1
|
Walters SH, Birchfield AS, Fuglestad B. Advances in utilizing reverse micelles to investigate membrane proteins. Biochem Soc Trans 2024; 52:2499-2511. [PMID: 39508380 DOI: 10.1042/bst20240830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Reverse micelles (RMs) have emerged as useful tools for the study of membrane associated proteins. With a nanoscale water core surrounded by surfactant and solubilized in a non-polar solvent, RMs stand apart as a unique membrane model. While RMs have been utilized as tools to investigate the physical properties of membranes and their associated water, RMs also effectively house membrane associated proteins for a variety of studies. High-resolution protein NMR revealed a need for development of improved RM formulations, which greatly enhanced the use of RMs for aqueous proteins. Protein-optimized RM formulations enabled encapsulation of challenging membrane associated protein types, including lipidated proteins, transmembrane proteins, and peripheral membrane proteins. Improvements in biological accuracy of RMs using phospholipid-based surfactants has advanced their utility as a membrane mimetic even further, better matching the chemistry of the most common cellular membrane lipids. Natural lipid extracts may also be used to construct RMs and house proteins, resulting in a membrane model that better represents the complexity of biological membranes. Recent applications in high-resolution investigations of protein-membrane interactions and inhibitor design of membrane associated proteins have demonstrated the usefulness of these systems in addressing this difficult category of protein. Further developments of RMs as membrane models will enhance the breadth of investigations facilitated by these systems and will enhance their use in biophysical, structural, and drug discovery pursuits of membrane associated proteins. In this review, we present the development of RMs as membrane models and their application to structural and biophysical study of membrane proteins.
Collapse
Affiliation(s)
- Sara H Walters
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Aaron S Birchfield
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, U.S.A
| |
Collapse
|
2
|
Ru G, Liu X, Ge Y, Wang L, Jiang L, Pielak G, Liu M, Li C. Trimethylamine N-oxide (TMAO) doubly locks the hydrophobic core and surfaces of protein against desiccation stress. Protein Sci 2024; 33:e5107. [PMID: 38989549 PMCID: PMC11237552 DOI: 10.1002/pro.5107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
Interactions between proteins and osmolytes are ubiquitous within cells, assisting in response to environmental stresses. However, our understanding of protein-osmolyte interactions underlying desiccation tolerance is limited. Here, we employ solid-state NMR (ssNMR) to derive information about protein conformation and site-specific interactions between the model protein, SH3, and the osmolyte trimethylamine N-oxide (TMAO). The data show that SH3-TMAO interactions maintain key structured regions during desiccation and facilitate reversion to the protein's native state once desiccation stress is even slightly relieved. We identify 10 types of residues at 28 sites involved in the SH3-TMAO interactions. These sites comprise hydrophobic, positively charged, and aromatic amino acids located in SH3's hydrophobic core and surface clusters. TMAO locks both the hydrophobic core and surface clusters through its zwitterionic and trimethyl ends. This double locking is responsible for desiccation tolerance and differs from ideas based on exclusion, vitrification, and water replacement. ssNMR is a powerful tool for deepening our understanding of extremely weak protein-osmolyte interactions and providing insight into the evolutionary mechanism of environmental tolerance.
Collapse
Affiliation(s)
- Geying Ru
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Liying Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Gary Pielak
- Department of Chemistry, Department of Biochemistry & Biophysics, Lineberger Cancer Center, Integrative Program for Biological and Genome Sciences of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Krushinski LE, Dick JE. Direct electrochemical evidence suggests that aqueous microdroplets spontaneously produce hydrogen peroxide. Proc Natl Acad Sci U S A 2024; 121:e2321064121. [PMID: 38466847 PMCID: PMC10962973 DOI: 10.1073/pnas.2321064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Recent reports have detailed the striking observation that electroactive molecules, such as hydrogen peroxide (H2O2) and radical water species (H2O.+/H2O.-), are spontaneously produced in aqueous microdroplets. Stochastic electrochemistry allows one to study reactions in real-time occurring inside subfemtoliter droplets, one droplet at a time, when a microdroplet irreversibly adsorbs to an ultramicroelectrode surface (radius ~ 5 µm). Here, we use stochastic electrochemistry to probe the formation of hydrogen peroxide (H2O2) in single aqueous microdroplets suspended in 1,2-dichloroethane. The oxidation of H2O2 at alkaline pH (11.5) differs from near-neutral conditions (6.4), allowing us to create a digital, turn-off sensing modality for the presence of H2O2. Further, we show that the stochastic electrochemical signal is highest at the mass transfer limitation of the H2O2 couple and is dampened when the potential nears the formal potential. We validate these results by showing that the addition of a H2O2 selective probe, luminol, decreases the stochastic electrochemical response at alkaline pH (11.5). Our results support the observation that H2O2 is generated in water microdroplets at concentrations of ~100 s of µM.
Collapse
Affiliation(s)
| | - Jeffrey E. Dick
- Department of Chemistry, Purdue University, West Lafayette, IN47907
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN47907
| |
Collapse
|
4
|
Lu SM, Vannoy KJ, Dick JE, Long YT. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective. J Am Chem Soc 2023; 145:25043-25055. [PMID: 37934860 DOI: 10.1021/jacs.3c07374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kathryn J Vannoy
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
5
|
Garrett P, Baiz CR. Hidden Beneath the Layers: Extending the Core/Shell Model of Reverse Micelles. J Phys Chem B 2023; 127:9399-9404. [PMID: 37870992 DOI: 10.1021/acs.jpcb.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Reverse micelles (RMs) provide a unique and highly tunable model system to study water in confined environments. The complex properties of water within RMs arise from the disruption of extended hydrogen bond (H-bond) networks that mediate local and long-range dynamics in bulk aqueous systems. Modulating the water pool size influences its H-bond dynamics, with smaller RMs increasingly restricting the H-bond network rearrangements leading to slower dynamics; however, within small confined systems, the dynamics of the surfactants also influence the water dynamics. Using ultrafast two-dimensional infrared spectroscopy, we investigate the effects of RM size on the surfactant headgroup rotamer populations and picosecond interfacial H-bond dynamics of aerosol-OT surfactants. We find that the increased water penetration accelerates H-bond dynamics, with larger RMs showing faster dynamics. These results imply that the changes in the RM structure alter the physical structure of the RM interface and thus alter the solvation dynamics. The findings in this study can be used for developing models for structure-specific solvation dynamics that account for the surfactant packing and hydration at the interface.
Collapse
Affiliation(s)
- Paul Garrett
- Department of Chemistry, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, the University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Reyes-Morales J, Dick JE. Electrochemical-Shock Synthesis of Nanoparticles from Sub-femtoliter Nanodroplets. Acc Chem Res 2023; 56:1178-1189. [PMID: 37155578 DOI: 10.1021/acs.accounts.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
ConspectusNanoparticles have witnessed immense development in the past several decades due to their intriguing physicochemical properties. The modern chemist is interested not only in methods of synthesizing nanoparticles with tunable properties but also in the chemistry that nanoparticles can drive. While several methods exist to synthesize nanoparticles, it is often advantageous to put nanoparticles on a variety of conductive substrates for multiple applications (such as energy storage and conversion). Despite enjoying over 200 years of development, electrodeposition of nanoparticles suffers from a lack of control over nanoparticle size and morphology. There have been heroic efforts to address these issues over time. With an understanding that structure-function studies are imperative to understand the chemistry of nanoparticles, new methods are necessary to electrodeposit a variety of nanoparticles with control over macromorphology and also microstructure.This Account details our group's efforts in overcoming challenges of classical nanoparticle electrodeposition by electrodepositing nanoparticles from water nanodroplets. When a nanodroplet full of metal salt precursor is incident on the electrode biased sufficiently negative to drive electroplating, nanoparticles form at a fast rate (on the order of microseconds to milliseconds). We start with the general nuts-and-bolts of the experiment (nanodroplet formation and methods for electrodeposition). The deposition of new nanomaterials often requires one to develop new methods of measurement, and we detail new measurement tools for quantifying nanoparticle porosity and nanopore tortuosity within single nanoparticles. We achieve nanopore characterization by using Focused Ion Beam milling and Scanning Electron Microscopy. Owing to the small size of the nanodroplets and fast mass transfer (the contents of a femtoliter droplet can be electrolyzed in only a few milliseconds), the use of nanodroplets also allows the electrodeposition of high entropy alloy nanoparticles at room temperature.We detail how a deep understanding of ion transfer mechanisms can be used to expand the library of possible metals that can be deposited. Furthermore, simple ion changes in the dispersed droplet phase can decrease the cost per experiment by orders of magnitude. Finally, electrodeposition in aqueous nanodroplets can also be combined with stochastic electrochemistry for a variety of interesting studies. We detail the quantification of the growth kinetics of single nanoparticles in single aqueous nanodroplets. Nanodroplets can also be used as tiny reactors to trap only a few molecules of a metal salt precursor. Upon reduction to the zerovalent metal, electrocatalysis at very small metal clusters can be probed and evaluated with time using steady-state electrochemical measurements. Overall, this burgeoning synthetic tool is providing unexpected avenues of tunability of metal nanoparticles on conductive substrates.
Collapse
Affiliation(s)
- Joshua Reyes-Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
7
|
Garrett P, Shirley JC, Baiz CR. Forced Interactions: Ionic Polymers at Charged Surfactant Interfaces. J Phys Chem B 2023; 127:2829-2836. [PMID: 36926899 DOI: 10.1021/acs.jpcb.2c08636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Characterizing electrostatic interactions at heterogeneous interfaces is critical for developing a fundamental description of the dynamic processes at charged interfaces. Water-in-oil reverse micelles (RMs) offer a high degree of tunability across composition, polarity, and temperature, making them ideal systems for studying interactions at heterogeneous liquid-liquid interfaces. In the present study, we use a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to determine the picosecond interfacial dynamics in RMs containing binary compositions of sorbitan monostearate and anionic or cationic cosurfactants, which are used to tune the ratio of charged to nonionic surfactants at the interface. The positively charged polyethylenimine (PEI) polymer is encapsulated within the RMs, and the carbonyl stretching mode of sorbitan monostearate reports on the interfacial hydrogen-bond populations and dynamics. The results show that hydrogen-bond populations are altered through the inclusion of both negatively and positively charged cosurfactants. Charged surfactants increase interfacial water penetration into the surfactant layer, and the surface localization of polymers decreases water penetration. Local hydrogen-bond dynamics undergo a slowdown with the inclusion of charged surfactants, and the encapsulation of polymers results in similar effects, irrespective of the charge.
Collapse
Affiliation(s)
- Paul Garrett
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph C Shirley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Colón-Quintana GS, Clarke TB, Dick JE. Interfacial solute flux promotes emulsification at the water|oil interface. Nat Commun 2023; 14:705. [PMID: 36759528 PMCID: PMC9911786 DOI: 10.1038/s41467-023-35964-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Emulsions are critical across a broad spectrum of industries. Unfortunately, emulsification requires a significant driving force for droplet dispersion. Here, we demonstrate a mechanism of spontaneous droplet formation (emulsification), where the interfacial solute flux promotes droplet formation at the liquid-liquid interface when a phase transfer agent is present. We have termed this phenomenon fluxification. For example, when HAuCl4 is dissolved in an aqueous phase and [NBu4][ClO4] is dissolved in an oil phase, emulsion droplets (both water-in-oil and oil-in-water) can be observed at the interface for various oil phases (1,2-dichloroethane, dichloromethane, chloroform, and nitrobenzene). Emulsification occurs when AuCl4- interacts with NBu4+, a well-known phase-transfer agent, and transfers into the oil phase while ClO4- transfers into the aqueous phase to maintain electroneutrality. The phase transfer of SCN- and Fe(CN)63- also produce droplets. We propose a microscopic mechanism of droplet formation and discuss design principles by tuning experimental parameters.
Collapse
Affiliation(s)
| | - Thomas B. Clarke
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Jeffrey E. Dick
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
9
|
Vannoy KJ, Dick JE. Oxidation of Cysteine by Electrogenerated Hexacyanoferrate(III) in Microliter Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11892-11898. [PMID: 36121813 PMCID: PMC10232928 DOI: 10.1021/acs.langmuir.2c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemical reactivity in droplets is often assumed to mimic reactivity in bulk, continuous water. Here, we study the catalytic oxidation of cysteine by electrogenerated hexacyanoferrate(III) in microliter droplets. These droplets are adsorbed onto glassy carbon macroelectrodes and placed into an immiscible 1,2-dichloroethane phase. We combined cyclic voltammetry, optical microscopy, and finite element simulations to quantify the apparent bimolecular rate constant, kc,app, in microdroplets and bulk water. Statistical analyses reveal that the apparent bimolecular rate constant (kc,app) values formicrodroplets are larger than those in the continuous phase. Reactant adsorption to the droplet boundary has previously been implicated as the cause of such rate accelerations. Finite element modeling of this system suggests that molecular adsorption to the liquid|liquid interface cannot alone account for our observations, implicating kinetics of the bimolecular reaction either at the boundary or throughout the microliter volume. Our results indicate that cysteine oxidation by electrogenerated hexacyanoferrate(III) can be accelerated within a microenvironment, which may have profound implications on understanding biological processes within a cell.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Marco-Dufort B, Janczy JR, Hu T, Lütolf M, Gatti F, Wolf M, Woods A, Tetter S, Sridhar BV, Tibbitt MW. Thermal stabilization of diverse biologics using reversible hydrogels. SCIENCE ADVANCES 2022; 8:eabo0502. [PMID: 35930644 PMCID: PMC9355364 DOI: 10.1126/sciadv.abo0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.
Collapse
Affiliation(s)
- Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Tianjing Hu
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Marco Lütolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Francesco Gatti
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Alex Woods
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Macdougall LJ, Wechsler ME, Culver HR, Benke EH, Broerman A, Bowman CN, Anseth KS. Charged Poly( N-isopropylacrylamide) Nanogels for the Stabilization of High Isoelectric Point Proteins. ACS Biomater Sci Eng 2021; 7:4282-4292. [PMID: 33560107 DOI: 10.1021/acsbiomaterials.0c01690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Storage and transportation of protein therapeutics using refrigeration is a costly process; a reliable electrical supply is vital, expensive equipment is needed, and unique transportation is required. Reducing the reliance on the cold chain would enable low-cost transportation and storage of biologics, ultimately improving accessibility of this class of therapeutics to patients in remote locations. Herein, we report on the synthesis of charged poly(N-isopropylacrylamide) nanogels that efficiently adsorb a range of different proteins of varying isoelectric points and molecular weights (e.g., adsorption capacity (Q) = 4.7 ± 0.2 mg/mg at 6 mg/mL initial IgG concentration), provide protection from external environmental factors (i.e., temperature), and subsequently release the proteins in an efficient manner (e.g., 100 ± 1% at 2 mg/mL initial IgG concentration). Both cationic and anionic nanogels were synthesized and selectively chosen based on the ability to form electrostatic interactions with adsorbed proteins (e.g., cationic nanogels adsorb low isoelectric point proteins whereas anionic nanogels adsorb high isoelectric point proteins). The nanogel-protein complex formed upon adsorption increases the stabilization of the protein's tertiary structure, providing protection against denaturation at elevated temperatures (e.g., 84 ± 4% of the protected IgG was stabilized when exposed to 65 °C). The addition of a high molar salt solution (e.g., 40 mM CaCl2 solution) to protein-laden nanogels disrupts the electrostatic interactions and collapses the nanogel, ultimately releasing the protein. The versatile materials utilized, in addition to the protein loading and release mechanisms described, provide a simple and efficient strategy to protect fragile biologics for their transport to remote areas without necessitating costly storage equipment.
Collapse
|
13
|
Thole JF, Fadero TC, Bonin JP, Stadmiller SS, Giudice JA, Pielak GJ. Danio rerio Oocytes for Eukaryotic In-Cell NMR. Biochemistry 2021; 60:451-459. [PMID: 33534998 DOI: 10.1021/acs.biochem.0c00922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding how the crowded and complex cellular milieu affects protein stability and dynamics has only recently become possible by using techniques such as in-cell nuclear magnetic resonance. However, the combination of stabilizing and destabilizing interactions makes simple predictions difficult. Here we show the potential of Danio rerio oocytes as an in-cell nuclear magnetic resonance model that can be widely used to measure protein stability and dynamics. We demonstrate that in eukaryotic oocytes, which are 3-6-fold less crowded than other cell types, attractive chemical interactions still dominate effects on protein stability and slow tumbling times, compared to the effects of dilute buffer.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tanner C Fadero
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey P Bonin
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha S Stadmiller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan A Giudice
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary J Pielak
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Guan W, Tang X, Wang W, Lin Y, Lu C. Hydrophobic Interface Cages in Microemulsions: Concept and Experiment Using Tetraphenylethylene-based Double-tailed Surfactant. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Roberts P, Perry JK, Gupta RK, Karna SP, Frechette J. Confinement-Enhanced Luminescence in Protein-Gold Nanoclusters. J Phys Chem Lett 2020; 11:10278-10282. [PMID: 33216558 DOI: 10.1021/acs.jpclett.0c03054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Confinement has profound effects on protein functions. Nanoscale probes for confinement or excluded volume interactions could help us understand how these interactions influence protein functions. This work reports on the increased luminescence of BSA-gold nanoclusters when confined. Confinement of the BSA-gold nanoclusters occurred within reverse micelles (RMs), where the size of the RMs determined the degree of confinement. The confinement-enhanced luminescence is reversible, i.e., the emission returns to its original value following cyclic changes in RM size. Circular dichroism measurements show an increase in alpha-helical character of the BSA-stabilized nanoclusters with confinement, which could provide a mechanism for the increase in luminescence. The alpha-helical character of the native proteins also increases with confinement, suggesting that the protein-nanocluster might sense confinement in an analogous fashion as the proteins. When the RMs approach the size of the protein, the intensity becomes independent of alpha-helical character, suggesting a different mechanism for the luminescence increase.
Collapse
Affiliation(s)
| | - Jeneh Karima Perry
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, Maryland 21005, United States
| | - Raj K Gupta
- DoD Blast Injury Research Coordinating Office, U.S. Army Medical Research and Development Command, 504 Scott Street, Fort Detrick, Maryland 21702, United States
| | - Shashi P Karna
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, Maryland 21005, United States
| | | |
Collapse
|
16
|
Mao X, Liu M, Yan L, Deng M, Li F, Li M, Wang F, Li J, Wang L, Tian Y, Fan C, Zuo X. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS NANO 2020; 14:8776-8783. [PMID: 32484652 DOI: 10.1021/acsnano.0c03362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lei Yan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengying Deng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| |
Collapse
|
17
|
Xu P, Du H, Peng X, Tang Y, Zhou Y, Chen X, Fei J, Meng Y, Yuan L. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134970. [PMID: 31740057 DOI: 10.1016/j.scitotenv.2019.134970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 05/22/2023]
Abstract
Remediation of polycyclic aromatic hydrocarbons (PAHs) in oily sludge has become the focus of attention. UV spectrophotometer analysis showed that four types of PAHs were found in sample, which including phenanthrene, anthracene, benzo(a)anthracene and benzo(b)fluoranthene. In order to degrade PAH effectively, the laccase reverse micelles system was proposed. The system protects laccase from being affected by organic phase. Reverse micelles were prepared by using isooctane to simulate oil. The optimum water content W0 was 10 by measuring the electrical conductivity of the system. Under this condition, the effects of pH, temperature and ionic strength on the degradation rate of PAHs were investigated. Also, compared with that of non-immobilized laccase, the ratio between the secondary structures of laccase under different conditions was studied. The results showed that the highest laccase activity was obtained at pH 4.2 and 30 °C with 60 mmol/L KCl. Meanwhile, the structure of α-helix accounts for the largest proportion, and the ratio of α-helix in the laccase secondary structure in the laccase-reverse micelle system was higher than that of the non-immobilized one under this condition. Finally, predicting the reactive site of the degradation of polycyclic aromatic hydrocarbons was simulated by ORCA (Version 4.2.0). The application in oily sludge was further conducted. This study provides an effective method and basis for the degradation of PAHs in oily sludge.
Collapse
Affiliation(s)
- Pengfei Xu
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hao Du
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xin Peng
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yu Tang
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Xiangyan Chen
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jia Fei
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yong Meng
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lu Yuan
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
18
|
Pan Y, Zholobko O, Li H, Jin J, Hu J, Chen B, Voronov A, Yang Z. Spatial Distribution and Solvent Polarity-Triggered Release of a Polypeptide Incorporated into Invertible Micellar Assemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12075-12082. [PMID: 32057221 DOI: 10.1021/acsami.9b22435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extracting, stabilizing, or delivering biomacromolecules such as proteins and peptides in organic phases have potential applications in biocatalysis, protein extraction, and food antioxidation. However, most current delivery/stabilization platforms face various limitations such as protein/peptide molecular size, platform stability/reusability, and/or potential damage to the cargos. A potential solution to these problems is micellar self-assemblies from amphiphilic invertible polymers, which have recently been demonstrated to be powerful as molecular hosts to deliver both small molecular drugs and functional polypeptides in the aqueous phase. To better understand the function of biomacromolecules and predict the usefulness of the formed invertible micellar assemblies (IMAs) as biomacromolecular hosts in organic phases, it is critical to characterize the spatial distribution, structure, and dynamics of biomacromolecules in the IMA including those upon release. However, the background signals of the IMAs limit the application of most peptide characterization approaches. In this work, we overcome the technical barriers by using site-directed spin labeling electron paramagnetic resonance to probe the spatial arrangement and release of a model, the hemagglutinin (HA) peptide, in the IMAs formed from two different amphiphilic invertible polymers. By site-specifically probing three residues along the peptide chain, for the first time, we depict the possible spatial distribution of HA within the IMAs. By triggering the disassembly of the IMAs with a thermodynamically good solvent (in this study, acetone), we detailed the stability of IMAs in toluene and the peptide release conditions once the polarity of the medium changes. Our findings are important for the application of peptides/proteins at the polar-nonpolar interface or using this interface to extract or deliver biomacromolecules. Our work also demonstrates the power of SDSL-EPR on probing peptide or micelle dynamics, which can be generalized to understand proteins or other biomacromolecules in micellar polymer assemblies in varied applications.
Collapse
Affiliation(s)
- Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Oksana Zholobko
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Jing Jin
- Magnetic Resonance Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jinlian Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Andriy Voronov
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
19
|
Liu X, Yu Q, Song A, Dong S, Hao J. Progress in nuclear magnetic resonance studies of surfactant systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Sy Mohamad SF, Mohd Said F, Abdul Munaim MS, Mohamad S, Azizi Wan Sulaiman WM. Application of experimental designs and response surface methods in screening and optimization of reverse micellar extraction. Crit Rev Biotechnol 2020; 40:341-356. [PMID: 31931631 DOI: 10.1080/07388551.2020.1712321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Reverse micellar extraction (RME) has emerged as a versatile and efficient tool for downstream processing (DSP) of various biomolecules, including structural proteins and enzymes, due to the substantial advantages over conventional DSP methods. However, the RME system is a complex dependency of several parameters that influences the overall selectivity and performance of the RME system, hence this justifies the need for optimization to obtain higher possible extraction results. For the last two decades, many experimental design strategies for screening and optimization of RME have been described in literature. The objective of this article is to review the use of different experimental designs and response surface methodologies that are currently used to screen and optimize the RME system for various types of biomolecules. Overall, this review provides the rationale for the selection of appropriate screening or optimization techniques for the parameters associated with both forward and backward extraction during the RME of biomolecules.
Collapse
Affiliation(s)
- Sharifah Fathiyah Sy Mohamad
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Mimi Sakinah Abdul Munaim
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Shahril Mohamad
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
21
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Pan Y, Wang X, Yin Z. Synthesis and evaluation of cationic polymeric micelles as carriers of lumbrokinase for targeted thrombolysis. Asian J Pharm Sci 2019; 14:144-153. [PMID: 32104446 PMCID: PMC7032199 DOI: 10.1016/j.ajps.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/20/2017] [Accepted: 03/26/2018] [Indexed: 02/04/2023] Open
Abstract
To achieve targeted thrombolysis, a targeted delivery system of lumbrokinase (LK) was constructed using RGDfk-conjugated hybrid micelles. Based on the specific affinity of RGDfk to glycoprotein complex of GPⅡb/Ⅲa expressed on the surface of membrane of activated platelet, LK loaded targeted micelles (LKTM) can be delivered to thrombus. The hybrid micelles were composed of polycaprolactone-block-poly (2-(dimethylamino) ethyl methacrylate) (PCL-PDMAEMA), methoxy polyethylene glycol-block- polycaprolactone (mPEG-PCL) and RGDfk conjugated polycaprolactone-block- polyethylene glycol (PCL-PEG-RGDfk). PCL-PDMAEMA was synthesized via ring open polymerization (ROP) and atom transfer radical polymerization (ATRP). PCL-PEG-RGDfk was synthesized via ROP and carbodiimide chemistry. The prepared LKTM was characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). Colloidal stability assay showed the prepared LKTM was stable. Biocompatibility assay was performed to determine the safe concentration range of polymer. The assay of fluorescent distribution in vivo demonstrated that LKTM can be efficiently delivered to thrombi in vivo. Thrombolysis in vivo indicated the thrombolytic potency of LKTM was optimal in all groups. Notably, the laboratory mice treated with LKTM exhibited a significantly shorter tail bleeding time compared to those treated with LK or LK-loaded micelles without RGDfk, which suggested that the targeted delivery of LK using RGDfk-conjugated hybrid micelles effectively reduced the bleeding risk.
Collapse
Affiliation(s)
| | | | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Fuglestad B, Marques BS, Jorge C, Kerstetter NE, Valentine KG, Wand AJ. Reverse Micelle Encapsulation of Proteins for NMR Spectroscopy. Methods Enzymol 2018; 615:43-75. [PMID: 30638537 PMCID: PMC6487188 DOI: 10.1016/bs.mie.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reverse micelle (RM) encapsulation of proteins for NMR spectroscopy has many advantages over standard NMR methods such as enhanced tumbling and improved sensitivity. It has opened many otherwise difficult lines of investigation including the study of membrane-associated proteins, large soluble proteins, unstable protein states, and the study of protein surface hydration dynamics. Recent technological developments have extended the ability of RM encapsulation with high structural fidelity for nearly all proteins and thereby allow high-quality state-of-the-art NMR spectroscopy. Optimal conditions are achieved using a streamlined screening protocol, which is described here. Commonly studied proteins spanning a range of molecular weights are used as examples. Very low-viscosity alkane solvents, such as propane or ethane, are useful for studying very large proteins but require the use of specialized equipment to permit preparation and maintenance of well-behaved solutions under elevated pressure. The procedures for the preparation and use of solutions of RMs in liquefied ethane and propane are described. The focus of this chapter is to provide procedures to optimally encapsulate proteins in reverse micelles for modern NMR applications.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christine Jorge
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicole E Kerstetter
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen G Valentine
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
24
|
Cheng K, Wu Q, Zhang Z, Pielak GJ, Liu M, Li C. Crowding and Confinement Can Oppositely Affect Protein Stability. Chemphyschem 2018; 19:3350-3355. [DOI: 10.1002/cphc.201800857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Gary J. Pielak
- Department of Chemistry Department of Biochemistry and Biophysics University of North Carolina, Chapel Hill Chapel Hill, NC 27599-3290 USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| |
Collapse
|
25
|
Stadmiller SS, Pielak GJ. Enthalpic stabilization of an SH3 domain by D 2 O. Protein Sci 2018; 27:1710-1716. [PMID: 30052291 PMCID: PMC6194290 DOI: 10.1002/pro.3477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
The stability of a protein is vital for its biological function, and proper folding is partially driven by intermolecular interactions between protein and water. In many studies, H2 O is replaced by D2 O because H2 O interferes with the protein signal. Even this small perturbation, however, affects protein stability. Studies in isotopic waters also might provide insight into the role of solvation and hydrogen bonding in protein folding. Here, we report a complete thermodynamic analysis of the reversible, two-state, thermal unfolding of the metastable, 7-kDa N-terminal src-homology 3 domain of the Drosophila signal transduction protein drk in H2 O and D2 O using one-dimensional 19 F NMR spectroscopy. The stabilizing effect of D2 O compared with H2 O is enthalpic and has a small to insignificant effect on the temperature of maximum stability, the entropy, and the heat capacity of unfolding. We also provide a concise summary of the literature about the effects of D2 O on protein stability and integrate our results into this body of data.
Collapse
Affiliation(s)
| | - Gary J. Pielak
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
- Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth Carolina27599
- Integrative Program for Biological and Genome SciencesUniversity of North CarolinaChapel HillNorth Carolina27599
| |
Collapse
|
26
|
Weißheit S, Kahse M, Kämpf K, Tietze A, Vogel M, Winter R, Thiele CM. Elastin-like Peptide in Confinement: FT-IR and NMR T
1 Relaxation Data. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
We employed FT-IR and NMR experiments to investigate the influence of a cell-mimicking crowding environment on the structure and dynamics of an elastin-like peptide (ELP) with the sequence GVG(VPGVG)3, which – due to a high number of hydrophobic amino acid side chains – exhibits an inverse temperature transition (ITT). As simplified crowding agent, we used 30 wt% Ficoll. The FT-IR data revealed the well-known broad ITT above ~25°C, as observed by the decrease of the relative population of random coil structures and the concomitant increase of type II β-turns. Interestingly, the addition of Ficoll leads to a destabilizing effect of type II β-turn structures. This is in contrast to the expected excluded-volume effect of the macromolecular crowder, but can be explained by weak interactions of the peptide with the polysaccharide chains of the crowding agent. Further, the crowding agent leads to the onset of a reversal of the folding transition at high temperatures. The full assignment of the ELP allowed for a residue-specific investigation of the dynamic behavior of ELP by NMR. Due to a strong change of microscopic viscosity between native/buffered conditions and crowded conditions, relaxation data remain inconclusive with respect to the observation of an ITT. Hence, no quantitative details in terms of internal conformational changes can be obtained. However, temperature dependent differences in the 13C relaxation behavior between core and terminal parts of the peptide indicate temperature induced changes in the internal dynamics with generally higher internal mobility at chain ends: This is in full agreement with FT-IR data. In harmony with the FT-IR analysis, macromolecular crowding does not lead to significant changes in the relaxation behavior.
Collapse
Affiliation(s)
- Susann Weißheit
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt, Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Marie Kahse
- Physical Chemistry I – Biophysical Chemistry, Faculty of Chemistry and Chemical Biology , TU Dortmund University, Otto-Hahn-Str. 4a , 44227 Dortmund , Germany
| | - Kerstin Kämpf
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Alesia Tietze
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt, Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Michael Vogel
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry, Faculty of Chemistry and Chemical Biology , TU Dortmund University, Otto-Hahn-Str. 4a , 44227 Dortmund , Germany
| | - Christina Marie Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt, Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| |
Collapse
|
27
|
Abstract
Up to 40% of intracellular water is confined due to the dense packing of macromolecules, ions, and osmolytes. Despite the large body of work concerning the effect of additives on the biomolecular structure and stability, the role of crowding and heterogeneity in these interactions is not well understood. Here, infrared spectroscopy and molecular dynamics simulations are used to describe the mechanisms by which crowding modulates hydrogen bonding interactions between water and dimethyl sulfoxide (DMSO). Specifically, we use formamide and dimethylformamide (DMF) as molecular crowders and show that the S═O hydrogen bond populations in aqueous mixtures are increased by both amides. These additives increase the amount of water within the DMSO first solvation shell through two mechanisms: (a) directly stabilizing water-DMSO hydrogen bonds; (b) increasing water exposure by destabilizing DMSO-DMSO self-interactions. Further, we quantified the hydrogen bond enthalpies between the different components: DMSO-water (61 kJ/mol) > DMSO-formamide (32 kJ/mol) > water-water (23 kJ/mol) ≫ formamide-water (4.7 kJ/mol). Spectra of carbonyl stretching vibrations show that DMSO induces the dehydration of amides as a result of strong DMSO-water interactions, which has been suggested as the main mechanism of protein destabilization.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| | - Carlos R Baiz
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| |
Collapse
|
28
|
Kundu K, Singh AP, Panda S, Singh V, Gardas RL, Senapati S. Study on the Conformation of Entrapped Protein inside the Reverse Micellar Confinement Based on the Amino Acid Derived Ionic Liquid. ChemistrySelect 2018. [DOI: 10.1002/slct.201800918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kaushik Kundu
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
| | - Akhil Pratap Singh
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Somenath Panda
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Vikram Singh
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Ramesh L. Gardas
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Sanjib Senapati
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
| |
Collapse
|
29
|
Chen LJ, Chen S, Qin Y, Xu L, Yin GQ, Zhu JL, Zhu FF, Zheng W, Li X, Yang HB. Construction of Porphyrin-Containing Metallacycle with Improved Stability and Activity within Mesoporous Carbon. J Am Chem Soc 2018; 140:5049-5052. [PMID: 29625011 DOI: 10.1021/jacs.8b02386] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The successful construction of porphyrin functionalized metallacycle in the confined cavity of mesoporous carbon FDU-16 (3⊂C) is presented in this study. Because of high dispersity of metallacycles within the mesoporous cavities, the stability and activity of porphyrin-containing metallacycles were obviously improved. For example, 1O2 generation efficiency of 3⊂C is ca. 6-fold faster than that of free metallaycles in solution. Thus, the resultant hybrid material has been successfully employed as a heterogeneous catalyst for photooxidation of sulfides.
Collapse
Affiliation(s)
- Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China
| | - Shangjun Chen
- Department of Chemistry , Shanghai Normal University , Shanghai 200234 , People's Republic of China
| | - Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China.,Department of Chemistry , University of South Florida Tampa , Florida 33620 , United States
| | - Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China
| | - Fan-Fan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida Tampa , Florida 33620 , United States
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , People's Republic of China
| |
Collapse
|
30
|
Senske M, Constantinescu-Aruxandei D, Havenith M, Herrmann C, Weingärtner H, Ebbinghaus S. The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute-protein interactions. Phys Chem Chem Phys 2018; 18:29698-29708. [PMID: 27806138 DOI: 10.1039/c6cp05080h] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hofmeister series is a universal homologous series to rank ion-specific effects on biomolecular properties such as protein stability or aggregation propensity. Although this ranking is widely used, outliers and exceptions are discussed controversially and a molecular level understanding is still lacking. Studying the thermal unfolding equilibrium of RNase A, we here show that this ambiguity arises from the oversimplified approach to determine the ion rankings. Instead of measuring salt effects on a single point of the protein folding stability curve (e.g. the melting point Tm), we here consider the salt induced shifts of the entire protein 'stability curve' (the temperature dependence of the unfolding free energy change, ΔGu(T)). We found multiple intersections of these curves, pinpointing a widely ignored fact: the Hofmeister cation and anion rankings are temperature dependent. We further developed a novel classification scheme of cosolute effects based on their thermodynamic fingerprints, reaching beyond salt effects to non-electrolytes.
Collapse
Affiliation(s)
- Michael Senske
- Department of Physical Chemistry II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | - Martina Havenith
- Department of Physical Chemistry II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Hermann Weingärtner
- Department of Physical Chemistry II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Simon Ebbinghaus
- Department of Physical Chemistry II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
31
|
Senske M, Xu Y, Bäumer A, Schäfer S, Wirtz H, Savolainen J, Weingärtner H, Havenith M. Local chemistry of the surfactant's head groups determines protein stability in reverse micelles. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00407b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein stability in reverse micelles is determined by local chemical interactions between the surfactant molecules and the protein groups.
Collapse
Affiliation(s)
- Michael Senske
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Yao Xu
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Alexander Bäumer
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Sarah Schäfer
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Hanna Wirtz
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Janne Savolainen
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Hermann Weingärtner
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Martina Havenith
- Department of Physical Chemistry II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
32
|
Shrestha P, Jonchhe S, Emura T, Hidaka K, Endo M, Sugiyama H, Mao H. Confined space facilitates G-quadruplex formation. NATURE NANOTECHNOLOGY 2017; 12:582-588. [PMID: 28346457 DOI: 10.1038/nnano.2017.29] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 02/06/2017] [Indexed: 05/25/2023]
Abstract
Molecular simulations suggest that the stability of a folded macromolecule increases in a confined space due to entropic effects. However, due to the interactions between the confined molecular structure and the walls of the container, clear-cut experimental evidence for this prediction is lacking. Here, using DNA origami nanocages, we show the pure effect of confined space on the property of individual human telomeric DNA G-quadruplexes. We induce targeted mechanical unfolding of the G-quadruplex while leaving the nanocage unperturbed. We find that the mechanical and thermodynamic stabilities of the G-quadruplex inside the nanocage increase with decreasing cage size. Compared to the case of diluted or molecularly crowded buffer solutions, the G-quadruplex inside the nanocage is significantly more stable, showing a 100 times faster folding rate. Our findings suggest the possibility of co-replicational or co-transcriptional folding of G-quadruplex inside the polymerase machinery in cells.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
33
|
Xu G, Cheng K, Wu Q, Liu M, Li C. Confinement Alters the Structure and Function of Calmodulin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100029 P.R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| |
Collapse
|
34
|
Xu G, Cheng K, Wu Q, Liu M, Li C. Confinement Alters the Structure and Function of Calmodulin. Angew Chem Int Ed Engl 2016; 56:530-534. [DOI: 10.1002/anie.201609639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
- Graduate University of Chinese Academy of Sciences; Beijing 100029 P.R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 P.R. China
| |
Collapse
|
35
|
Wiebenga-Sanford BP, DiVerdi J, Rithner CD, Levinger NE. Nanoconfinement's Dramatic Impact on Proton Exchange between Glucose and Water. J Phys Chem Lett 2016; 7:4597-4601. [PMID: 27779880 DOI: 10.1021/acs.jpclett.6b01651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glucose nanoconfined by solubilization in water-containing AOT (sodium bis(2-ethylhexyl) sulfosuccinate) reverse micelles has been investigated using 1H NMR. NMR spectra reveal well-defined signals for the glucose hydroxyl groups that suggest slow chemical exchange between them and the water hydroxyl groups. Using the EXSY (ZZ-exchange) method, the chemical exchange rate from water to glucose hydroxyl groups was measured for glucose in reverse micelles as a function of size (water pool diameter of ∼1-5 nm) at 25 °C. The chemical exchange rates observed in the nanoconfined interior are dramatically slower (5-20 times) than those observed for glucose in bulk aqueous solution at the same concentration as the micelle interior. Exchange rate constants are calculated via a mechanism that accounts for these observations, and implications of these results are presented and discussed.
Collapse
Affiliation(s)
| | - Joseph DiVerdi
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| | - Christopher D Rithner
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| | - Nancy E Levinger
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
36
|
Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin. Proc Natl Acad Sci U S A 2016; 113:9003-8. [PMID: 27466408 DOI: 10.1073/pnas.1602716113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of "polymers pushing polymers" is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores.
Collapse
|