1
|
Dang M, Jia R, Tan K, Hao D, Yang W, Zhou CY, Guo Z. Heterogeneous Photocatalytic Ring Expansion of Cyclic Ketones for the Construction of Medium-Sized Lactams. J Org Chem 2024; 89:4031-4036. [PMID: 38447165 DOI: 10.1021/acs.joc.3c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Construction of medium-sized ring compounds remains challenging in synthetic chemistry. Herein, we describe the synthesis of medium-sized lactams via a photoinduced ring expansion of benzo-fused cyclic ketones using graphitic carbon nitride (g-C3N4) as a photocatalyst. The ring expansion protocol provided an efficient access to 8-10-membered lactams in good yields and displayed good tolerance to a range of functional groups. The mechanism studies revealed that the photochemical reaction proceeds via an intermediary of a nitrogen radical, which is generated through an oxidative hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Mengzhen Dang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Ruizhi Jia
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Kai Tan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danyang Hao
- College of Engineering, Westlake University, Hangzhou, Zhejiang 310012, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| |
Collapse
|
2
|
Kowalska J, Łukasik B, Frankowski S, Albrecht Ł. Hydrazone Activation in the Aminocatalytic Cascade Reaction for the Synthesis of Tetrahydroindolizines. Org Lett 2024; 26:814-818. [PMID: 38266767 PMCID: PMC10845150 DOI: 10.1021/acs.orglett.3c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In this Letter, we demonstrate the usefulness of hydrazone activation for the synthesis of biologically relevant tetrahydroindolizines. A pyrrol-derived hydrazone bearing a Michael acceptor moiety in the N-alkyl side chain has been designed with the aim of participating in the aminocatalytic cascade reaction leading to the annulation of the new six-membered heterocyclic scaffold. The application of (S)-(-)-α,α-diphenyl-2-pyrrolidinemethanol trimethylsilyl ether as the aminocatalyst allows for the iminium ion-enamine-mediated cascade to proceed in a fully stereoselective manner.
Collapse
Affiliation(s)
- Justyna Kowalska
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Beata Łukasik
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Sebastian Frankowski
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
3
|
Cheng WF, Ma S, Lai YT, Cheung YT, Akkarasereenon K, Zhou Y, Tong R. BiBr 3 -Mediated Intramolecular Aza-Prins Cyclization of Aza-Achmatowicz Rearrangement Products: Asymmetric Total Synthesis of Suaveoline and Sarpagine Alkaloids. Angew Chem Int Ed Engl 2023; 62:e202311671. [PMID: 37724977 DOI: 10.1002/anie.202311671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
An intramolecular aza-Prins cyclization of aza-Achmatowicz rearrangement products was developed in which bismuth tribromide (BiBr3 ) plays a dual role as an efficient Lewis acid and source of the bromide nucleophile. This approach enables the facile construction of highly functionalized 9-azabicyclo[3.3.1]nonanes (9-ABNs), which are valuable synthetic building blocks and a powerful platform for the synthesis of a variety of alkaloid natural products and drug molecules. Suitable substrates for the aza-Prins cyclization include 1,1-disubstituted alkenes, 1,2-disubstituted alkenes, alkynes, and allenes, with good to excellent yields observed. Finally, we showcase the application of this new approach to the enantioselective total synthesis of six indole alkaloids: (-)-suaveoline (1), (-)-norsuaveoline (2), (-)-macrophylline (3), (+)-normacusine B (4), (+)-Na -methyl-16-epipericyclivine (5) and (+)-affinisine (6) in a total of 9-14 steps. This study significantly expands the synthetic utility of the aza-Achmatowicz rearrangement, and the strategy (aza-Achmatowicz/aza-Prins) is expected to be applicable to the total synthesis of other members of the big family of macroline and sarpagine indole alkaloids.
Collapse
Affiliation(s)
- Wai Fung Cheng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Shiqiang Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yin Tung Lai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Luis‐Barrera J, Rodriguez S, Uria U, Reyes E, Prieto L, Carrillo L, Pedrón M, Tejero T, Merino P, Vicario JL. Brønsted Acid versus Phase-Transfer Catalysis in the Enantioselective Transannular Aminohalogenation of Enesultams. Chemistry 2022; 28:e202202267. [PMID: 36111677 PMCID: PMC10053555 DOI: 10.1002/chem.202202267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022]
Abstract
We have studied the enantioselective transannular aminohalogenation reaction of unsaturated medium-sized cyclic benzosulfonamides by using both chiral Brønsted acid and phase-transfer catalysis. Under optimized conditions, a variety of bicyclic adducts can be obtained with good yields and high enantioselectivities. The mechanism of the reaction was also studied by using computational tools; we observed that the reaction involves the participation of a conformer of the nine-membered cyclic substrate with planar chirality in which the stereochemical outcome is controlled by the relative reactivity of the two pseudorotational enantiomers when interacting with the chiral catalyst.
Collapse
Affiliation(s)
- Javier Luis‐Barrera
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Sandra Rodriguez
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Uxue Uria
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Efraim Reyes
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Liher Prieto
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Luisa Carrillo
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Manuel Pedrón
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Pedro Merino
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Jose L. Vicario
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| |
Collapse
|
5
|
Horst B, Verdoorn DS, Hennig S, van der Heijden G, Ruijter E. Enantioselective Total Synthesis of (-)-Limaspermidine and (-)-Kopsinine by a Nitroaryl Transfer Cascade Strategy. Angew Chem Int Ed Engl 2022; 61:e202210592. [PMID: 36004723 PMCID: PMC9826323 DOI: 10.1002/anie.202210592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/11/2023]
Abstract
We report an intramolecular conjugate addition/Truce-Smiles/E1cb cascade of 2-nitrobenzenesulfonamide-functionalized cyclohexenones as a new entry to the core scaffold of monoterpene indole alkaloids. The method was applied to the asymmetric total synthesis of (-)-limaspermidine, (-)-kopsinilam, and (-)-kopsinine, as well as the framework of the kopsifoline alkaloids, thus highlighting its complementarity to existing approaches involving the use of indole-based starting materials or the interrupted Fischer indole synthesis. Furthermore, we show that the cascade tolerates various substituents on the nitroarene, opening the way to other natural products as well as non-natural analogues.
Collapse
Affiliation(s)
- Brendan Horst
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Daniël S. Verdoorn
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Gydo van der Heijden
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)De Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
6
|
Horst B, Verdoorn DS, Hennig S, van der Heijden G, Ruijter E. Enantioselective Total Synthesis of (–)‐Limaspermidine and (–)‐Kopsinine by a Nitroaryl Transfer Cascade Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brendan Horst
- Vrije Universiteit Amsterdam Chemistry & Pharmaceutical Sciences NETHERLANDS
| | - Daniël S. Verdoorn
- Vrije Universiteit Amsterdam Chemistry & Pharmaceutical Sciences NETHERLANDS
| | - Sven Hennig
- Vrije Universiteit Amsterdam Chemistry & Pharmaceutical Sciences NETHERLANDS
| | | | - Eelco Ruijter
- Vrije Universiteit Amsterdam Chemistry & Pharmaceutical Sciences De Boelelaan 11081081 HZNetherlands 1081 HZ Amsterdam NETHERLANDS
| |
Collapse
|
7
|
Sirindil F, Weibel JM, Pale P, Blanc A. Rhazinilam-leuconolam family of natural products: a half century of total synthesis. Nat Prod Rep 2022; 39:1574-1590. [PMID: 35699109 DOI: 10.1039/d2np00026a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1972 to 2021The rhazinilam family of natural products exhibits a main structure with a stereogenic quaternary carbon and a tetrahydroindolizine core imbedded within a 9-membered macrocycle, imposing axial chirality. This unique architecture combined with their taxol-like antimitotic activities have attracted various attention, especially from synthetic chemists, notably in the past decade. The present review describes the known total and formal syntheses of the members of the rhazinilam family (rhazinilam, rhazinal, leuconolam and kopsiyunnanines), according to the strategy developed.
Collapse
Affiliation(s)
- Fatih Sirindil
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Jean-Marc Weibel
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Patrick Pale
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
8
|
Tan DX, Han FS. The application of C–H bond functionalization in the total syntheses of indole natural products. Org Chem Front 2022. [DOI: 10.1039/d1qo01636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent advances in total synthesis of indole natural products focusing on the application of C–H bond functionalization are summarized.
Collapse
Affiliation(s)
- Dong-Xing Tan
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
9
|
Ramaraju A, Upare A, Blanch EW, Maniam S, Sridhar B, Bathula SR, Raji Reddy C. Chemoselective [3 + 2] annulation of oxime acetate with 2-aryl-3-ethoxycarbonyl-pyrroline-4,5-dione: an entry to pyrrolo[2,3- b]pyrrole derivatives. Org Biomol Chem 2021; 19:7875-7882. [PMID: 34549208 DOI: 10.1039/d1ob00990g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chemoselective [3 + 2] annulation reaction of easily accessible ketoxime acetate with 2-aryl-3-ethoxycarbonyl pyrroline-4,5-dione has been developed for the synthesis of unknown pyrrolo[2,3-b]pyrrole frameworks. This method involves copper-mediated N-O bond cleavage followed by the formation of carbon-carbon and carbon-nitrogen bonds. This operationally simple protocol provides broader functional group compatibility and good yields.
Collapse
Affiliation(s)
- Andhavaram Ramaraju
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Atul Upare
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Ewan W Blanch
- School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Subashani Maniam
- School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surendar Reddy Bathula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| |
Collapse
|
10
|
Delayre B, Fung C, Wang Q, Zhu J. Enantioselective Total Synthesis of (+)‐Nordasycarpidone, (+)‐Dasycarpidone, and (+)‐Uleine. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH5304, CH- 1015 Lausanne Switzerland
| | - Cédric Fung
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH5304, CH- 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH5304, CH- 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH5304, CH- 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Li G, Gaeng N, Piemontesi C, Wang Q, Zhu J. Enantioselective Total Synthesis of (+)-Alstilobanine C, (+)-Undulifoline, and (-)-Alpneumine H. Angew Chem Int Ed Engl 2021; 60:12392-12395. [PMID: 33755301 DOI: 10.1002/anie.202103580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 01/06/2023]
Abstract
We report herein the enantioselective total synthesis of three monoterpene indole alkaloids, namely, (+)-alstilobanine C, (+)-undulifoline, and (-)-alpneumine H. The key features of our synthesis include: a) introduction of chirality via enantioselective deprotonation of a prochiral 4-substituted cyclohexanone; b) use of methoxymethyl (MOM) ether as both a hydroxyl protective group and a latent oxonium species for the formation of bridged oxepane and c) domino double reductive cyclization to build both the indole and the piperidine ring at the end of the synthesis. The synthesis confirmed the absolute configuration of these natural products assigned based on the biogenetic hypothesis.
Collapse
Affiliation(s)
- Guang Li
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Nicolas Gaeng
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
12
|
Li G, Gaeng N, Piemontesi C, Wang Q, Zhu J. Enantioselective Total Synthesis of (+)‐Alstilobanine C, (+)‐Undulifoline, and (−)‐Alpneumine H. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guang Li
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304 1015 Lausanne Switzerland
| | - Nicolas Gaeng
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
13
|
He Y, Cao J, Wu H, Wang Q, Zhu J. Catalytic Enantioselective Aminopalladation–Heck Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yu‐Ping He
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jian Cao
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Hua Wu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| |
Collapse
|
14
|
He Y, Cao J, Wu H, Wang Q, Zhu J. Catalytic Enantioselective Aminopalladation–Heck Cascade. Angew Chem Int Ed Engl 2021; 60:7093-7097. [DOI: 10.1002/anie.202016001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yu‐Ping He
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jian Cao
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Hua Wu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| |
Collapse
|
15
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
16
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020; 59:13990-13997. [DOI: 10.1002/anie.202005380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
17
|
Dagoneau D, Wang Q, Zhu J. Towards the Sarpagine-Ajmaline-Macroline Family of Indole Alkaloids: Enantioselective Synthesis of an N-Demethyl Alstolactone Diastereomer. Chemistry 2020; 26:4866-4873. [PMID: 32065430 DOI: 10.1002/chem.202000415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Indexed: 12/19/2022]
Abstract
the strategy involving the use of functionalized tetrahydro-6H-cycloocta[b]indol-6-one is reported as a key intermediate for synthesis of members of the sarpagine-ajmaline-macroline family of monoterpene indole alkaloids. The desired tricycle was synthesized through the following key steps: 1) Evans' syn-selective aldolization; 2) Liebeskind-Srogl cross-coupling using the phenylthiol ester of 3-chloropropanoic acid as a surrogate of acrylic thioester for the synthesis of 2,3-disubstituted indoles; and 3) ring-closing metathesis (RCM) for the formation of the eight-membered ring. An N-allylation followed by intramolecular 1,4-addition was planned for synthesis of the vobasine class of natural products. However, attempted cyclizations under a diverse set of conditions involving anionic, radical, and organopalladium/organonickel species failed to produce the bridged ring system. On the other hand, esterification of the pendant primary alcohol function with acetoacetic acid, followed by intramolecular Michael addition, afforded the desired tetracycle with excellent diastereoselectivity. Subsequent functional group manipulation and transannular cyclization of the amino alcohol afforded the N(1)-demethyl-3,5-diepi-alstolactone. We believe that the same synthetic route would afford the alstolactone should the amino alcohol with appropriate stereochemistry be used as the starting material.
Collapse
Affiliation(s)
- Dylan Dagoneau
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
18
|
Xing S, Guo J, Wang Y, Wang C, Wang K, Zhu B. General and efficient synthesis of 1,2-dihydropyrrolo[3,4- b]indol-3-ones via a formal [3 + 2] cycloaddition initiated by C–H activation. Org Chem Front 2020. [DOI: 10.1039/d0qo00922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [Cp*RhCl2]2-catalyzed formal [3 + 2] cycloaddition involving a sequential coupling reaction initiated by C–H activation and aza-Michael addition has been developed for the general and efficient synthesis of 1,2-dihydropyrrolo[3,4-b]indol-3-ones.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Junsuo Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Chenyu Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| |
Collapse
|
19
|
Moroz AA, Zhulanov VE, Dmitriev MV, Maslivets AN. Diversity-oriented synthesis of three skeletally diverse iminolactones from isocyanides, activated acetylenes and 1H-pyrrole-2,3-diones via [3+2] and [4+1] cycloaddition reactions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Affiliation(s)
- Jing Zhang
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
- The University of Chinese Academy of Sciences, Beijing 100864, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
21
|
Zhang J, Han FS. Pd-Catalyzed Aerobic Oxidative Heck Cross-Coupling for the Straightforward Construction of Indole δ-Lactams. iScience 2019; 17:256-266. [PMID: 31319369 PMCID: PMC6637253 DOI: 10.1016/j.isci.2019.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 11/26/2022] Open
Abstract
The [6.5.6]-tricyclic indole δ-lactam represents a common key intermediate for the synthesis of a broad variety of structurally intriguing indole alkaloids. The development of a method for the versatile and straightforward construction of such structural motif is of great importance for potential synthetic applications. Herein, we present a co-ligand-prompted Pd-catalyzed 6-exo-trig intramolecular cyclization of indolyl amides via the aerobic oxidative Heck cross-coupling. The method provided a general and efficient way for the construction of [6.5.6]-tricyclic indole δ-lactams. A mechanistic study suggests that a Pd(I)/Pd(III) catalytic cycle should be responsible for effective coupling, which represents a mechanistically alternative pathway when compared with the Pd(0)/Pd(II) cycle proposed for other related coupling reactions.
Collapse
Affiliation(s)
- Jing Zhang
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China; The University of Chinese Academy of Sciences, Beijing 100864, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| |
Collapse
|
22
|
Sirindil F, Weibel JM, Pale P, Blanc A. Total Synthesis of Rhazinilam through Gold-Catalyzed Cycloisomerization–Sulfonyl Migration and Palladium-Catalyzed Suzuki–Miyaura Coupling of Pyrrolyl Sulfonates. Org Lett 2019; 21:5542-5546. [DOI: 10.1021/acs.orglett.9b01860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fatih Sirindil
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Jean-Marc Weibel
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Patrick Pale
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
23
|
Pritchett BP, Stoltz BM. Enantioselective palladium-catalyzed allylic alkylation reactions in the synthesis of Aspidosperma and structurally related monoterpene indole alkaloids. Nat Prod Rep 2019; 35:559-574. [PMID: 29658039 DOI: 10.1039/c7np00069c] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2017 Enantioselective Pd-catalyzed allylic alkylations of prochiral enolates represent a powerful tool for the construction of all-carbon quaternary stereocenters. This review describes the emergence of such reactions as strategic linchpins that enable efficient, stereocontrolled syntheses of Aspidosperma and related monoterpene indole alkaloids.
Collapse
Affiliation(s)
- Beau P Pritchett
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA.
| | | |
Collapse
|
24
|
Li G, Piemontesi C, Wang Q, Zhu J. Stereoselective Total Synthesis of Eburnane‐Type Alkaloids Enabled by Conformation‐Directed Cyclization and Rearrangement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Guang Li
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
25
|
Li G, Piemontesi C, Wang Q, Zhu J. Stereoselective Total Synthesis of Eburnane-Type Alkaloids Enabled by Conformation-Directed Cyclization and Rearrangement. Angew Chem Int Ed Engl 2019; 58:2870-2874. [PMID: 30600890 DOI: 10.1002/anie.201813920] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 11/11/2022]
Abstract
Controlling the cis C20/C21 relative stereochemistry remains an unsolved issue in the synthesis of eburnane-type indole alkaloids. Provided herein is a simple solution to this problem by developing a unified and diastereoselective synthesis of four representative members of this class of natural products, namely, eburnamonine, larutensine, terengganensine B, and melokhanine E. The synthesis features the following key steps: a) an α-iminol rearrangement transforming the 3-hydroxyindolenine into spiroindolin-3-one, b) a highly diastereoselective conformation-directed cyclization leading to the melokhanine skeleton with the desired C20/C21 cis stereochemistry, and c) either an aza-pinacol or an unprecedented α-aminoketone rearrangement converting spiroindolinone back into the indole skeleton.
Collapse
Affiliation(s)
- Guang Li
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
26
|
Affiliation(s)
- Lei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiwu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
27
|
Bao X, Wang Q, Zhu J. Palladium-Catalyzed Enantioselective Desymmetrizing Aza-Wacker Reaction: Development and Application to the Total Synthesis of (−)-Mesembrane and (+)-Crinane. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xu Bao
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
28
|
Bao X, Wang Q, Zhu J. Palladium-Catalyzed Enantioselective Desymmetrizing Aza-Wacker Reaction: Development and Application to the Total Synthesis of (-)-Mesembrane and (+)-Crinane. Angew Chem Int Ed Engl 2018; 57:1995-1999. [PMID: 29314546 DOI: 10.1002/anie.201712521] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 12/23/2022]
Abstract
Reported is an unprecedented catalytic enantioselective desymmetrizing aza-Wacker reaction. In the presence of a catalytic amount of a newly developed Pd(CPA)2 (MeCN)2 catalyst (CPA=chiral phosphoric acid), a pyrox ligand, and molecular oxygen, cyclization of properly functionalized prochiral 3,3-disubstituted cyclohexa-1,4-dienes afforded enantioenriched cis-3a-substituted tetrahydroindoles in good yields with excellent enantioselectivities. A cooperative effect between the phosphoric acid and the pyrox ligand ensured efficient transformation. This reaction was tailor-made for Amaryllidaceae and Sceletium alkaloids as illustrated by its application in the development of the concise and divergent total synthesis of (-)-mesembrane and (+)-crinane.
Collapse
Affiliation(s)
- Xu Bao
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
29
|
Cao B, Wei Y, Shi M. Indium(iii)-catalyzed intramolecular dearomative cycloaddition ofN-sulfonylaziridines to indoles: facile synthesis of tetracyclic pyrroloindoline skeletons. Org Chem Front 2018. [DOI: 10.1039/c7qo00882a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A facile and versatile indium(iii)-catalyzed intramolecular dearomative cycloaddition ofN-sulfonylaziridines to indoles has been developed, selectively giving rigid tetracyclic pyrroloindoline skeletons in moderate to good yields.
Collapse
Affiliation(s)
- Bo Cao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
30
|
Xu Z, Wang Q, Zhu J. Metamorphosis of cycloalkenes for the divergent total synthesis of polycyclic indole alkaloids. Chem Soc Rev 2018; 47:7882-7898. [DOI: 10.1039/c8cs00454d] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the divergent synthesis of monoterpene indole alkaloids using cycloalkene as the turning point of structural diversity.
Collapse
Affiliation(s)
- Zhengren Xu
- Laboratory of Synthesis and Natural Products
- Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- BCH5304
| | - Qian Wang
- Laboratory of Synthesis and Natural Products
- Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- BCH5304
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products
- Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- BCH5304
| |
Collapse
|
31
|
Thangamani M, Srinivasan K. Lewis Acid-Mediated Ring-Opening Reactions of trans-2-Aroyl-3-styrylcyclopropane-1,1-dicarboxylates: Access to Cyclopentenes and E,E-1,3-Dienes. J Org Chem 2017; 83:571-577. [DOI: 10.1021/acs.joc.7b02335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Murugesan Thangamani
- School of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, Tamil Nadu, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, Tamil Nadu, India
| |
Collapse
|
32
|
Dubovtsev AY, Dmitriev MV, Maslivets АN, Rubin M. Regiodivergent condensation of 5-alkoxycarbonyl-1 H-pyrrol-2,3-diones with cyclic ketazinones en route to spirocyclic scaffolds. Beilstein J Org Chem 2017; 13:2179-2185. [PMID: 29114325 PMCID: PMC5669231 DOI: 10.3762/bjoc.13.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/27/2017] [Indexed: 12/26/2022] Open
Abstract
The condensation of 5-alkoxycarbonyl-1H-pyrrolediones with cyclic ketazinones was systematically investigated. It was discovered that the regioselectivity of this reaction can be easily swapped between two alternative directions affording derivatives of partially hydrogenated indole or benzofurane. The control of this regioselectivity is efficiently governed by steric effects at the hydrazone moiety of the ketazinone reagent.
Collapse
Affiliation(s)
- Alexey Yu Dubovtsev
- Department of Chemistry, Perm State University, ul. Bukireva 15, Perm 614990, Russian Federation
| | - Maksim V Dmitriev
- Department of Chemistry, Perm State University, ul. Bukireva 15, Perm 614990, Russian Federation
| | - Аndrey N Maslivets
- Department of Chemistry, Perm State University, ul. Bukireva 15, Perm 614990, Russian Federation
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7582, USA
| |
Collapse
|
33
|
Shemet A, Carreira EM. Total Synthesis of (−)-Rhazinilam and Formal Synthesis of (+)-Eburenine and (+)-Aspidospermidine: Asymmetric Cu-Catalyzed Propargylic Substitution. Org Lett 2017; 19:5529-5532. [DOI: 10.1021/acs.orglett.7b02619] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrej Shemet
- ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | |
Collapse
|
34
|
Magné V, Lorton C, Marinetti A, Guinchard X, Voituriez A. Short Enantioselective Total Synthesis of (-)-Rhazinilam Using a Gold(I)-Catalyzed Cyclization. Org Lett 2017; 19:4794-4797. [PMID: 28876069 DOI: 10.1021/acs.orglett.7b02210] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
(R)-(-)-Rhazinilam has been synthesized in nine steps and 20% overall yield. The key steps involve two metal-catalyzed processes: the enantioselective gold(I)-catalyzed cycloisomerization of an allene-functionalized pyrrole and the palladium-catalyzed hydrocarboxylation of a vinyl moiety with formate as a CO surrogate. This novel strategy represents the shortest and highest yielding enantioselective total synthesis of (-)-rhazinilam.
Collapse
Affiliation(s)
- Valentin Magné
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Charlotte Lorton
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
35
|
Zhang Y, Xue Y, Luo T. An unexpected aziridination/rearrangement/oxidation tandem reaction leading to the total synthesis of (−)-mersicarpine. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Shymanska NV, Pierce JG. Stereoselective Synthesis of Quaternary Pyrrolidine-2,3-diones and β-Amino Acids. Org Lett 2017; 19:2961-2964. [PMID: 28537396 PMCID: PMC5540151 DOI: 10.1021/acs.orglett.7b01185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile, diastereoselective synthesis of highly substituted pyrrolidine-2,3-diones is reported, along with the one-step conversion of these heterocycles to novel β-amino acids and further functionalized derivatives. This method involves an unusually mild, one-pot, three-component cyclization/allylation followed by a Claisen rearrangement to provide unusual pyrrolidinone products that are densely functionalized and contain an all-carbon quaternary stereocenter. The reported reaction sequence is operationally simple, exquisitely diastereoselective, and provides gram-scale access to valuable heterocyclic scaffolds and β-amino acids not readily accessible via existing approaches.
Collapse
Affiliation(s)
- Nataliia V. Shymanska
- Department of Chemistry, College of Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
37
|
Cheung CW, Ploeger ML, Hu X. Direct amidation of esters with nitroarenes. Nat Commun 2017; 8:14878. [PMID: 28345585 PMCID: PMC5378957 DOI: 10.1038/ncomms14878] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 01/07/2023] Open
Abstract
Esters are one of the most common functional groups in natural and synthetic products, and the one-step conversion of the ester group into other functional groups is an attractive strategy in organic synthesis. Direct amidation of esters is particularly appealing due to the omnipresence of the amide moiety in biomolecules, fine chemicals, and drug candidates. However, efficient methods for direct amidation of unactivated esters are still lacking. Here we report nickel-catalysed reductive coupling of unactivated esters with nitroarenes to furnish in one step a wide range of amides bearing functional groups relevant to the development of drugs and agrochemicals. The method has been used to expedite the syntheses of bio-active molecules and natural products, as well as their post-synthetic modifications. Preliminary mechanistic study indicates a reaction pathway distinct from conventional amidation methods using anilines as nitrogen sources. The work provides a novel and efficient method for amide synthesis. Direct conversion of esters to amides, while attractive, is often limited to activated esters or highly nucleophilic amines. Here the authors report a nickel-catalysed reductive coupling between unactivated esters and nitroarenes, giving a direct route to aromatic amides.
Collapse
Affiliation(s)
- Chi Wai Cheung
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Marten Leendert Ploeger
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| |
Collapse
|
38
|
Pfaffenbach M, Gaich T. The Rhazinilam-Leuconoxine-Mersicarpine Triad of Monoterpenoid Indole Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2017; 77:1-84. [DOI: 10.1016/bs.alkal.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Zhu G, Wadavrao SB, Liu B. Divergent Total Synthesis of Atisane-Type Diterpenoids. CHEM REC 2016; 17:584-596. [DOI: 10.1002/tcr.201600096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Guili Zhu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; No. 29 Wangjiang Road, Chengdu Sichuan 610064 P. R. China
| | - Sachin B. Wadavrao
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; No. 29 Wangjiang Road, Chengdu Sichuan 610064 P. R. China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; No. 29 Wangjiang Road, Chengdu Sichuan 610064 P. R. China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; No. 24 Tongjiaxiang, Nanjing Jiangsu 210009 P. R. China
| |
Collapse
|
40
|
Affiliation(s)
- Chiara Cabrele
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Oliver Reiser
- Institut
für Organische Chemie, Universität Regensburg, Universitätsstrasse
31, 93053 Regensburg, Germany
| |
Collapse
|
41
|
Zhao K, Xu S, Pan C, Sui X, Gu Z. Catalytically Asymmetric Pd/Norbornene Catalysis: Enantioselective Synthesis of (+)-Rhazinal, (+)-Rhazinilam, and (+)-Kopsiyunnanine C1–3. Org Lett 2016; 18:3782-5. [DOI: 10.1021/acs.orglett.6b01790] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Zhao
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Shibo Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chongqing Pan
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xianwei Sui
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|