1
|
Dou X, Saalah S, Chiam CK, Xie J, Sipaut CS. Ultrasmall metal nanoclusters as efficient luminescent probes for bioimaging. J Mater Chem B 2024. [PMID: 39679535 DOI: 10.1039/d4tb02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Ultrasmall metal nanoclusters (NCs, <2 nm) have emerged as a novel class of luminescent probes due to their atomically precise size and tailored physicochemical properties. The rapid advancements in the design and utilization of metal NC-based luminescent probes are facilitated by the atomic-level manipulation of metal NCs. This review article explores (i) the engineering of metal NCs' functions for bioimaging applications, and (ii) the diverse uses of metal NCs in bioimaging. We begin by presenting an overview of the engineering functions of metal NCs as luminescent probes for bioimaging applications, highlighting key strategies for enhancing NCs' luminescence, biocompatibility and targeting capabilities towards biological specimens. Our discussion then centers on the bioimaging applications of metal NCs in subcellular organelles, individual cells, tissues, and entire organs. Finally, we offer a perspective on the challenges and potential developments in the future use of metal NCs for bioimaging applications.
Collapse
Affiliation(s)
- Xinyue Dou
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Chel-Ken Chiam
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Coswald Stephen Sipaut
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| |
Collapse
|
2
|
Chen K, Najer A, Charchar P, Saunders C, Thanapongpibul C, Klöckner A, Chami M, Peeler DJ, Silva I, Panariello L, Karu K, Loynachan CN, Frenette LC, Potter M, Tregoning JS, Parkin IP, Edwards AM, Clarke TB, Yarovsky I, Stevens MM. Non-invasive in vivo sensing of bacterial implant infection using catalytically-optimised gold nanocluster-loaded liposomes for urinary readout. Nat Commun 2024; 15:10321. [PMID: 39609415 PMCID: PMC11605077 DOI: 10.1038/s41467-024-53537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is a leading cause of nosocomial implant-associated infections, causing significant morbidity and mortality, underscoring the need for rapid, non-invasive, and cost-effective diagnostics. Here, we optimise the synthesis of renal-clearable gold nanoclusters (AuNCs) for enhanced catalytic activity with the aim of developing a sensitive colourimetric diagnostic for bacterial infection. All-atom molecular dynamics (MD) simulations confirm the stability of glutathione-coated AuNCs and surface access for peroxidase-like activity in complex physiological environments. We subsequently develop a biosensor by encapsulating these optimised AuNCs in bacterial toxin-responsive liposomes, which is extensively studied by various single-particle techniques. Upon exposure to S. aureus toxins, the liposomes rupture, releasing AuNCs that generate a colourimetric signal after kidney-mimetic filtration. The biosensor is further validated in vitro and in vivo using a hyaluronic acid (HA) hydrogel implant infection model. Urine samples collected from mice with bacteria-infected HA hydrogel implants turn blue upon substrate addition, confirming the suitability of the sensor for non-invasive detection of implant-associated infections. This platform has significant potential as a versatile, cost-effective diagnostic tool.
Collapse
Affiliation(s)
- Kaili Chen
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Klöckner
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, Basel, 4058, Switzerland
| | - David J Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Inês Silva
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Luca Panariello
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Colleen N Loynachan
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael Potter
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology (CBRB), Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
3
|
Huang Y, Zheng J, Yu M. Nanoparticle Transport in Proximal Tubules with Rhabdomyolysis-Induced Necrosis. Angew Chem Int Ed Engl 2024:e202417024. [PMID: 39423345 DOI: 10.1002/anie.202417024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Renal-clearable engineered nanoparticles are being explored for their potential to deliver therapeutic agents for kidney disease treatment. A fundamental understanding of how these nanoparticles accumulate in diseased kidneys at the cellular level is essential to enhance their effectiveness and minimize side effects on adjacent healthy tissues. Herein, we report that the accumulation of glutathione-coated, near-infrared emitting gold nanoparticles (GS-AuNPs) correlates strongly with the necrotic stages of injured proximal tubular cells. Using a rhabdomyolysis-induced acute kidney injury (AKI) mouse model, we observed that GS-AuNPs were significantly accumulated in the extracellular lumen of proximal tubular epithelial cells (PTECs) at advanced necrotic stage, where cellular debris and released intracellular contents impeded their clearance. In contrast, during early necrosis, GS-AuNPs were still cleared through the unobstructed lumen. Additionally, intracellular uptake of GS-AuNPs was significantly reduced across all necrotic stages. These findings underscore the need for new strategies to design nanoparticles that can effectively target and be taken up by the diseased tubular cells before extensive necrosis occurs; so that nanoparticle-mediated drug delivery for kidney disease treatment can be achieved with desired efficacy and precision.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 W. Campbell Rd., Richardson, TX 75080, USA
| |
Collapse
|
4
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Ning X, Zhong Y, Cai Q, Wang Y, Jia X, Hsieh JT, Zheng J, Yu M. Gold Nanoparticle Transport in the Injured Kidneys with Elevated Renal Function Biomarkers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402479. [PMID: 39073056 PMCID: PMC11410533 DOI: 10.1002/adma.202402479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Renal function biomarkers such as serum blood urea nitrogen (BUN) and creatinine (Cr) serve as key indicators for guiding clinical decisions before administering kidney-excreted small-molecule agents. With engineered nanoparticles increasingly designed to be renally clearable to expedite their clinical translation, understanding the relationship between renal function biomarkers and nanoparticle transport in diseased kidneys becomes crucial to their biosafety in future clinical applications. In this study, renal-clearable gold nanoparticles (AuNPs) are used as X-ray contrast agents to noninvasively track their transport and retention in cisplatin-injured kidneys with varying BUN and Cr levels. The findings reveal that AuNP transport is significantly slowed in the medulla of severely injured kidneys, with BUN and Cr levels elevated to 10 times normal. In mildly injured kidneys, where BUN and Cr levels only four to five times higher than normal, AuNP transport and retention are not predictable by BUN and Cr levels but correlate strongly with the degree of tubular injury due to the formation of gold-protein casts in the Henle's loop of the medulla. These results underscore the need for caution when employing renal-clearable nanomedicines in compromised kidneys and highlight the potential of renal-clearable AuNPs as X-ray probes for assessing kidney injuries noninvasively.
Collapse
Affiliation(s)
- Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Qi Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yaohong Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xun Jia
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Jer-Tsong Hsieh
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
6
|
Zhao Z, He K, Liu B, Nie W, Luo X, Liu J. Intrarenal pH-Responsive Self-Assembly of Luminescent Gold Nanoparticles for Diagnosis of Early Kidney Injury. Angew Chem Int Ed Engl 2024; 63:e202406016. [PMID: 38703020 DOI: 10.1002/anie.202406016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Metabolic acidosis-induced kidney injury (MAKI) is asymptomatic and lack of clinical biomarkers in early stage, but rapidly progresses to severe renal fibrosis and ultimately results in end-stage kidney failure. Therefore, developing rapid and noninvasive strategies direct responsive to renal tubular acidic microenvironment rather than delayed biomarkers are essential for timely renoprotective interventions. Herein, we develop pH-responsive luminescent gold nanoparticles (p-AuNPs) in the second near-infrared emission co-coated with 2,3-dimethylaleic anhydride conjugated β-mercaptoethylamine and cationic 2-diethylaminoethanethiol hydrochloride, which showed sensitive pH-induced charge reversal and intrarenal self-assembly for highly sensitive and long-time (~24 h) imaging of different stages of MAKI. By integrating advantages of pH-induced intrarenal self-assembly and enhanced interactions between pH-triggered positively charged p-AuNPs and renal tubular cells, the early- and late-stage MAKI could be differentiated rapidly within 10 min post-injection (p.i.) with contrast index (CI) of 3.5 and 4.3, respectively. The corresponding maximum CI could reach 5.1 and 9.2 at 12 h p.i., respectively. Furthermore, p-AuNPs were demonstrated to effectively real-time monitor progressive recovery of kidney injury in MAKI mice after therapy, and also exhibit outstanding capabilities for drug screening. This pH-responsive strategy showed great promise for feedback on kidney dysfunction progression, opening new possibilities for early-stage diagnosis of pH-related diseases.
Collapse
Affiliation(s)
- Zhipeng Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui He
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ben Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wenyan Nie
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaoxi Luo
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jinbin Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
7
|
Huang Y, Ning X, Ahrari S, Cai Q, Rajora N, Saxena R, Yu M, Zheng J. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol 2024; 20:354-370. [PMID: 38409369 DOI: 10.1038/s41581-024-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nilum Rajora
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Zeng N, Guan X, Liu X, Shi H, Li N, Yang R, Zhou Y. Fibroblast activation protein-sensitive polymeric nanobeacon for early diagnosis of renal fibrosis. Biosens Bioelectron 2024; 253:116144. [PMID: 38422812 DOI: 10.1016/j.bios.2024.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Early diagnosis and treatment of renal fibrosis (RF) significantly affect the clinical outcomes of chronic kidney diseases (CKDs). As the typical fibrotic ailment, RF is characterized by remodeling of the extracellular matrix, and the activation of fibroblast activation protein (FAP) plays a crucial role in the mediation of extracellular matrix protein degradation. Therefore, FAP can serve as a biomarker for RF. However, up to now, no effective tools have been reported to diagnose early-stage RF via detecting FAP. In this work, a polymeric nanobeacon integrating an FAP-sensitive amphiphilic polymer and fluorophores was proposed, which was used to diagnose early RF by sensing FAP. The FAP can be detected in the range of 0 to 200 ng/mL with a detection limit of 0.132 ng/mL. Furthermore, the fluorescence imaging results demonstrate that the polymeric nanobeacon can sensitively image fibrotic kidneys in mice with unilateral ureteral occlusion (UUO), suggesting its potential for early RF diagnosis and guidance of FAP-targeted treatments. Importantly, when employed alongside with non-invasive diagnostic techniques like magnetic resonance imaging (MRI) and serological tests, this nanobeacon exhibits excellent biocompatibility, low biological toxicity, and sustained imaging capabilities, making it a suitable fluorescent tool for diagnosing various FAP-related fibrotic conditions. To our knowledge, this study represents the first attempt to image RF in early stage by detecting FAP, offering a promising fluorescent molecular tool for diagnosing various FAP-associated diseases in the future.
Collapse
Affiliation(s)
- Ni Zeng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiuhong Guan
- The First School of Clinical Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaowen Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Huiqiu Shi
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Nan Li
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China.
| |
Collapse
|
9
|
Zhou T, Dong Y, Wang X, Liu R, Cheng R, Pan J, Zhang X, Sun SK. Highly Sensitive Early Diagnosis of Kidney Damage Using Renal Clearable Zwitterion-Coated Ferrite Nanoprobe via Magnetic Resonance Imaging In Vivo. Adv Healthc Mater 2024; 13:e2304577. [PMID: 38278515 DOI: 10.1002/adhm.202304577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 01/28/2024]
Abstract
Iron oxide nanoprobes exhibit substantial potential in magnetic resonance imaging (MRI) of kidney diseases and can eliminate the nephrotoxicity of gadolinium-based contrast agents (GBCAs). Nevertheless, there is an extreme shortage of highly sensitive and renal clearable iron oxide nanoprobes suitable for early kidney damage detection through MRI. Herein, a renal clearable ultra-small ferrite nanoprobe (UMFNPs@ZDS) is proposed for highly sensitive early diagnosis of kidney damage via structural and functional MRI in vivo for the first time. The nanoprobe comprises a ferrite core coated with a zwitterionic layer, and possesses a high T1 relaxivity (12.52 mm-1s-1), a small hydrodynamic size (6.43 nm), remarkable water solubility, excellent biocompatibility, and impressive renal clearable ability. In a rat model of unilateral ureteral obstruction (UUO), the nanoprobe-based MRI can not only accurately visualize the locations of renal injury, but also provide comprehensive functional data including peak value, peak time, relative renal function (RRF), and clearance percentage via MRI. The findings prove the immense potential of ferrite nanoprobes as a superior alternative to GBCAs for the early diagnosis of kidney damage.
Collapse
Affiliation(s)
- Ting Zhou
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Yanzhi Dong
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xiaoyi Wang
- Department of Radiology and Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruxia Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical, University General Hospital, Tianjin, 300052, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
10
|
Ma J, Yang M, Zhang B, Niu M. The roles of templates consisting of amino acids in the synthesis and application of gold nanoclusters. NANOSCALE 2024; 16:7287-7306. [PMID: 38529817 DOI: 10.1039/d3nr06042j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Gold nanoclusters (AuNCs) with low toxicity, high photostability, and facile synthesis have attracted great attention. The ligand is of great significance in stabilizing AuNCs and regulating their properties. Ligands consisting of amino acids (proteins and peptides) are an ideal template for synthesizing applicative AuNCs due to their inherent bioactivity, biocompatibility, and accessibility. In this review, we summarize the correlation of the template consisting of amino acids with the properties of AuNCs by analyzing different peptide sequences. The selection of amino acids can regulate the fluorescence excitation/emission and intensity, size, cell uptake, and light absorption. By analyzing the role played by AuNCs stabilized by proteins and peptides in the application, universal rules and detailed performances of sensors, antibacterial agents, therapeutic reagents, and light absorbers are reviewed. This review can guide the template design and application of AuNCs when selecting proteins and peptides as ligands.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Bin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
11
|
Feng X, Wang G, Pan J, Wang X, Wang J, Sun SK. Purification-free synthesis of bright lactoglobulin@dye nanoprobe for second near-infrared fluorescence imaging of kidney dysfunction in vivo. Colloids Surf B Biointerfaces 2024; 236:113796. [PMID: 38368756 DOI: 10.1016/j.colsurfb.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Kidney disease is currently prevalent worldwide but only shows insidious symptoms in the early stages. The second near-infrared window (NIR-II) fluorescence imaging has become a widely used preclinical technology for evaluating renal dysfunction due to its high resolution and sensitivity. However, bright renal clearable NIR-II fluorescence nanoprobes with a simple synthesis process are still lacking. Herein, we develop a lactoglobulin (LG)@dye nanoprobe for NIR-II fluorescence imaging of kidney dysfunction in vivo based on a purification-free method. The nanoprobe was synthesized by simply mixing LG and IR820 in aqueous solutions at 70 °C for 2 h based on the covalent interaction between the meso-Cl in IR820 and LG. The synthesized LG@IR820 nanoprobe has bright and stable NIR-II fluorescence, ultra-small size (<5 nm), low toxicity, and renal-clearable ability. The high reaction efficiency and pure aqueous reaction media make the synthesis method purification-free. In a unilateral ureteral obstruction mouse model, incipient renal dysfunction assessment was achieved by LG@IR820 nanoprobe, which couldn't be diagnosed with conventional kidney function indicators. This study provides a bright and purification-free NIR-II LG@IR820 nanoprobe to visualize kidney dysfunction at the early stage.
Collapse
Affiliation(s)
- Xinyu Feng
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xu Wang
- Tianjin Key Laboratory of Technologies Enabling Development on Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Junping Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
12
|
Zhang Y, Xiang K, Pan J, Cheng R, Sun SK. Noninvasive Diagnosis of Kidney Dysfunction Using a Small-Molecule Manganese-Based Magnetic Resonance Imaging Probe. Anal Chem 2024; 96:3318-3328. [PMID: 38355404 DOI: 10.1021/acs.analchem.3c04069] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a promising approach for the diagnosis of kidney diseases. However, safety concerns, including nephrogenic systemic fibrosis, limit the administration of gadolinium (Gd)-based contrast agents (GBCAs) in patients who suffer from renal impairment. Meanwhile, nanomaterials meet biosafety concerns because of their long-term retention in the body. Herein, we propose a small-molecule manganese-based imaging probe Mn-PhDTA as an alternative to GBCAs to assess renal insufficiency for the first time. Mn-PhDTA was synthesized via a simple three-step reaction with a total yield of up to 33.6%, and a gram-scale synthesis can be realized. Mn-PhDTA has an r1 relaxivity of 2.72 mM-1 s-1 at 3.0 T and superior kinetic inertness over Gd-DTPA and Mn-EDTA with a dissociation time of 60 min in the presence of excess Zn2+. In vivo and in vitro experiments demonstrate their good stability and biocompatibility. In the unilateral ureteral obstruction rats, Mn-PhDTA provided significant MR signal enhancement, enabled distinguishing structure changes between the normal and damaged kidneys, and evaluated the renal function at different injured stages. Mn-PhDTA could act as a potential MRI contrast agent candidate for the replacement of GBCAs in the early detection of kidney dysfunction and analysis of kidney disease progression.
Collapse
Affiliation(s)
- Yuping Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Ke Xiang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jinbin Pan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
13
|
Zhou L, Yang Z, Guo L, Zou Q, Zhang H, Sun SK, Ye Z, Zhang C. Noninvasive Assessment of Kidney Injury by Combining Structure and Function Using Artificial Intelligence-Based Manganese-Enhanced Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5474-5485. [PMID: 38271189 DOI: 10.1021/acsami.3c14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is seriously limited in kidney injury detection due to the nephrotoxicity of clinically used gadolinium-based contrast agents. Herein, we propose a noninvasive method for the assessment of kidney injury by combining structure and function information based on manganese (Mn)-enhanced MRI for the first time. As a proof of concept, the Mn-melanin nanoprobe with good biocompatibility and excellent T1 relaxivity is applied in MRI of a unilateral ureteral obstruction mice model. The abundant renal structure and function information is obtained through qualitative and quantitative analysis of MR images, and a brand new comprehensive assessment framework is proposed to precisely identify the degree of kidney injury successfully. Our study demonstrates that Mn-enhanced MRI is a promising approach for the highly sensitive and biosafe assessment of kidney injury in vivo.
Collapse
Affiliation(s)
- Li Zhou
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo 315012, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zhaoxiang Ye
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Cai Zhang
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
14
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
15
|
Ren H, Hu Q, Yang J, Zhou X, Liu X, Tang J, Hu H, Shen Y, Zhou Z. Single-Molecule Dendritic MRI Nanoprobes Reveal the Size-Dependent Tumor Entrance. Adv Healthc Mater 2023; 12:e2302210. [PMID: 37715937 DOI: 10.1002/adhm.202302210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Indexed: 09/18/2023]
Abstract
The tumor entrance of drug delivery systems, including therapeutic proteins and nanomedicine, plays an essential role in affecting the treatment outcome. Nanoparticle size is a critical but contradictory factor in making a trade-off among blood circulation, tumor accumulation, and penetration. Here, this work designs a series of single-molecule gadolinium (Gd)-based magnetic resonance imaging (MRI) nanoprobes with well-defined sizes to precisely explore the size-dependent tumor entrance in vivo. The MRI nanoprobes obtained by divergent synthesis contain a core molecule of macrocyclic Gd(III)-chelate and different layers of dendritic lysine units, mimicking globular protein. This work finds that the r1 relaxivity and MR imaging signals increase with the nanoparticle size. The nanoprobe with a lower limit of critical size threshold ≈8.0 nm achieves superior tumor accumulation and penetration. These single-molecule MRI nanoprobes can be served to precisely examine the size-related nanoparticle-biological interactions.
Collapse
Affiliation(s)
- Huiming Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Qiuhui Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
16
|
Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS NANO 2023; 17:20825-20849. [PMID: 37921488 DOI: 10.1021/acsnano.3c05853] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the in vivo transport of nanoparticles provides guidelines for designing nanomedicines with higher efficacy and fewer side effects. Among many factors, the size of nanoparticles plays a key role in controlling their in vivo transport behaviors due to the existence of various physiological size thresholds within the body and size-dependent nano-bio interactions. Encouraged by the evolving discoveries of nanoparticle-size-dependent biological effects, we believe that it is necessary to systematically summarize the size-scaling laws of nanoparticle transport in vivo. In this review, we summarized the size effect of nanoparticles on their in vivo transport along their journey in the body: begin with the administration of nanoparticles via different delivery routes, followed by the targeting of nanoparticles to intended tissues including tumors and other organs, and eventually clearance of nanoparticles through the liver or kidneys. We outlined the tools for investigating the in vivo transport of nanoparticles as well. Finally, we discussed how we may leverage the size-dependent transport to tackle some of the key challenges in nanomedicine translation and also raised important size-related questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Gaoshuo Liu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuanqing Song
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| |
Collapse
|
17
|
Chan CKW, Szeto CC, Lee LKC, Xiao Y, Yin B, Ding X, Lee TWY, Lau JYW, Choi CHJ. A sub-10-nm, folic acid-conjugated gold nanoparticle as self-therapeutic treatment of tubulointerstitial fibrosis. Proc Natl Acad Sci U S A 2023; 120:e2305662120. [PMID: 37812696 PMCID: PMC10589645 DOI: 10.1073/pnas.2305662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs. The folic acids support binding to selected tubule cells with overexpression of folate receptors and promote retention in the fibrotic kidney. Upon intravenous injection, this nanoparticle can selectively accumulate in the fibrotic kidney over the nonfibrotic contralateral kidney at ~3.6% of the injected dose. Delivery to the fibrotic kidney depends on nanoparticle size and disease stage. Notably, a single injection of this self-therapeutic nanoparticle reduces tissue degeneration, inhibits genes related to the extracellular matrix, and treats fibrosis more effectively than standard Captopril therapy. Our data underscore the importance of constructing CKD nanomedicines based on renal pathophysiology.
Collapse
Affiliation(s)
- Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Cheuk Chun Szeto
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Leo Kit Cheung Lee
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yu Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Bohan Yin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xiaofan Ding
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Thomas Wai Yip Lee
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - James Yun Wong Lau
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
18
|
Zhang S, Ren HF, Du RX, Sun WL, Fu ML, Zhang XC. Global, regional, and national burden of kidney dysfunction from 1990 to 2019: a systematic analysis from the global burden of disease study 2019. BMC Public Health 2023; 23:1218. [PMID: 37353821 PMCID: PMC10288715 DOI: 10.1186/s12889-023-16130-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE We aim to explore the prevalence and temporal trends of the burden of kidney dysfunction (KD) in global, regional and national level, since a lack of related studies. DESIGN Cross-sectional study. MATERIALS The data of this research was obtained from Global Burden of Diseases Study 2019. The estimation of the prevalence, which was measured by the summary exposure value (SEV), and attributable burden of KD was performed by DisMod-MR 2.1, a Bayesian meta-regression tool. The Spearman rank order correlation method was adopted to perform correlation analysis. The temporal trends were represented by the estimated annual percentage change (EAPC). RESULTS In 2019, there were total 3.16 million deaths and 76.5 million disability-adjusted life years (DALYs) attributable to KD, increased by 101.1% and 81.7% compared with that in 1990, respectively. From 1990 to 2019, the prevalence of KD has increased in worldwide, but decreased in High-income Asia Pacific. Nearly 48.5% of countries globally, such as South Africa, Egypt and Mexico had increased mortality rates of KD from 1990 to 2019 while 44.6% for disability rate. Countries with lower socio-demographic index (SDI) are facing a higher prevalence as well as mortality and disability rate compared with those with higher SDI. Compared with females, the prevalence of KD was lower in males, however the attributable mortality and disability rate were higher in all years from 1990 to 2019. CONCLUSION With the progress of senescent, we will face more severe challenges of reducing the prevalence and attributable burden of KD, especially in regions with lower SDI. Effective measures are urgently required to alleviate the prevalence and burden of KD.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui-Fang Ren
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Rong-Xin Du
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei-Li Sun
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Mei-Li Fu
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Chao Zhang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
19
|
Unwin R. Transport mechanisms. NATURE NANOTECHNOLOGY 2023; 18:546-547. [PMID: 37069288 DOI: 10.1038/s41565-023-01364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Robert Unwin
- Department of Renal Medicine, Royal Free Hospital Trust, University College London (UCL), London, UK.
| |
Collapse
|
20
|
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. J Am Chem Soc 2023. [PMID: 37200506 DOI: 10.1021/jacs.3c02880] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall coinage metal nanoclusters (NCs, <3 nm) have emerged as a novel class of theranostic probes due to their atomically precise size and engineered physicochemical properties. The rapid advances in the design and applications of metal NC-based theranostic probes are made possible by the atomic-level engineering of metal NCs. This Perspective article examines (i) how the functions of metal NCs are engineered for theranostic applications, (ii) how a metal NC-based theranostic probe is designed and how its physicochemical properties affect the theranostic performance, and (iii) how metal NCs are used to diagnose and treat various diseases. We first summarize the tailored properties of metal NCs for theranostic applications in terms of biocompatibility and tumor targeting. We focus our discussion on the theranostic applications of metal NCs in bioimaging-directed disease diagnosis, photoinduced disease therapy, nanomedicine, drug delivery, and optical urinalysis. Lastly, an outlook on the challenges and opportunities in the future development of metal NCs for theranostic applications is provided.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, P. R. China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
21
|
Huang Y, Chen K, Liu L, Ma H, Zhang X, Tan K, Li Y, Liu Y, Liu C, Wang H, Zhang XD. Single Atom-Engineered NIR-II Gold Clusters with Ultrahigh Brightness and Stability for Acute Kidney Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300145. [PMID: 37058089 DOI: 10.1002/smll.202300145] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Near-infrared-II (NIR-II) imaging has shown great potential for monitoring the pathological progression and deep tissue imaging but is limited to present unmet NIR-II agent. Present fluorophores show a promising prospect for NIR-II imaging, but brightness and photostability are still highly challenging during real-time monitoring. In this work, atom-engineered NIR-II Au24 Cd1 clusters with ultrahigh brightness, stability, and photostability are developed via single atomic Cd doping. Single atom Cd substitutions contribute to Cd 4d state in HOMO and redistribution of energy level near the gap, exhibiting 56-fold fluorescence enhancement of Au24 Cd1 clusters. Meanwhile, single atomic Cd reinforces CdAu bond energy, formation energy, and stabilized cluster structure, leading to persistent stability for up to 1 month without decay, as well as excellent photostability of 1 h without photobleaching, much longer than clinically approved indocyanine green (<5 min). In vivo imaging shows gold clusters can monitor acute kidney injury (AKI) even after 72 h of injury, enabling evaluating progression at a very long window. Meanwhile, the bioactive gold clusters can alleviate AKI-induced oxidative stress damage and acute neuroinflammation. Single atom-engineered gold clusters exhibit molecular tracking and diagnostic prospect in kidney-related diseases.
Collapse
Affiliation(s)
- You Huang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xiaoning Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Kexin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yuan Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ying Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
22
|
Zhao Z, Chen H, He K, Lin J, Cai W, Sun Y, Liu J. Glutathione-Activated Emission of Ultrasmall Gold Nanoparticles in the Second Near-Infrared Window for Imaging of Early Kidney Injury. Anal Chem 2023; 95:5061-5068. [PMID: 36908024 DOI: 10.1021/acs.analchem.2c05612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Biomarker-activatable luminescent probes with high sensitivity and specificity show great promise in advanced bioimaging applications. However, the lack of stable biomarkers at an early stage is currently a major obstacle for sensitive early disease imaging. Herein, we develop a facile in vivo ligand exchange strategy to achieve renal-clearable activatable luminescent gold nanoparticles (AuNPs), which are independent of biomarkers for sensitive and long-time imaging of early kidney injury. Significantly activated emission in the second near-infrared region (∼1026 nm) is realized from the ligand exchange of triphenylphosphine-3,3',3″-trisulfonic acid (TPPTS)-coated AuNPs (∼1.4 nm, TPPTS-AuNPs) with quantitative amounts of glutathione (GSH). The abundant GSH in cells, particularly in liver sinusoids, is then demonstrated successfully to activate the emission of TPPTS-AuNPs with an extremely low background for both cell imaging and in vivo visualization of visceral organs (e.g., liver and kidneys). In addition, the in vivo GSH-exchanged TPPTS-AuNPs show enhanced interactions with acidic renal tubular epithelial cells, resulting in sensitive (contrast index, ∼3.9) and long-time (>6.5 h) noninvasive monitoring of acidosis-induced early kidney injury. This facile ligand exchange strategy opens new possibilities for designing activatable luminescent probes independent of biomarkers for earlier disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jincheng Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yidan Sun
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
24
|
Yang K, Shang Y, Yang N, Pan S, Jin J, He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front Med (Lausanne) 2023; 10:1132355. [PMID: 37138743 PMCID: PMC10149997 DOI: 10.3389/fmed.2023.1132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms "Renal Insufficiency, Chronic" [Mesh] as the subject word and terms such as "Chronic Renal Insufficiencies," "Chronic Renal Insufficiency," "Chronic Kidney Diseases," "Kidney Disease, Chronic," "Renal Disease, Chronic" as free words. In the second search, we used "Nanoparticles" [Mesh] as the subject word and "Nanocrystalline Materials," "Materials, Nanocrystalline," "Nanocrystals," and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Collapse
Affiliation(s)
- Kaibi Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwei Shang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Yang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shujun Pan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Juan Jin,
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Qiang He,
| |
Collapse
|
25
|
Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater Today Bio 2022; 16:100364. [PMID: 35875197 PMCID: PMC9305626 DOI: 10.1016/j.mtbio.2022.100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Nanomedicines have shown a promising strategy for cancer therapy because of their higher safety and efficiency relative to small-molecule drugs, while the dense extracellular matrix (ECM) in tumors often acts as a physical barrier to hamper the accumulation and diffusion of nanoparticles, thus compromising the anticancer efficacy. To address this issue, two major strategies including degrading ECM components and inhibiting ECM formation have been adopted to enhance the therapeutic efficacies of nanomedicines. In this review, we summarize the recent progresses of tumor ECM modulating strategies for enhanced antitumor therapy of nanomedicines. Through degrading ECM components or inhibiting ECM formation, the accumulation and diffusion of nanoparticles in tumors can be facilitated, leading to enhanced efficacies of chemotherapy and phototherapy. Moreover, the ECM degradation can improve the infiltration of immune cells into tumor tissues, thus achieving strong immune response to reject tumors. The adoptions of these two ECM modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are discussed in detail. A conclusion, current challenges and outlook are then given. Extracellular matrix modulating strategies have been adopted to enhance the therapeutic efficacies of nanomedicines. Degrading extracellular matrix components or inhibiting extracellular matrix formation can improve the accumulation and diffusion of nanoparticles in tumors and the infiltration of immune cells into tumor tissues. The adoptions of two extracellular matrix modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are summarized.
Collapse
|
26
|
Yan D, Li T, Yang Y, Niu N, Wang D, Ge J, Wang L, Zhang R, Wang D, Tang BZ. A Water-Soluble AIEgen for Noninvasive Diagnosis of Kidney Fibrosis via SWIR Fluorescence and Photoacoustic Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206643. [PMID: 36222386 DOI: 10.1002/adma.202206643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Early diagnosis of renal fibrosis is crucially significant on account of its worldwide prevalent tendency. Optical imaging in the near-infrared window has been recognized as an appealing technique for the timely detection of renal dysfunction. However, formulating a contrast agent that allows early monitoring of renal fibrosis and concurrently renally clearable in a normal group is still challenging. Herein, a nanosized fluorophore with aggregation-induced emission (AIE) features, namely AIE-4PEG550 NPs, is well-tailored and amenable to longitudinal visualization of the fibrosis progression specifically in the early-stage via short-wave infrared (SWIR, 900-1700 nm) fluorescence and photoacoustic bimodal imaging. The small size (≈26 nm), renally filtrable molecular weight (3.3 kDa), high renal clearance efficiency (93.1 ± 1.7% excretion through the kidneys within 24 h), outstanding imaging performance, and good biocompatibility, together make AIE-4PEG550 NPs remarkably impressive and far superior to clinical diagnostic assays. The finding in this study would provide a blueprint for the next generation of diagnostic agents for the extent of renal fibrosis.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingting Li
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
- The Radiology Department of Third Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Yilin Yang
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
- The Radiology Department of Third Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Deliang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ruiping Zhang
- The Radiology Department of Third Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
27
|
Wang F, Zhu J, Wang Y, Li J. Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. NANOMATERIALS 2022; 12:nano12101656. [PMID: 35630880 PMCID: PMC9144442 DOI: 10.3390/nano12101656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Immunotherapy has emerged as one of the major strategies for cancer treatment. Unlike conventional therapeutic methods, immunotherapy can treat both primary and distant metastatic tumors through triggering systematic antitumor immune responses and can even prevent tumor recurrence after causing the formation of immune memory. However, immunotherapy still has the issues of low patient response rates and severe immune-related adverse events in clinical practices. In this regard, the combination of nanomedicine-mediated therapy with immunotherapy can modulate a tumor immunosuppressive microenvironment and thus amplify antitumor immunity. In particular, second near-infrared (NIR-II) photothermal therapy (PTT), which utilizes light conversions to generate heat for killing cancer cells, has shown unique advantages in combining with immunotherapy. In this review, the recent progress of engineering nanomedicines for NIR-II PTT combinational immunotherapy is summarized. The role of nanomedicine-mediated NIR-II PTT in inducing immunogenic cell death and reprogramming the tumor immunosuppressive microenvironment for facilitating immunotherapy are highlighted. The development of NIR-II-absorbing organic and inorganic nonmetal and inorganic metal nanomedicines for the NIR-II PTT combinational immunotherapy of cancer is also introduced in detail. Lastly, the current challenges and future perspectives of these nanomedicines for combinational immunotherapy are proposed.
Collapse
Affiliation(s)
- Fengshuo Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China;
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Correspondence: (Y.W.); (J.L.)
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|
28
|
Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100047. [PMID: 36824160 PMCID: PMC9934479 DOI: 10.1016/j.bbiosy.2022.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022] Open
Abstract
In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.
Collapse
|
29
|
Xu Q, Pan Y, Liu X, Gao Y, Luan X, Zeng F, Zhou D, Long W, Wang Y, Song Y. Hypoxia‐Responsive Platinum Supernanoparticles for Urinary Microfluidic Monitoring of Tumors. Angew Chem Int Ed Engl 2022; 61:e202114239. [DOI: 10.1002/anie.202114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Qin Xu
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Yongchun Pan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xinli Liu
- Life Science Institute Guangxi Medical University Nanning 530021 China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Fei Zeng
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yujun Song
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| |
Collapse
|
30
|
Wang J, Zha M, Zhao H, Yue W, Wu D, Li K. Detection of Kidney Dysfunction through In Vivo Magnetic Resonance Imaging with Renal-Clearable Gadolinium Nanoprobes. Anal Chem 2022; 94:4005-4011. [PMID: 35188754 DOI: 10.1021/acs.analchem.1c05140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kidney dysfunction is a clinical syndrome that can subsequently result in lethal kidney failure. The exploration of emerging bioimaging contrast agents with translational potential is highly challenging for a feasible diagnosis of kidney dysfunction. Herein, a class of renal-clearable gadolinium nanoparticles (Gd@PEG NPs) with an ultrasmall size of ∼5 nm, good monodispersity, and T1 relaxivity are synthesized using mesoporous silica nanoparticles as the template. Assisted by such renal-clearable Gd@PEG NPs, the diagnosis of kidney dysfunction in a mice model with a damaged kidney has been achieved through in vivo noninvasive magnetic resonance imaging. As a result, this work paves the way to synthesize monodispersible ultrasmall Gd contrast agents, facilitating the exploration of translational strategies for an in vivo analysis of kidney dysfunction.
Collapse
Affiliation(s)
- Jun Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Hui Zhao
- Department of MRI Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wentong Yue
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Decheng Wu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
31
|
Xu Q, Pan Y, Liu X, Gao Y, Luan X, Zeng F, Zhou D, Long W, Wang Y, Song Y. Hypoxia‐Responsive Platinum Supernanoparticles for Urinary Microfluidic Monitoring of Tumors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qin Xu
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Yongchun Pan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xinli Liu
- Life Science Institute Guangxi Medical University Nanning 530021 China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Fei Zeng
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Yujun Song
- College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
| |
Collapse
|
32
|
Ding M, Zhang Y, Li J, Pu K. Bioenzyme-based nanomedicines for enhanced cancer therapy. NANO CONVERGENCE 2022; 9:7. [PMID: 35119544 PMCID: PMC8816986 DOI: 10.1186/s40580-022-00297-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/09/2023]
Abstract
Bioenzymes that catalyze reactions within living systems show a great promise for cancer therapy, particularly when they are integrated with nanoparticles to improve their accumulation into tumor sites. Nanomedicines can deliver toxic bioenzymes into cancer cells to directly cause their death for cancer treatment. By modulating the tumor microenvironment, such as pH, glucose concentration, hypoxia, redox levels and heat shock protein expression, bioenzyme-based nanomedicines play crucial roles in improving the therapeutic efficacy of treatments. Moreover, bioenzyme-mediated degradation of the major components in tumor extracellular matrix greatly increases the penetration and retention of nanoparticles in deep tumors and infiltration of immune cells into tumor tissues, thus enhancing the efficacies of chemotherapy, phototherapy and immunotherapy. In this review, we summarize the recent progresses of bioenzyme-based nanomedicines for enhanced cancer therapy. The design and working mechanisms of the bioenzyme-based nanomedicines to achieve enhanced chemotherapy, photothermal therapy, photodynamic therapy, chemodynamic therapy, radiotherapy and immunotherapy are introduced in detail. At the end of this review, a conclusion and current challenges and perspectives in this field are given.
Collapse
Affiliation(s)
- Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yijing Zhang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| |
Collapse
|
33
|
Yao C, Chen Y, Zhao M, Wang S, Wu B, Yang Y, Yin D, Yu P, Zhang H, Zhang F. A Bright, Renal‐Clearable NIR‐II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenzhi Yao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Ying Chen
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Bin Wu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yiwei Yang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Dongrui Yin
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
34
|
Yao C, Chen Y, Zhao M, Wang S, Wu B, Yang Y, Yin D, Yu P, Zhang H, Zhang F. A Bright, Renal-Clearable NIR-II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Angew Chem Int Ed Engl 2022; 61:e202114273. [PMID: 34850517 DOI: 10.1002/anie.202114273] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Early detection of kidney disease is of vital importance due to its current prevalence worldwide. Fluorescence imaging, especially in the second near-infrared window (NIR-II) has been regarded as a promising technique for the early diagnosis of kidney disease due to the superior resolution and sensitivity. However, the reported NIR-II organic renal-clearable probes are hampered by their low brightness (ϵmax Φf>1000 nm <10 M-1 cm-1 ) and limited blood circulation time (t1/2 <2 h), which impede the targeted imaging performance. Herein, we develop the aza-boron-dipyrromethene (aza-BODIPY) brush macromolecular probes (Fudan BDIPY Probes (FBP 912)) with high brightness (ϵmax Φf>1000 nm ≈60 M-1 cm-1 ), which is about 10-fold higher than that of previously reported NIR-II renal-clearable organic probes. FBP 912 exhibits an average diameter of ≈4 nm and high renal clearance efficiency (≈65 % excretion through the kidney within 12 h), showing superior performance for non-invasively diagnosis of renal ischemia-reperfusion injury (RIR) earlier than clinical serum-based protocols. Additionally, the high molecular weight polymer brush enables FBP 912 with prolonged circulation time (t1/2 ≈6.1 h) and higher brightness than traditional PEGylated renal-clearable control fluorophores (t1/2 <2 h), facilitating for 4T1 tumor passive targeted imaging and renal cell carcinoma active targeted imaging with higher signal-to-noise ratio and extended retention time.
Collapse
Affiliation(s)
- Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yiwei Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
35
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
36
|
Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214268] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Weng J, Wang Y, Zhang Y, Ye D. An Activatable Near-Infrared Fluorescence Probe for in Vivo Imaging of Acute Kidney Injury by Targeting Phosphatidylserine and Caspase-3. J Am Chem Soc 2021; 143:18294-18304. [PMID: 34672197 DOI: 10.1021/jacs.1c08898] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Renal-clearable and target-responsive near-infrared (NIR) fluorescent imaging probes have been promising for in vivo diagnosis of acute kidney injury (AKI). However, designing an imaging probe that is renal-clearable and concurrently responsive toward multiple molecular targets to facilitate early detection of AKI with improved sensitivity and specificity is challenging. Herein, by leveraging the receptor-mediated binding and retention effect along with enzyme-triggered fluorescence activation, we design and synthesize an activatable small-molecule NIR fluorescent probe (1-DPA2) using a "one-pot sequential click reaction" approach. 1-DPA2 can target both the externalized phosphatidylserine (PS) and active caspase-3 (Casp-3), two essential biomarkers of apoptosis, producing enhanced 808 nm NIR fluorescence and a high signal-to-background ratio (SBR) amenable to detecting the onset of cisplatin-induced AKI in mice as early as 24 h post-treatment with cisplatin. We not only monitor the gradual activation of Casp-3 in the kidney of mice upon AKI progression but also can report on the progressive recovery of kidney functions in AKI mice following N-acetyl-l-cysteine (NAC) therapy via real-time fluorescence imaging by 1-DPA2. This study demonstrates the ability of 1-DPA2 for longitudinal monitoring of renal cell apoptosis by concurrently targeting PS externalization and Casp-3 activation, which is efficient for early diagnosis of AKI and useful for prediction of potential drug nephrotoxicity as well as in vivo screening of anti-AKI drugs' efficacy.
Collapse
Affiliation(s)
- Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Zhang DY, Liu H, Zhu KS, He T, Younis MR, Yang C, Lei S, Wu J, Lin J, Qu J, Huang P. Prussian blue-based theranostics for ameliorating acute kidney injury. J Nanobiotechnology 2021; 19:266. [PMID: 34488789 PMCID: PMC8419910 DOI: 10.1186/s12951-021-01006-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Acute kidney injury (AKI) with high mortality rates is associated with an excess of reactive oxygen/nitrogen species (RONS) within kidney tissues. Recently, nanomedicine antioxidant therapy has been used to alleviate AKI. Herein, we synthesized ultrasmall Prussian blue nanozymes (PB NZs, 4.5 nm) as theranostic agents for magnetic resonance (MR)/photoacoustic (PA) dual-modal imaging guided AKI treatment. Results PB NZs exhibited multi-enzyme mimetic abilities, promoting the effective elimination of RONS both in vitro and in vivo. Moreover, benefiting from their imaging contrast properties, the rapid renal accumulation of PB NZs was verified by in vivo PA/MR dual-modal imaging. Due to their excellent enrichment in the kidney and unique multi-enzyme mimetic abilities, ultrasmall PB NZs displayed superior AKI treatment efficacy compared with that of amifostine in two clinically relevant types of AKI induced murine models (either by rhabdomyolysis or cisplatin). Conclusion Our findings suggested ultrasmall PB NZs, as nanozyme theranostics, have great potential for AKI management. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01006-z.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Kathy S Zhu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Oral Digital Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chen Yang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
40
|
Liu D, Du Y, Jin FY, Xu XL, Du YZ. Renal Cell-Targeted Drug Delivery Strategy for Acute Kidney Injury and Chronic Kidney Disease: A Mini-Review. Mol Pharm 2021; 18:3206-3222. [PMID: 34337953 DOI: 10.1021/acs.molpharmaceut.1c00511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become a global public health concern associated with high morbidity, mortality, and healthcare costs. However, at present, very few effective and specific drug therapies are available, owing to the poor therapeutic efficacy and systemic side effects. Kidney-targeted drug delivery, as a potential strategy for solving these problems, has received great attention in the fields of AKI and CKD in recent years. Here, we review the literature on renal targeted, more specifically, renal cell-targeted formulations of AKI and CKD that offered biodistribution data. First, we provide a broad overview of the unique structural characteristics and injured cells of acute and chronic injured kidneys. We then separately summarize literature examples of renal targeted formulations according to the difference of target cells and elaborate on the appropriate formulation design criteria for AKI and CKD. Finally, we propose a hypothetic strategy to improve the renal accumulation of glomerular cell-targeted formulation by escaping the uptake of the reticuloendothelial system and provide some perspectives for future studies.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| |
Collapse
|
41
|
Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A Promising NIR-II Fluorescent Sensor for Peptide-Mediated Long-Term Monitoring of Kidney Dysfunction. Angew Chem Int Ed Engl 2021; 60:15809-15815. [PMID: 33876514 DOI: 10.1002/anie.202103071] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Indexed: 01/06/2023]
Abstract
Kidney disease is usually "silent" at the early stage but can lead to severe kidney failure later on. The development of bioimaging probes with rapid distribution and long-term retention in the kidney is significant for the precise diagnosis of renal diseases. Here, a strategy for the peptide-mediated delivery and long-term accumulation (>48 h) of second near-infrared window (NIR-II) fluorophores into the kidney is demonstrated. It is shown that both the hepatic-cleared organic molecules and fast renal-cleared ultrasmall nanoparticles can be retained in the kidney after conjugation to the peptide with high polarity. Moreover, a ROS-responsive activatable bilateral NIR-II sensor was designed based on the kidney targeting peptide, which enables both in vivo long-term kidney monitoring and in vitro urine analysis. The capability of the peptide-based sensor to detect early kidney injury and report on kidney dysfunctional progression is particularly crucial for chemotherapy regimen optimization and timely renoprotective intervention during medication.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Peng Pei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
42
|
The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Yu H, Liu D, Shu G, Jin F, Du Y. Recent advances in nanotherapeutics for the treatment and prevention of acute kidney injury. Asian J Pharm Sci 2021; 16:432-443. [PMID: 34703493 PMCID: PMC8520043 DOI: 10.1016/j.ajps.2020.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/07/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a serious kidney disease without specific medications currently except for expensive dialysis treatment. Some potential drugs are limited due to their high hydrophobicity, poor in vivo stability, low bioavailability and possible adverse effects. Besides, kidney-targeted drugs are not common and small molecules are cleared too quickly to achieve effective drug concentrations in injured kidneys. These problems limit the development of pharmacological therapy for AKI. Nanotherapeutics based on nanotechnology have been proved to be an emerging and promising treatment strategy for AKI, which may solve the pharmacological therapy dilemma. More and more nanotherapeutics with different physicochemical properties are developed to efficiently deliver drugs, increase accumulation and control release of drugs in injury kidneys and also directly as effective antioxidants. Here, we discuss the recent nanotherapeutics applied in the treatment and prevention of AKI with improved effectiveness and few side effects.
Collapse
Affiliation(s)
- Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaofeng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A Promising NIR‐II Fluorescent Sensor for Peptide‐Mediated Long‐Term Monitoring of Kidney Dysfunction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Peng Pei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Xin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
45
|
Chen Q, Ding F, Zhang S, Li Q, Liu X, Song H, Zuo X, Fan C, Mou S, Ge Z. Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. NANO LETTERS 2021; 21:4394-4402. [PMID: 33998787 DOI: 10.1021/acs.nanolett.1c01044] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The high demand for acute kidney injury (AKI) therapy calls the development of multifunctional nanomedicine for renal management with programmable pharmacokinetics. Here, we developed a renal-accumulating DNA nanodevice with exclusive kidney retention for longitudinal protection of AKI in different stages in a renal ischemia-reperfusion (I/R) model. Due to the prolonged kidney retention time (>12 h), the ROS-sensitive nucleic acids of the nanodevice could effectively alleviate oxidative stress by scavenging ROS in stage I, and then the anticomplement component 5a (aC5a) aptamer loaded nanodevice could sequentially suppress the inflammatory responses by blocking C5a in stage II, which is directly related to the cytokine storm. This sequential therapy provides durable and pathogenic treatment of kidney dysfunction based on successive pathophysiological events induced by I/R, which holds great promise for renal management and the suppression of the cytokine storm in more broad settings including COVID-19.
Collapse
Affiliation(s)
- Qian Chen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhilei Ge
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
46
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal-Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021; 60:11713-11717. [PMID: 33665956 DOI: 10.1002/anie.202017273] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Renal-clearable nanoparticles are typically fast eliminated through the free glomerular filtration, which show weak interaction with the renal compartments and negligible ultrasound signals, raising challenges in direct imaging of kidney diseases. Here, we report the ultrasmall renal-clearable luminescent gold nanoparticles (AuNPs) with both pH-induced charge reversal and aggregation properties, and discover that enhanced ultrasound contrast could be facilely acquired through the increased tubular reabsorption and in situ aggregation of AuNPs in renal tubule cells in injured kidneys. The tuning elimination pathway of the renal-clearable luminescent AuNPs is further demonstrated to provide a synergistical fluorescence and ultrasound imaging strategy for diagnosing early kidney injury with precise anatomical information.
Collapse
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Miaona Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
47
|
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11:1175-1199. [PMID: 34094827 PMCID: PMC8144895 DOI: 10.1016/j.apsb.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle. The resultant nanoparticles possess combinatorial properties and synergistic efficacy, such as simplicity, active bio-responsiveness, improved applicability, and low cost, for combination therapy, such as accurate targeting, bioimaging, and enhanced therapeutic and biocatalytic effects. In contrast to larger nanoparticles, bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems. Notably, advances in nanoscience, interfacial chemistry, and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes. The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications, with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds. In the different hybrid platform, we summarize the current challenges and emerging perspectives, which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.
Collapse
Affiliation(s)
- Peng Gao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Chang
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
48
|
Tan Y, Chen M, Chen H, Wu J, Liu J. Enhanced Ultrasound Contrast of Renal‐Clearable Luminescent Gold Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Miaona Chen
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Juefei Wu
- Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
49
|
Wang F, Jiang X, Xiang H, Wang N, Zhang Y, Yao X, Wang P, Pan H, Yu L, Cheng Y, Hu Y, Lin W, Li X. An inherently kidney-targeting near-infrared fluorophore based probe for early detection of acute kidney injury. Biosens Bioelectron 2021; 172:112756. [PMID: 33197750 DOI: 10.1016/j.bios.2020.112756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Acute kidney injury (AKI) is common in hospital patients. Delayed diagnosis and treatment of AKI due to the lack of efficient early diagnosis is an important cause of its high mortality. While fluorescence imaging seems promising to non-intrusively interrogate AKI-related biomarkers, the low kidney contrast of many fluorophores conferred by their relatively low abundance of distribution in the kidney limits their application for AKI detection. Herein, we discovered a near-infrared fluorophore with inherent kidney-targeting ability. Based on this fluorophore, a fluorogenic probe (KNP-1) was developed by targeting peroxynitrite (ONOO-), which is upregulated at the early onset of AKI. KNP-1 exhibits desirable kidney distribution after intravenous administration and is fluorescent only after activation by ONOO-. These properties lead to excellent kidney contrast imaging results. KNP-1 is capable of detecting both nephrotoxin-induced and ischemia-reperfusion injury-induced AKI in live mice. Temporally resolved imaging of AKI-disease model mice with KNP-1 suggests a gradual increase in renal ONOO- levels with disease progression. Notably, the upregulation of ONOO- can be observed at least 24 h earlier than the clinically popular sCr and BUN methods. Blocking ONOO- generation also proves beneficial. These results highlight the applicability of this inherently tissue targeting-based strategy for designing probes with desirable imaging contrast; potentiate ONOO- as a biomarker and target for AKI early diagnosis and medical intervention; and imply the clinical relevance of KNP-1 for AKI early detection.
Collapse
Affiliation(s)
- Fangqin Wang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Xuefeng Jiang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Huaijiang Xiang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Ning Wang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Yunjing Zhang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Xi Yao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Ping Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hao Pan
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Lifang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yunfeng Cheng
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yongzhou Hu
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Weiqiang Lin
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xin Li
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
50
|
Du B, Chong Y, Jiang X, Yu M, Lo UG, Dang A, Chen YA, Li S, Hernandez E, Lin JC, Hsieh JT, Zheng J. Hyperfluorescence Imaging of Kidney Cancer Enabled by Renal Secretion Pathway Dependent Efflux Transport. Angew Chem Int Ed Engl 2021; 60:351-359. [PMID: 32876994 PMCID: PMC8635778 DOI: 10.1002/anie.202010187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/14/2022]
Abstract
Renal tubular secretion is an active efflux pathway for the kidneys to remove molecules but has yet to be used to enhance kidney cancer targeting. We report indocyanine green (ICG) conjugated with a 2100 Da PEG molecule (ICG-PEG45) as a renal-tubule-secreted near-infrared-emitting fluorophore for hyperfluorescence imaging of kidney cancers, which cannot be achieved with hepatobiliary- and glomerular-clearable ICG. This pathway-dependent targeting of kidney cancer arises from the fact that the secretion pathway enables ICG-PEG45 to be effectively effluxed out of normal proximal tubules through P-glycoprotein transporter while being retained in cancerous kidney tissues with low P-glycoprotein expression. Tuning elimination pathways and utilizing different efflux kinetics of medical agents in normal and diseased tissues could be a new strategy for tackling challenges in disease diagnosis and treatments that cannot be addressed with passive and ligand-receptor-mediated active targeting.
Collapse
Affiliation(s)
- Bujie Du
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Yue Chong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Xingya Jiang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - U-Gling Lo
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| | - Siqing Li
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| | - Jason C. Lin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 (USA)
| |
Collapse
|