidence that is difficult to reconcile with the canonical ubiquinone-accessing tunnel model.
Collapse
Affiliation(s)
- Ryohei Otani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
3
|
Grba DN, Wright JJ, Yin Z, Fisher W, Hirst J. Molecular mechanism of the ischemia-induced regulatory switch in mammalian complex I. Science 2024; 384:1247-1253. [PMID: 38870289 DOI: 10.1126/science.ado2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
Collapse
Affiliation(s)
| | | | | | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
4
|
Fang Z, Corbizi Fattori G, McKerrell T, Boucher RH, Jackson A, Fletcher RS, Forte D, Martin JE, Fox S, Roberts J, Glover R, Harris E, Bridges HR, Grassi L, Rodriguez-Meira A, Mead AJ, Knapper S, Ewing J, Butt NM, Jain M, Francis S, Clark FJ, Coppell J, McMullin MF, Wadelin F, Narayanan S, Milojkovic D, Drummond MW, Sekhar M, ElDaly H, Hirst J, Paramor M, Baxter EJ, Godfrey AL, Harrison CN, Méndez-Ferrer S. Tamoxifen for the treatment of myeloproliferative neoplasms: A Phase II clinical trial and exploratory analysis. Nat Commun 2023; 14:7725. [PMID: 38001082 PMCID: PMC10673935 DOI: 10.1038/s41467-023-43175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.
Collapse
Affiliation(s)
- Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Giuditta Corbizi Fattori
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Thomas McKerrell
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rebecca H Boucher
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Aimee Jackson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Rachel S Fletcher
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Dorian Forte
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Jose-Ezequiel Martin
- Cancer Molecular Diagnostic Laboratory, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sonia Fox
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - James Roberts
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Rachel Glover
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Erica Harris
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Hannah R Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Alba Rodriguez-Meira
- NIHR Biomedical Research Centre and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam J Mead
- NIHR Biomedical Research Centre and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Joanne Ewing
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nauman M Butt
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | | | - Fiona J Clark
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | | | | | | | | | - Hesham ElDaly
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Maike Paramor
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- NHS Blood and Transplant, Cambridge, UK.
| |
Collapse
|
5
|
Hardy RE, Chung I, Yu Y, Loh SHY, Morone N, Soleilhavoup C, Travaglio M, Serreli R, Panman L, Cain K, Hirst J, Martins LM, MacFarlane M, Pryde KR. The antipsychotic medications aripiprazole, brexpiprazole and cariprazine are off-target respiratory chain complex I inhibitors. Biol Direct 2023; 18:43. [PMID: 37528429 PMCID: PMC10391878 DOI: 10.1186/s13062-023-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 08/03/2023] Open
Abstract
Antipsychotic drugs are the mainstay of treatment for schizophrenia and provide adjunct therapies for other prevalent psychiatric conditions, including bipolar disorder and major depressive disorder. However, they also induce debilitating extrapyramidal syndromes (EPS), such as Parkinsonism, in a significant minority of patients. The majority of antipsychotic drugs function as dopamine receptor antagonists in the brain while the most recent 'third'-generation, such as aripiprazole, act as partial agonists. Despite showing good clinical efficacy, these newer agents are still associated with EPS in ~ 5 to 15% of patients. However, it is not fully understood how these movement disorders develop. Here, we combine clinically-relevant drug concentrations with mutliscale model systems to show that aripiprazole and its primary active metabolite induce mitochondrial toxicity inducing robust declines in cellular ATP and viability. Aripiprazole, brexpiprazole and cariprazine were shown to directly inhibit respiratory complex I through its ubiquinone-binding channel. Importantly, all three drugs induced mitochondrial toxicity in primary embryonic mouse neurons, with greater bioenergetic inhibition in ventral midbrain neurons than forebrain neurons. Finally, chronic feeding with aripiprazole resulted in structural damage to mitochondria in the brain and thoracic muscle of adult Drosophila melanogaster consistent with locomotor dysfunction. Taken together, we show that antipsychotic drugs acting as partial dopamine receptor agonists exhibit off-target mitochondrial liabilities targeting complex I.
Collapse
Affiliation(s)
- Rachel E Hardy
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Clement Soleilhavoup
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Marco Travaglio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Riccardo Serreli
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Lia Panman
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kelvin Cain
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luis M Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Kenneth R Pryde
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
6
|
Ikunishi R, Otani R, Masuya T, Shinzawa-Itoh K, Shiba T, Murai M, Miyoshi H. Respiratory complex I in mitochondrial membrane catalyzes oversized ubiquinones. J Biol Chem 2023; 299:105001. [PMID: 37394006 PMCID: PMC10416054 DOI: 10.1016/j.jbc.2023.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane.
Collapse
Affiliation(s)
- Ryo Ikunishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryohei Otani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Eisermann J, Wright JJ, Wilton-Ely JDET, Hirst J, Roessler MM. Using light scattering to assess how phospholipid-protein interactions affect complex I functionality in liposomes. RSC Chem Biol 2023; 4:386-398. [PMID: 37292059 PMCID: PMC10246558 DOI: 10.1039/d2cb00158f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 09/28/2024] Open
Abstract
Complex I is an essential membrane protein in respiration, oxidising NADH and reducing ubiquinone to contribute to the proton-motive force that powers ATP synthesis. Liposomes provide an attractive platform to investigate complex I in a phospholipid membrane with the native hydrophobic ubiquinone substrate and proton transport across the membrane, but without convoluting contributions from other proteins present in the native mitochondrial inner membrane. Here, we use dynamic and electrophoretic light scattering techniques (DLS and ELS) to show how physical parameters, in particular the zeta potential (ζ-potential), correlate strongly with the biochemical functionality of complex I-containing proteoliposomes. We find that cardiolipin plays a crucial role in the reconstitution and functioning of complex I and that, as a highly charged lipid, it acts as a sensitive reporter on the biochemical competence of proteoliposomes in ELS measurements. We show that the change in ζ-potential between liposomes and proteoliposomes correlates linearly with protein retention and catalytic oxidoreduction activity of complex I. These correlations are dependent on the presence of cardiolipin, but are otherwise independent of the liposome lipid composition. Moreover, changes in the ζ-potential are sensitive to the proton motive force established upon proton pumping by complex I, thereby constituting a complementary technique to established biochemical assays. ELS measurements may thus serve as a more widely useful tool to investigate membrane proteins in lipid systems, especially those that contain charged lipids.
Collapse
Affiliation(s)
- Jana Eisermann
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus London W12 0BZ UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus Cambridge CB2 0XY UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus London W12 0BZ UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus Cambridge CB2 0XY UK
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus London W12 0BZ UK
| |
Collapse
|
8
|
Partipilo M, Claassens NJ, Slotboom DJ. A Hitchhiker's Guide to Supplying Enzymatic Reducing Power into Synthetic Cells. ACS Synth Biol 2023; 12:947-962. [PMID: 37052416 PMCID: PMC10127272 DOI: 10.1021/acssynbio.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 04/14/2023]
Abstract
The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico J. Claassens
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 2023; 379:351-357. [PMID: 36701435 PMCID: PMC7614227 DOI: 10.1126/science.ade3332] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.
Collapse
Affiliation(s)
- Hannah R. Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,Authors for correspondence: and
| | - James N. Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, YO10 5DD, UK
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,Authors for correspondence: and
| |
Collapse
|
10
|
Ishikawa M, Masuya T, Kuroda S, Uno S, Butler NL, Foreman S, Murai M, Barquera B, Miyoshi H. The side chain of ubiquinone plays a critical role in Na + translocation by the NADH-ubiquinone oxidoreductase (Na +-NQR) from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148547. [PMID: 35337841 DOI: 10.1016/j.bbabio.2022.148547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
Abstract
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is an essential bacterial respiratory enzyme that generates a Na+ gradient across the cell membrane. However, the mechanism that couples the redox reactions to Na+ translocation remains unknown. To address this, we examined the relation between reduction of UQ and Na+ translocation using a series of synthetic UQs with Vibrio cholerae Na+-NQR reconstituted into liposomes. UQ0 that has no side chain and UQCH3 and UQC2H5, which have methyl and ethyl side chains, respectively, were catalytically reduced by Na+-NQR, but their reduction generated no membrane potential, indicating that the overall electron transfer and Na+ translocation are not coupled. While these UQs were partly reduced by electron leak from the cofactor(s) located upstream of riboflavin, this complete loss of Na+ translocation cannot be explained by the electron leak. Lengthening the UQ side chain to n-propyl (C3H7) or longer significantly restored Na+ translocation. It has been considered that Na+ translocation is completed when riboflavin, a terminal redox cofactor residing within the membrane, is reduced. In this view, the role of UQ is simply to accept electrons from the reduced riboflavin to regenerate the stable neutral riboflavin radical and reset the catalytic cycle. However, the present study revealed that the final UQ reduction via reduced riboflavin makes an important contribution to Na+ translocation through a critical role of its side chain. Based on the results, we discuss the critical role of the UQ side chain in Na+ translocation.
Collapse
Affiliation(s)
- Moe Ishikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Seina Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinpei Uno
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nicole L Butler
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Sara Foreman
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Blanca Barquera
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Wright JJ, Biner O, Chung I, Burger N, Bridges HR, Hirst J. Reverse Electron Transfer by Respiratory Complex I Catalyzed in a Modular Proteoliposome System. J Am Chem Soc 2022; 144:6791-6801. [PMID: 35380814 PMCID: PMC9026280 DOI: 10.1021/jacs.2c00274] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 02/02/2023]
Abstract
Respiratory complex I is an essential metabolic enzyme that uses the energy from NADH oxidation and ubiquinone reduction to translocate protons across an energy transducing membrane and generate the proton motive force for ATP synthesis. Under specific conditions, complex I can also catalyze the reverse reaction, Δp-linked oxidation of ubiquinol to reduce NAD+ (or O2), known as reverse electron transfer (RET). Oxidative damage by reactive oxygen species generated during RET underpins ischemia reperfusion injury, but as RET relies on several converging metabolic pathways, little is known about its mechanism or regulation. Here, we demonstrate Δp-linked RET through complex I in a synthetic proteoliposome system for the first time, enabling complete kinetic characterization of RET catalysis. We further establish the capability of our system by showing how RET in the mammalian enzyme is regulated by the active-deactive transition and by evaluating RET by complex I from several species in which direct assessment has not been otherwise possible. We thus provide new insights into the reversibility of complex I catalysis, an important but little understood mechanistic and physiological feature.
Collapse
Affiliation(s)
- John J. Wright
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| | | | - Injae Chung
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| | | | - Hannah R. Bridges
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| | - Judy Hirst
- Medical Research Council
Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, U.K.
| |
Collapse
|
12
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
13
|
Copsey AC, Barsottini MRO, May B, Xu F, Albury MS, Young L, Moore AL. Kinetic characterisation and inhibitor sensitivity of Candida albicans and Candida auris recombinant AOX expressed in a self-assembled proteoliposome system. Sci Rep 2021; 11:14748. [PMID: 34285303 PMCID: PMC8292455 DOI: 10.1038/s41598-021-94320-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Candidemia caused by Candida spp. is a serious threat in hospital settings being a major cause of acquired infection and death and a possible contributor to Covid-19 mortality. Candidemia incidence has been rising worldwide following increases in fungicide-resistant pathogens highlighting the need for more effective antifungal agents with novel modes of action. The membrane-bound enzyme alternative oxidase (AOX) promotes fungicide resistance and is absent in humans making it a desirable therapeutic target. However, the lipophilic nature of the AOX substrate (ubiquinol-10) has hindered its kinetic characterisation in physiologically-relevant conditions. Here, we present the purification and expression of recombinant AOXs from C. albicans and C. auris in a self-assembled proteoliposome (PL) system. Kinetic parameters (Km and Vmax) with respect to ubiquinol-10 have been determined. The PL system has also been employed in dose-response assays with novel AOX inhibitors. Such information is critical for the future development of novel treatments for Candidemia.
Collapse
Affiliation(s)
- Alice C Copsey
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Mario R O Barsottini
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Benjamin May
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
- Theradex (Europe) Ltd, 2nd Floor, The Pinnacle, Station Way, Crawley, RH10 1JH, UK
| | - Fei Xu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China
| | - Mary S Albury
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
14
|
Jarman OD, Biner O, Wright JJ, Hirst J. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I. Sci Rep 2021; 11:10143. [PMID: 33980947 PMCID: PMC8115037 DOI: 10.1038/s41598-021-89575-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.
Collapse
Affiliation(s)
- Owen D. Jarman
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Olivier Biner
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - John J. Wright
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Judy Hirst
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
15
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
16
|
Jarman OD, Biner O, Hirst J. Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148355. [PMID: 33321110 PMCID: PMC8039183 DOI: 10.1016/j.bbabio.2020.148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Olivier Biner
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
17
|
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) captures the free energy from oxidising NADH and reducing ubiquinone to drive protons across the mitochondrial inner membrane and power oxidative phosphorylation. Recent cryo-EM analyses have produced near-complete models of the mammalian complex, but leave the molecular principles of its long-range energy coupling mechanism open to debate. Here, we describe the 3.0-Å resolution cryo-EM structure of complex I from mouse heart mitochondria with a substrate-like inhibitor, piericidin A, bound in the ubiquinone-binding active site. We combine our structural analyses with both functional and computational studies to demonstrate competitive inhibitor binding poses and provide evidence that two inhibitor molecules bind end-to-end in the long substrate binding channel. Our findings reveal information about the mechanisms of inhibition and substrate reduction that are central for understanding the principles of energy transduction in mammalian complex I. The respiratory complex I (NADH:ubiquinone oxidoreductase) is a large redox-driven proton pump that initiates respiration in mitochondria. Here, the authors present the 3.0 Å cryo-EM structure of complex I from mouse heart mitochondria with the ubiquinone-analogue inhibitor piericidin A bound in the active site and with kinetic measurements and MD simulations they further show that this inhibitor acts competitively against the native ubiquinone-10 substrate.
Collapse
|
18
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
19
|
Sharon D, Cathelin S, Mirali S, Di Trani JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T, Chan SM. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci Transl Med 2020; 11:11/516/eaax2863. [PMID: 31666400 DOI: 10.1126/scitranslmed.aax2863] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Venetoclax is a specific B cell lymphoma 2 (BCL-2) inhibitor with promising activity against acute myeloid leukemia (AML), but its clinical efficacy as a single agent or in combination with hypomethylating agents (HMAs), such as azacitidine, is hampered by intrinsic and acquired resistance. Here, we performed a genome-wide CRISPR knockout screen and found that inactivation of genes involved in mitochondrial translation restored sensitivity to venetoclax in resistant AML cells. Pharmacologic inhibition of mitochondrial protein synthesis with antibiotics that target the ribosome, including tedizolid and doxycycline, effectively overcame venetoclax resistance. Mechanistic studies showed that both tedizolid and venetoclax suppressed mitochondrial respiration, with the latter demonstrating inhibitory activity against complex I [nicotinamide adenine dinucleotide plus hydrogen (NADH) dehydrogenase] of the electron transport chain (ETC). The drugs cooperated to activate a heightened integrated stress response (ISR), which, in turn, suppressed glycolytic capacity, resulting in adenosine triphosphate (ATP) depletion and subsequent cell death. Combination treatment with tedizolid and venetoclax was superior to either agent alone in reducing leukemic burden in mice engrafted with treatment-resistant human AML. The addition of tedizolid to azacitidine and venetoclax further enhanced the killing of resistant AML cells in vitro and in vivo. Our findings demonstrate that inhibition of mitochondrial translation is an effective approach to overcoming venetoclax resistance and provide a rationale for combining tedizolid, azacitidine, and venetoclax as a triplet therapy for AML.
Collapse
Affiliation(s)
- David Sharon
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | | | - Sara Mirali
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
20
|
Biner O, Fedor JG, Yin Z, Hirst J. Bottom-Up Construction of a Minimal System for Cellular Respiration and Energy Regeneration. ACS Synth Biol 2020; 9:1450-1459. [PMID: 32383867 PMCID: PMC7611821 DOI: 10.1021/acssynbio.0c00110] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate (ATP), the cellular energy currency, is essential for life. The ability to provide a constant supply of ATP is therefore crucial for the construction of artificial cells in synthetic biology. Here, we describe the bottom-up assembly and characterization of a minimal respiratory system that uses NADH as a fuel to produce ATP from ADP and inorganic phosphate, and is thus capable of sustaining both upstream metabolic processes that rely on NAD+, and downstream energy-demanding processes that are powered by ATP hydrolysis. A detergent-mediated approach was used to co-reconstitute respiratory mitochondrial complex I and an F-type ATP synthase into nanosized liposomes. Addition of the alternative oxidase to the resulting proteoliposomes produced a minimal artificial "organelle" that reproduces the energy-converting catalytic reactions of the mitochondrial respiratory chain: NADH oxidation, ubiquinone cycling, oxygen reduction, proton pumping, and ATP synthesis. As a proof-of-principle, we demonstrate that our nanovesicles are capable of using an NAD+-linked substrate to drive cell-free protein expression. Our nanovesicles are both efficient and durable and may be applied to sustain artificial cells in future work.
Collapse
Affiliation(s)
- Olivier Biner
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Justin G Fedor
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
21
|
Barsottini MRO, Copsey A, Young L, Baroni RM, Cordeiro AT, Pereira GAG, Moore AL. Biochemical characterization and inhibition of the alternative oxidase enzyme from the fungal phytopathogen Moniliophthora perniciosa. Commun Biol 2020; 3:263. [PMID: 32451394 PMCID: PMC7248098 DOI: 10.1038/s42003-020-0981-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 01/27/2023] Open
Abstract
Moniliophthora perniciosa is a fungal pathogen and causal agent of the witches' broom disease of cocoa, a threat to the chocolate industry and to the economic and social security in cocoa-planting countries. The membrane-bound enzyme alternative oxidase (MpAOX) is crucial for pathogen survival; however a lack of information on the biochemical properties of MpAOX hinders the development of novel fungicides. In this study, we purified and characterised recombinant MpAOX in dose-response assays with activators and inhibitors, followed by a kinetic characterization both in an aqueous environment and in physiologically-relevant proteoliposomes. We present structure-activity relationships of AOX inhibitors such as colletochlorin B and analogues which, aided by an MpAOX structural model, indicates key residues for protein-inhibitor interaction. We also discuss the importance of the correct hydrophobic environment for MpAOX enzymatic activity. We envisage that such results will guide the future development of AOX-targeting antifungal agents against M. perniciosa, an important outcome for the chocolate industry.
Collapse
Affiliation(s)
- Mario R O Barsottini
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.,Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Alice Copsey
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Luke Young
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Renata M Baroni
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo A G Pereira
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Anthony L Moore
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
22
|
Stephenson ZA, Harvey RF, Pryde KR, Mistry S, Hardy RE, Serreli R, Chung I, Allen TE, Stoneley M, MacFarlane M, Fischer PM, Hirst J, Kellam B, Willis AE. Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I. eLife 2020; 9:55845. [PMID: 32432547 PMCID: PMC7316505 DOI: 10.7554/elife.55845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death. We used a library of chemical variants of mubritinib and showed that modifying the 1H-1,2,3-triazole altered complex I inhibition, identifying the heterocyclic 1,3-nitrogen motif as the toxicophore. The same toxicophore is present in a second anti-cancer therapeutic carboxyamidotriazole (CAI) and we demonstrate that CAI also functions through complex I inhibition, mediated by the toxicophore. Complex I inhibition is directly linked to anti-cancer cell activity, with toxicophore modification ablating the desired effects of these compounds on cancer cell proliferation and apoptosis. The pharmaceutical industry needs to make safe and effective drugs. At the same time this industry is under pressure to keep the costs of developing these drugs at an acceptable level. Drugs work by interacting with and typically blocking a specific target, such as a protein in a particular type of cell. Sometimes, however, drugs also bind other unexpected targets. These “off-target” effects can be the reason for a drug’s toxicity, and it is important – both for the benefit of patients and the money that can be saved when developing drugs – to identify how drugs cause toxic side effects. The earlier researchers detect off-target effects, the better. Recent data has suggested that an anti-cancer drug called mubritinib has off-target effects on the compartments within cells that provide the cell with most of their energy, the mitochondria. This drug’s intended target is a protein called HER2, which is found in large amounts on the surfaces of some breast cancer cells. Yet if mubritinib has this off-target effect on mitochondria, it may be harmful to other cells including heart cells because the heart is an organ that needs a large amount of energy from its mitochondria. Stephenson et al. have now performed experiments to show that mubritinib does not actually interact with HER2 at all, but only targets mitochondria. The effect of mubritinib as an anti-cancer drug is therefore only due to its activity against mitochondria. Digging deeper into the chemistry revealed the small parts of its chemical structure that was responsible for mubritinib’s toxicity against heart cells, the so-called toxic substructure. Another anti-cancer drug called carboxyamidotriazole also has the same toxic substructure. Carboxyamidotriazole is supposed to stop cells from taking up calcium ions, but a final set of experiments demonstrated that this drug also only acts by inhibiting mitochondria. Often there is not enough information about many drugs’ substructures, meaning off-target effects and toxicities cannot be predicted. The pharmaceutical industry will now be able to benefit from this new knowledge about the toxic substructures within some drugs. This research may also help patients who take mubritinib or carboxyamidotriazole, because their doctors will have to check for side effects on the heart more carefully.
Collapse
Affiliation(s)
- Zoe A Stephenson
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Kenneth R Pryde
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Mistry
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachel E Hardy
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Riccardo Serreli
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Eh Allen
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Peter M Fischer
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Barrie Kellam
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Wright JJ, Fedor JG, Hirst J, Roessler MM. Using a chimeric respiratory chain and EPR spectroscopy to determine the origin of semiquinone species previously assigned to mitochondrial complex I. BMC Biol 2020; 18:54. [PMID: 32429970 PMCID: PMC7238650 DOI: 10.1186/s12915-020-00768-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/11/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND For decades, semiquinone intermediates have been suggested to play an essential role in catalysis by one of the most enigmatic proton-pumping enzymes, respiratory complex I, and different mechanisms have been proposed on their basis. However, the difficulty in investigating complex I semiquinones, due to the many different enzymes embedded in the inner mitochondrial membrane, has resulted in an ambiguous picture and no consensus. RESULTS In this paper, we re-examine the highly debated origin of semiquinone species in mitochondrial membranes using a novel approach. Our combination of a semi-artificial chimeric respiratory chain with pulse EPR spectroscopy (HYSCORE) has enabled us to conclude, unambiguously and for the first time, that the majority of the semiquinones observed in mitochondrial membranes originate from complex III. We also identify a minor contribution from complex II. CONCLUSIONS We are unable to attribute any semiquinone signals unambiguously to complex I and, reconciling our observations with much of the previous literature, conclude that they are likely to have been misattributed to it. We note that, for this earlier work, the tools we have relied on here to deconvolute overlapping EPR signals were not available. Proposals for the mechanism of complex I based on the EPR signals of semiquinone species observed in mitochondrial membranes should thus be treated with caution until future work has succeeded in isolating any complex I semiquinone EPR spectroscopic signatures present.
Collapse
Affiliation(s)
- John J Wright
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Justin G Fedor
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
24
|
Uno S, Masuya T, Shinzawa-Itoh K, Lasham J, Haapanen O, Shiba T, Inaoka DK, Sharma V, Murai M, Miyoshi H. Oversized ubiquinones as molecular probes for structural dynamics of the ubiquinone reaction site in mitochondrial respiratory complex I. J Biol Chem 2020; 295:2449-2463. [PMID: 31953326 DOI: 10.1074/jbc.ra119.012347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
NADH-quinone oxidoreductase (complex I) couples electron transfer from NADH to quinone with proton translocation across the membrane. Quinone reduction is a key step for energy transmission from the site of quinone reduction to the remotely located proton-pumping machinery of the enzyme. Although structural biology studies have proposed the existence of a long and narrow quinone-access channel, the physiological relevance of this channel remains debatable. We investigated here whether complex I in bovine heart submitochondrial particles (SMPs) can catalytically reduce a series of oversized ubiquinones (OS-UQs), which are highly unlikely to transit the narrow channel because their side chain includes a bulky "block" that is ∼13 Å across. We found that some OS-UQs function as efficient electron acceptors from complex I, accepting electrons with an efficiency comparable with ubiquinone-2. The catalytic reduction and proton translocation coupled with this reduction were completely inhibited by different quinone-site inhibitors, indicating that the reduction of OS-UQs takes place at the physiological reaction site for ubiquinone. Notably, the proton-translocating efficiencies of OS-UQs significantly varied depending on their side-chain structures, suggesting that the reaction characteristics of OS-UQs affect the predicted structural changes of the quinone reaction site required for triggering proton translocation. These results are difficult to reconcile with the current channel model; rather, the access path for ubiquinone may be open to allow OS-UQs to access the reaction site. Nevertheless, contrary to the observations in SMPs, OS-UQs were not catalytically reduced by isolated complex I reconstituted into liposomes. We discuss possible reasons for these contradictory results.
Collapse
Affiliation(s)
- Shinpei Uno
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Outi Haapanen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN); School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Vivek Sharma
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
25
|
Abstract
Single-particle electron cryomicroscopy (cryo-EM) has led to a revolution in structural work on mammalian respiratory complex I. Complex I (mitochondrial NADH:ubiquinone oxidoreductase), a membrane-bound redox-driven proton pump, is one of the largest and most complicated enzymes in the mammalian cell. Rapid progress, following the first 5-Å resolution data on bovine complex I in 2014, has led to a model for mouse complex I at 3.3-Å resolution that contains 96% of the 8,518 residues and to the identification of different particle classes, some of which are assigned to biochemically defined states. Factors that helped improve resolution, including improvements to biochemistry, cryo-EM grid preparation, data collection strategy, and image processing, are discussed. Together with recent structural data from an ancient relative, membrane-bound hydrogenase, cryo-EM on mammalian complex I has provided new insights into the proton-pumping machinery and a foundation for understanding the enzyme's catalytic mechanism.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| | - James N Blaza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , , .,Current affiliation: York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Justin G Fedor
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| |
Collapse
|
26
|
Measuring the functionality of the mitochondrial pumping complexes with multi-wavelength spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:89-101. [DOI: 10.1016/j.bbabio.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/04/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
|
27
|
Wei L, Wu C, Tung CH, Wang W, Xu Z. Decarboxylative sulfenylation of amino acids via metallaphotoredox catalysis. Org Chem Front 2019. [DOI: 10.1039/c9qo00817a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A nickel/visible light photoredox co-catalyzed decarboxylative thiolation reaction of carboxylic acids has been developed. This odorless sulfenylation reaction proceeded well via a nickel/photoredox cooperative catalysis pathway under very mild conditions.
Collapse
Affiliation(s)
- Lidan Wei
- Key Lab of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Chengjuan Wu
- Key Lab of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Zhenghu Xu
- Key Lab of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
28
|
Fedor JG, Hirst J. Mitochondrial Supercomplexes Do Not Enhance Catalysis by Quinone Channeling. Cell Metab 2018; 28:525-531.e4. [PMID: 29937372 PMCID: PMC6125145 DOI: 10.1016/j.cmet.2018.05.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Mitochondrial respiratory supercomplexes, comprising complexes I, III, and IV, are the minimal functional units of the electron transport chain. Assembling the individual complexes into supercomplexes may stabilize them, provide greater spatiotemporal control of respiration, or, controversially, confer kinetic advantages through the sequestration of local quinone and cytochrome c pools (substrate channeling). Here, we have incorporated an alternative quinol oxidase (AOX) into mammalian heart mitochondrial membranes to introduce a competing pathway for quinol oxidation and test for channeling. AOX substantially increases the rate of NADH oxidation by O2 without affecting the membrane integrity, the supercomplexes, or NADH-linked oxidative phosphorylation. Therefore, the quinol generated in supercomplexes by complex I is reoxidized more rapidly outside the supercomplex by AOX than inside the supercomplex by complex III. Our results demonstrate that quinone and quinol diffuse freely in and out of supercomplexes: substrate channeling does not occur and is not required to support respiration.
Collapse
Affiliation(s)
- Justin G Fedor
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
29
|
Blaza JN, Vinothkumar KR, Hirst J. Structure of the Deactive State of Mammalian Respiratory Complex I. Structure 2018; 26:312-319.e3. [PMID: 29395787 PMCID: PMC5807054 DOI: 10.1016/j.str.2017.12.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Preparation of mammalian complex I in the deactive state that forms during ischemia The structure of the deactive state determined using electron cryomicroscopy Improved particle densities and orientations obtained using PEGylated gold grids Localized unfolding around the quinone-binding site in the deactive state
Collapse
Affiliation(s)
- James N Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kutti R Vinothkumar
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
30
|
Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. Proc Natl Acad Sci U S A 2017; 114:12737-12742. [PMID: 29133414 DOI: 10.1073/pnas.1714074114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4-7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion.
Collapse
|
31
|
Le Breton N, Wright JJ, Jones AJY, Salvadori E, Bridges HR, Hirst J, Roessler MM. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I. J Am Chem Soc 2017; 139:16319-16326. [PMID: 29039928 DOI: 10.1021/jacs.7b09261] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A(1H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.
Collapse
Affiliation(s)
- Nolwenn Le Breton
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, United Kingdom
| | - John J Wright
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, United Kingdom
| | - Andrew J Y Jones
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge , Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Enrico Salvadori
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, United Kingdom.,London Centre for Nanotechnology, University College London , 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge , Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge , Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, United Kingdom
| |
Collapse
|
32
|
Structural insights into the alternative oxidases: are all oxidases made equal? Biochem Soc Trans 2017; 45:731-740. [PMID: 28620034 DOI: 10.1042/bst20160178] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/15/2023]
Abstract
The alternative oxidases (AOXs) are ubiquinol-oxidoreductases that are members of the diiron carboxylate superfamily. They are not only ubiquitously distributed within the plant kingdom but also found in increasing numbers within the fungal, protist, animal and prokaryotic kingdoms. Although functions of AOXs are highly diverse in general, they tend to play key roles in thermogenesis, stress tolerance (through the management of radical oxygen species) and the maintenance of mitochondrial and cellular energy homeostasis. The best structurally characterised AOX is from Trypanosoma brucei In this review, we compare the structure of AOXs, created using homology modelling, from many important species in an attempt to explain differences in activity and sensitivity to AOX inhibitors. We discuss the implications of these findings not only for future structure-based drug design but also for the design of novel AOXs for gene therapy.
Collapse
|
33
|
Moreno-Loshuertos R, Enríquez JA. Respiratory supercomplexes and the functional segmentation of the CoQ pool. Free Radic Biol Med 2016; 100:5-13. [PMID: 27105951 DOI: 10.1016/j.freeradbiomed.2016.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/14/2022]
Abstract
The evidence accumulated during the last fifteen years on the existence of respiratory supercomplexes and their proposed functional implications has changed our understanding of the OXPHOS system complexity and regulation. The plasticity model is a point of encounter accounting for the apparently contradictory experimental observations claimed to support either the solid or the fluid models. It allows the explanation of previous observations such as the dependence between respiratory complexes, supercomplex assembly dynamics or the existence of different functional ubiquinone pools. With the general acceptation of respiratory supercomplexes as true entities, this review evaluates the supporting evidences in favor or against the existence of different ubiquinone pools and the relationship between supercomplexes, ROS production and pathology.
Collapse
Affiliation(s)
- Raquel Moreno-Loshuertos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza 50009, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza 50009, Spain.
| |
Collapse
|
34
|
Hirst J, Roessler MM. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:872-83. [PMID: 26721206 PMCID: PMC4893023 DOI: 10.1016/j.bbabio.2015.12.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron–sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Current knowledge of the redox reactions catalyzed by complex I is reviewed. Possible quinone reduction pathways are presented. The presence and number of semiquinone intermediates are deliberated. The involvement of cluster N2/semiquinones in coupled proton transfer is discussed. Evidence for reactive oxygen species production by semiquinones is examined.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|