1
|
Zhang R, Zhang H, Xu P, Chen X, Liu Z. Boryl Radical Mediated Hydro( gem-diboryl)alkylation of Alkenes with Sterically Hindered NHC Boranes. Org Lett 2024; 26:10859-10864. [PMID: 39651998 DOI: 10.1021/acs.orglett.4c04018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
NHC boryl radical mediated halogen atom transfer (XAT) is useful in organic synthesis. Yet, most of the reaction ends only with reducing the halogen to hydrogen, that is, the C-X to C-H. This is especially dominant for electron-deficient alkyl halides, where the formed electrophilic radical reacts rapidly with NHC boranes. Herein, by employing a sterically hindered NHC borane as the boryl radical precursor (IPr·BH3), we were able to use the electrophilic-deficient alkyl halide (α-Iodide gem-di(B(pin))methane) in the C-C bond formation reaction. Mono-, disubstituted styrene, aliphatic alkenes, and heteroatom-substituted alkenes were used as reaction partners. Forty hydro(gem-diboryl)methylation products were obtained at room temperature in moderate to good yields. Detailed mechanistic studies revealed that the reaction mainly involved the radical process.
Collapse
Affiliation(s)
- Ruizeng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Pan Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhenxing Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Guan Q, Ding F, Zhang C. Highly Selective Boron-Wittig Reaction: A Practical Method to Synthesize Trans-Aryl Alkenes. Chemistry 2024; 30:e202401801. [PMID: 39072812 DOI: 10.1002/chem.202401801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Olefins play an essential role in synthetic chemistry, serving not only as important synthons but also as key functional groups in numerous bio-active molecules. Consequently, there has been considerable interest in the development of more powerful methods for olefins. While the Wittig reaction stands as a prominent choice for olefin synthesis due to its simplicity and the ready availability of raw materials, its limitation lies in the challenge of controlling cis-trans selectivity, hampering its broader application. In this study, a novel Boron-Wittig reaction has been developed utilizing gem-bis(boryl)alkanes and aldehydes as starting materials. This method enables creating favourable intermediates, which possess less steric hindrance, and leading to trans-olefins via intramolecular O-B bonds elimination. Notably, synthesis studies have validated its good efficacy in modifying bioactive molecules and synthesizing drug molecules with great trans-selectivity. Furthermore, the reaction mechanism was elucidated based on intermediate trapping experiments, isotope labelling studies, and kinetic analyses.
Collapse
Affiliation(s)
- Qitao Guan
- Institute of Molecular Plus, Department of Chemistry, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Fupan Ding
- Institute of Molecular Plus, Department of Chemistry, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Lanyuan Road 5, Tianjin, 300384, China
| |
Collapse
|
3
|
Hwang C, Jang Y, Jung Y, Seo J, Shin K, Cho SH. Diverse Synthesis of (Thio)ethers and (Thio)esters Using Halodiborylmethane as a Transformable C 1 Building Block. Org Lett 2024; 26:7010-7014. [PMID: 39115428 DOI: 10.1021/acs.orglett.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The development of effective strategies to forge C-O and C-S bonds in diverse chemical spaces is of considerable interest in synthetic organic chemistry. Herein we report a versatile approach for the modular synthesis of structurally diverse (thio)ethers and (thio)esters via homologative coupling of α-halodiborylmethane followed by transformation of the introduced diborylmethyl group. This method accommodates a wide array of oxygen- and sulfur-containing molecules, including biologically active compounds. The initial coupling exhibits a broad substrate scope, while subsequent diversification of the diborylmethyl moiety enables access to various structural motifs through deborylative alkylation, Zweifel olefination, and boron-Wittig reaction. This protocol efficiently generates diversely functionalized (thio)ethers and (thio)esters, expanding the toolkit for accessing biologically relevant scaffolds.
Collapse
Affiliation(s)
- Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yunhui Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yongsuk Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaeyoon Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Shi Q, Huang X, Yang R, Liu WH. Unified ionic and radical C-4 alkylation and arylation of pyridines. Chem Sci 2024; 15:12442-12450. [PMID: 39118600 PMCID: PMC11304543 DOI: 10.1039/d4sc03739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
C-H Functionalization of pyridines is an efficient strategy to access pyridine derivatives occurring in pharmaceuticals, agrochemicals, and materials. Nucleophilic additions to pyridiniums via both ionic and radical species have proven particularly useful. However, these reactions suffer from poor regioselectivity. By identifying an enzyme-mimic pocket-type urea activation reagent, we report a general platform for pyridine C-4 functionalization. Both ionic and radical nucleophiles can be incorporated to achieve the alkylation and arylation. Notably, the highly regioselective C-4 radical arylation is disclosed for the first time. The broad scope of nucleophiles and pyridines renders this platform applicable to the late-stage functionalization of drug-like molecules and the preparation of complex biologically important molecules.
Collapse
Affiliation(s)
- Qiu Shi
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Xiaofeng Huang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Ruizhi Yang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
5
|
Circule D, Dénès F, Renaud P. Access to γ‐Iodo‐ gem‐Diborylated Cyclopentanes and to Bicyclic Cyclopropanes. Adv Synth Catal 2024; 366:2945-2955. [DOI: 10.1002/adsc.202400340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 01/06/2025]
Abstract
AbstractA formal atom transfer radical [3+2] annulation (ATRAn) reaction between different homoallyl radical precursors and 1,1‐diborylethene was developed. It provides a rapid access to polysubstituted cyclopentanes containing a gem‐diboronic ester moiety. The synthetic utility of theses uniquely functionalized 5‐membered rings is highlighted by their easy conversion to attractive borylated building blocks such as 1‐borylated bicyclo[3.1.0]hexanes. The ATRAn reaction was extended to homopropagylic radicals giving access to unique allylic gem‐diboronic esters that could be used in allylboration of aldehydes. Furthermore, this work highlights that 1,1‐diborylethene represents a synthetic equivalent to ketene, a so far elusive radical trap due to its daunting reactivity.
Collapse
Affiliation(s)
- Dace Circule
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Fabrice Dénès
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Philippe Renaud
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
6
|
Wei Y, Xie XY, Liu J, Liu X, Zhang B, Chen XY, Li SJ, Lan Y, Hong K. Palladium-Catalyzed Cascade Heck Coupling and Allylboration of Iododiboron Compounds via Diboryl Radicals. Angew Chem Int Ed Engl 2024; 63:e202401050. [PMID: 38444397 DOI: 10.1002/anie.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Geminal bis(boronates) are versatile synthetic building blocks in organic chemistry. The fact that they predominantly serve as nucleophiles in the previous reports, however, has restrained their synthetic potential. Herein we disclose the ambiphilic reactivity of α-halogenated geminal bis(boronates), of which the first catalytic utilization was accomplished by merging a formal Heck cross-coupling with a highly diastereoselective allylboration of aldehydes or imines, providing a new avenue for rapid assembly of polyfunctionalized boron-containing compounds. We demonstrated that this cascade reaction is highly efficient and compatible with various functional groups, and a wide range of heterocycles. In contrast to a classical Pd(0/II) scenario, mechanistic experiments and DFT calculations have provided strong evidence for a catalytic cycle involving Pd(I)/diboryl carbon radical intermediates.
Collapse
Affiliation(s)
- Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Yu Xie
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jiabin Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoxiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bo Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
7
|
Fernández E. α-Boryl Carbanions: The Influence of Geminal Heteroatoms in C-C Bond Formation. CHEM REC 2024; 24:e202300349. [PMID: 38308376 DOI: 10.1002/tcr.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Indexed: 02/04/2024]
Abstract
The wide applications of alpha-boryl carbanions in selective coupling with organohalides, imines/carbonyls and conjugated unsaturated substrates has become an interesting tool for organic synthesis. Strategically, the inclusion of heteroatoms, such as Si, S, N, F, Cl, Br and I in the alpha position opens a new venue towards multifunctionalities in molecular design. Here, a conceptual and practical view on powerful carbanions, containing α-silicoboron, α-thioboron, α-haloboron and α-aminoboron is given, as well as a prespective on their efficient application for selective electrophilic trapping.
Collapse
Affiliation(s)
- Elena Fernández
- Dept. Química Física i Inorgànica, University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
8
|
Wu S, Huang J, Kang L, Zhang Y, Yuan K. Transition-Metal-Free, Reductive Csp 2-Csp 3 Bond Constructions via Electrochemically Induced Alkyl Radicals. Org Lett 2024; 26:763-768. [PMID: 38227333 DOI: 10.1021/acs.orglett.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Construction of the Csp2-Csp3 bond without the aid of transition metal catalysts has been achieved by coupling the electrogenerated alkyl radicals with electron deficient (hetero)arenes in an undivided cell. Simultaneous cathodic reduction of both unactivated alkyl halides and cyanobenzenes under high potential enables radical-radical cross-coupling to deliver alkylarenes in the absence of transition metals. Depending on the coupling partner, the electrogenerated alkyl radicals can also proceed the Minisci-type reaction with N-heteroarenes without redox agents.
Collapse
Affiliation(s)
- Shuhua Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lulu Kang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yiyi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
9
|
Ning PF, Wei Y, Chen XY, Yang YF, Gao FC, Hong K. A General Method to Access Sterically Encumbered Geminal Bis(boronates) via Formal Umpolung Transformation of Terminal Diboron Compounds. Angew Chem Int Ed Engl 2024; 63:e202315232. [PMID: 38059757 DOI: 10.1002/anie.202315232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
General methods for the preparation of geminal bis(boronates) are of great interest due to their widespread applications in organic synthesis. While the terminal gem-diboron compounds are readily accessible, the construction of the sterically encumbered, internal analogues has remained a prominent challenge. Herein, we report a formal umpolung strategy to access these valuable building blocks. The readily available 1,1-diborylalkanes were first converted into the corresponding α-halogenated derivatives, which then serve as electrophilic components, undergoing a formal substitution with a diverse array of nucleophiles to form a series of C-C, C-O, C-S, and C-N bonds. This protocol features good tolerance to steric hindrance and a wide variety of functional groups and heterocycles. Notably, this strategy can also be extended to the synthesis of diaryl and terminal gem-diboron compounds, therefore providing a general approach to various types of geminal bis(boronates).
Collapse
Affiliation(s)
- Peng-Fei Ning
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Feng-Chen Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
10
|
Xu LC, Ma XD, Liu KM, Duan XF. Chemo- and Regioselective Alkylation of Pyridine N-Oxides with Titanacyclopropanes. Org Lett 2023. [PMID: 38016093 DOI: 10.1021/acs.orglett.3c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
While titanacyclopropanes are used to react mainly with ester, amide, and cyano to undergo cyclopropanation, herein they react preferentially with pyridine N-oxide to accomplish C2-H alkylation beyond these functionalities with double regioselectivity. After being pyridylated at the less hindered C-Ti bond, the remaining C-Ti bond of titanacyclopropanes can be further functionalized by various electrophiles, allowing facile introduction of complex alkyls onto the C2 of pyridines. Its synthetic potential has been demonstrated by late-stage diversification of drugs.
Collapse
Affiliation(s)
- Li-Chen Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Kun-Ming Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
11
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
12
|
Sindhe H, Reddy MM, Rajkumar K, Kamble A, Singh A, Kumar A, Sharma S. Pyridine C(sp 2)-H bond functionalization under transition-metal and rare earth metal catalysis. Beilstein J Org Chem 2023; 19:820-863. [PMID: 37346497 PMCID: PMC10280098 DOI: 10.3762/bjoc.19.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Pyridine is a crucial heterocyclic scaffold that is widely found in organic chemistry, medicines, natural products, and functional materials. In spite of the discovery of several methods for the synthesis of functionalized pyridines or their integration into an organic molecule, new methodologies for the direct functionalization of pyridine scaffolds have been developed during the past two decades. In addition, transition-metal-catalyzed C-H functionalization and rare earth metal-catalyzed reactions have flourished over the past two decades in the development of functionalized organic molecules of concern. In this review, we discuss recent achievements in the transition-metal and rare earth metal-catalyzed C-H bond functionalization of pyridine and look into the mechanisms involved.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Karthikeyan Rajkumar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anand Kumar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
13
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
14
|
Habib I, Singha K, Hossain M. Recent Progress on Pyridine
N
‐Oxide in Organic Transformations: A Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Imran Habib
- Synthetic Organic Research Laboratory UGC-HRDC (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Koustav Singha
- Synthetic Organic Research Laboratory UGC-HRDC (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Mossaraf Hossain
- Synthetic Organic Research Laboratory UGC-HRDC (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| |
Collapse
|
15
|
Zasada A, Brześkiewicz J, Antoniak D, Bechcicka M, Loska R, Mąkosza M. Synthesis of quinoxaline derivatives via aromatic nucleophilic substitution of hydrogen. Org Biomol Chem 2023; 21:994-999. [PMID: 36515404 DOI: 10.1039/d2ob02016e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The electrophilic nature of quinoxaline has been explored in the vicarious nucleophilic substitution (VNS) of hydrogen with various carbanions as nucleophiles in an attempt to develop a general method for functionalizing the heterocyclic ring. Only poorly stabilized nitrile carbanions were found to give the VNS products. 2-Chloroquinoxaline gave products of SNAr of chlorine preferentially. A variety of quinoxaline derivatives containing cyanoalkyl, sulfonylalkyl, benzyl or ester substituents, including fluorinated ones, have been prepared in the VNS reactions with quinoxaline N-oxide.
Collapse
Affiliation(s)
- Aleksandra Zasada
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. .,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Brześkiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Damian Antoniak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Małgorzata Bechcicka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Mieczysław Mąkosza
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
16
|
Ko N, Min J, Moon J, Ismail NF, Moon K, Singh P, Mishra NK, Lee W, Kim IS. Rhodium(III)-Catalyzed Conjugate Addition of β-CF 3-Enones with Quinoline N-Oxides. J Org Chem 2023; 88:602-612. [PMID: 36524705 DOI: 10.1021/acs.joc.2c02659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The site-selective incorporation of a trifluoromethyl group into biologically active molecules and pharmaceuticals has emerged as a central topic in medicinal chemistry and drug discovery. Herein, we demonstrate the rhodium(III)-catalyzed conjugate addition of β-trifluoromethylated enones with quinoline N-oxides, which result in the generation of β-trifluoromethyl-β'-quinolinated ketones. The reaction proceeds under mild conditions with complete functional group tolerance. The synthetic applicability was showcased by successful gram-scale experiments and valuable synthetic transformations of coupling products.
Collapse
Affiliation(s)
- Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeonghyun Min
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nuraimi Farwizah Ismail
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,PAPRSB, Institute of Health Science, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Wang D, Zhou J, Hu Z, XU T. Deoxygenative Haloboration and Enantioselective Chloroboration of Carbonyls. J Am Chem Soc 2022; 144:22870-22876. [DOI: 10.1021/jacs.2c11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Jun Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Zihao Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
18
|
Li Y, Shen D, Zhang H, Liu Z. Transition-metal-free coupling reactions involving gem-diborylalkanes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022; 61:e202209079. [DOI: 10.1002/anie.202209079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Chiwon Hwang
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Yeosan Lee
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Minjae Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Younggyu Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE) Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
20
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chiwon Hwang
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Yeosan Lee
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Minjae Kim
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Younggyu Seo
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Seung Hwan Cho
- Pohang University of Science and Technology (POSTECH) Chemistry San 31, HyojadongNamgu 37673 Pohang KOREA, REPUBLIC OF
| |
Collapse
|
21
|
Abstract
C−H methylation of sp2 and sp3 carbon centers is significant in many biological processes. Methylated drug candidates show unique properties due to the change in solubility, conformation and metabolic activities. Several photo-catalyzed, electrochemical, mechanochemical and metal-free techniques that are widely utilized strategies in medicinal chemistry for methylation of arenes and heteroarenes have been covered in this review.
Collapse
|
22
|
Kim H, Jung Y, Cho SH. Defluorinative C-C Bond-Forming Reaction of Trifluoromethyl Alkenes with gem-(Diborylalkyl)lithiums. Org Lett 2022; 24:2705-2710. [PMID: 35380841 DOI: 10.1021/acs.orglett.2c00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition-metal-free defluorinative C-C bond-forming reaction of trifluoromethyl alkenes with gem-(diborylalkyl)lithiums. This synthetic strategy provides access to a variety of 4,4-difluoro homoallylic diboronate esters, which serve as versatile intermediates in the efficient preparation of valuable gem-difluoroalkene derivatives. Further synthetic modifications are conducted to demonstrate the synthetic utility of the obtained 4,4-difluoro homoallylic diboronate esters.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
23
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
25
|
Liu W, Shen Z, Xu S. Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp 3)—H Bonds Enabled by AsPh 3/Iridium Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Lu J, Tong Y, Hao N, Zhang L, Wei J, Zhang Z, Fu Q, Yi D, Wang J, Mu Y, Pan X, Yang L, Wei S, Zhong L. Photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage. Org Chem Front 2022. [DOI: 10.1039/d1qo01844b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-arylated ketones widely exist in many biologically active molecules and natural products. Herein, we disrcibled a photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage...
Collapse
|
27
|
Kim M, Shin S, Koo Y, Jung S, Hong S. Regiodivergent Conversion of Alkenes to Branched or Linear Alkylpyridines. Org Lett 2021; 24:708-713. [PMID: 34965147 DOI: 10.1021/acs.orglett.1c04156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report a practical protocol for the visible-light-induced regiodivergent radical hydropyridylation of unactivated alkenes using pyridinium salts. This approach provides a unified synthetic platform to control the regioselectivity of the synthesis of linear or branched C4-alkylated pyridines. A remarkable selectivity switch from the anti-Markovnikov to the Markovnikov product can be achieved by the addition of tetrabutylammonium bromide. The versatility of this protocol is further demonstrated based on the late-stage functionalization in pharmaceuticals.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
28
|
Kweon B, Kim C, Kim S, Hong S. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of
O
‐Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Changha Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
29
|
Kweon B, Kim C, Kim S, Hong S. Remote C-H Pyridylation of Hydroxamates through Direct Photoexcitation of O-Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021; 60:26813-26821. [PMID: 34636478 DOI: 10.1002/anie.202112364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/22/2023]
Abstract
Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.
Collapse
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
30
|
Byun Y, Moon J, An W, Mishra NK, Kim HS, Ghosh P, Kim IS. Transition-Metal-Free Alkylation and Acylation of Benzoxazinones with 1,4-Dihydropyridines. J Org Chem 2021; 86:12247-12256. [PMID: 34406002 DOI: 10.1021/acs.joc.1c01558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct functionalization of N-heterocycles is a vital transformation for the development of pharmaceuticals, functional materials, and other chemical entities. Herein, the transition-metal-free alkylation and acylation of C(sp2)-H bonds in biologically relevant 2-benzoxazinones with 1,4-dihydropyridines as readily accessible radical surrogates is described. Excellent functional group compatibility and a broad substrate scope were attained. Gram-scale reaction and transformations of the synthesized adducts via Suzuki coupling with heteroaryl boronic acids demonstrated the synthetic potential of the developed protocol.
Collapse
Affiliation(s)
- Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
31
|
An W, Lee SH, Kim D, Oh H, Kim S, Byun Y, Kim HJ, Mishra NK, Kim IS. Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis. J Org Chem 2021; 86:7579-7587. [PMID: 33949193 DOI: 10.1021/acs.joc.1c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The site-selective modification of quinolines and their analogs has emerged as a pivotal topic in medicinal chemistry and drug discovery. Herein, we describe the rhodium(III)-catalyzed C8-alkylation of quinoline N-oxides with maleimides as alkylating agents, resulting in the formation of bioactive succinimide-containing quinoline derivatives. The reaction proceeds under mild conditions with complete functional group tolerance.
Collapse
Affiliation(s)
- Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dayoung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | - Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jin Kim
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Lecroq W, Schleinitz J, Billoue M, Perfetto A, Gaumont AC, Lalevée J, Ciofini I, Grimaud L, Lakhdar S. Metal-Free Deoxygenation of Amine N-Oxides: Synthetic and Mechanistic Studies. Chemphyschem 2021; 22:1237-1242. [PMID: 33971075 DOI: 10.1002/cphc.202100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/20/2021] [Indexed: 12/14/2022]
Abstract
We report herein an unprecedented combination of light and P(III)/P(V) redox cycling for the efficient deoxygenation of aromatic amine N-oxides. Moreover, we discovered that a large variety of aliphatic amine N-oxides can easily be deoxygenated by using only phenylsilane. These practically simple approaches proceed well under metal-free conditions, tolerate many functionalities and are highly chemoselective. Combined experimental and computational studies enabled a deep understanding of factors controlling the reactivity of both aromatic and aliphatic amine N-oxides.
Collapse
Affiliation(s)
- William Lecroq
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Jules Schleinitz
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Mallaury Billoue
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Anna Perfetto
- Institute of Chemistry for Life and Health Sciences (i-CLeHS) Chimie ParisTech, PSL University, CNRS, 11 rue P. et M. Curie, 75005, Paris, France
| | - Annie-Claude Gaumont
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal Juin, Caen, 14000, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100, Mulhouse, France
| | - Ilaria Ciofini
- Institute of Chemistry for Life and Health Sciences (i-CLeHS) Chimie ParisTech, PSL University, CNRS, 11 rue P. et M. Curie, 75005, Paris, France
| | - Laurence Grimaud
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sami Lakhdar
- Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
33
|
Jo W, Lee JH, Cho SH. Advances in transition metal-free deborylative transformations of gem-diborylalkanes. Chem Commun (Camb) 2021; 57:4346-4353. [PMID: 33949473 DOI: 10.1039/d1cc01048d] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Carbanions serve as key intermediates in a variety of chemical transformations. Particularly, α-borylcarbanions have received considerable attention in recent years because of their peculiar properties, including the ability of boron atom resonance to stabilise the adjacent negatively charged carbon atom. This feature article summarises recent progress in the synthetic utilisation of α-borylcarbanions, including carbon-carbon bond formation with alkyl halides, alkenes, N-heteroarenes, and carbonyls. Carbon-boron bond formation in organohalides mediated by α-borylcarbanions is also summarised.
Collapse
Affiliation(s)
- Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University - Gyeongju Campus, Gyeongju, Gyeongsangbuk-do, Republic of Korea.
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
34
|
Kim M, You E, Park S, Hong S. Divergent reactivity of sulfinates with pyridinium salts based on one- versus two-electron pathways. Chem Sci 2021; 12:6629-6637. [PMID: 34040737 PMCID: PMC8132931 DOI: 10.1039/d1sc00776a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 01/04/2023] Open
Abstract
One of the main goals of modern synthesis is to develop distinct reaction pathways from identical starting materials for the efficient synthesis of diverse compounds. Herein, we disclose the unique divergent reactivity of the combination sets of pyridinium salts and sulfinates to achieve sulfonative pyridylation of alkenes and direct C4-sulfonylation of pyridines by controlling the one- versus two-electron reaction manifolds for the selective formation of each product. Base-catalyzed cross-coupling between sulfinates and N-amidopyridinium salts led to the direct introduction of a sulfonyl group into the C4 position of pyridines. Remarkably, the reactivity of this set of compounds is completely altered upon exposure to visible light: electron donor-acceptor complexes of N-amidopyridinium salts and sulfinates are formed to enable access to sulfonyl radicals. In this catalyst-free radical pathway, both sulfonyl and pyridyl groups could be incorporated into alkenes via a three-component reaction, which provides facile access to a variety of β-pyridyl alkyl sulfones. These two reactions are orthogonal and complementary, achieving a broad substrate scope in a late-stage fashion under mild reaction conditions.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Seongjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
35
|
|
36
|
Shin S, Lee S, Choi W, Kim N, Hong S. Visible‐Light‐Induced 1,3‐Aminopyridylation of [1.1.1]Propellane with
N
‐Aminopyridinium Salts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sanghoon Shin
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seojin Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Namhoon Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
37
|
Kim M, Lee JH, Cho SH. Pd‐Catalyzed Negishi Cross‐Coupling of Vinyl Bromides with Diborylmethylzinc Chloride. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minjae Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry Dongguk University Gyeongju Campus Gyeongju 38066 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
38
|
Shin S, Lee S, Choi W, Kim N, Hong S. Visible-Light-Induced 1,3-Aminopyridylation of [1.1.1]Propellane with N-Aminopyridinium Salts. Angew Chem Int Ed Engl 2021; 60:7873-7879. [PMID: 33403785 DOI: 10.1002/anie.202016156] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 01/16/2023]
Abstract
Through the formation of an electron donor-acceptor (EDA) complex, strain-release aminopyridylation of [1.1.1]propellane with N-aminopyridinium salts as bifunctional reagents enabled the direct installation of amino and pyridyl groups onto bicyclo[1.1.1]pentane (BCP) frameworks in the absence of an external photocatalyst. The robustness of this method to synthesize 1,3-aminopyridylated BCPs under mild and metal-free conditions is highlighted by the late-stage modification of structurally complex biorelevant molecules. Moreover, the strategy was extended to P-centered and CF3 radicals for the unprecedented incorporation of such functional groups with pyridine across the BCP core in a three-component coupling. This practical method lays the foundation for the straightforward construction of new valuable C4-pyridine-functionalized BCP chemical entities, thus significantly expanding the range of accessibility of BCP-type bioisosteres for applications in drug discovery.
Collapse
Affiliation(s)
- Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seojin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Wonjun Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Namhoon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
39
|
Ashraf MA, Tambe SD, Cho EJ. Diastereoselective Reductive Cyclization of
Allene‐Tethered
Ketoamines via
Copper‐Catalyzed
Cascade Carboboronation and Protodeborylation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Muhammad Awais Ashraf
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Shrikant D. Tambe
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| |
Collapse
|
40
|
Kim M, Park B, Shin M, Kim S, Kim J, Baik MH, Cho SH. Copper-Catalyzed Enantiotopic-Group-Selective Allylation of gem-Diborylalkanes. J Am Chem Soc 2021; 143:1069-1077. [DOI: 10.1021/jacs.0c11750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minjae Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Minkyeong Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Junghoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
41
|
Aynetdinova D, Callens MC, Hicks HB, Poh CYX, Shennan BDA, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Installing the “magic methyl” – C–H methylation in synthesis. Chem Soc Rev 2021; 50:5517-5563. [DOI: 10.1039/d0cs00973c] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following notable cases of remarkable potency increases in methylated analogues of lead compounds, this review documents the state-of-the-art in C–H methylation technology.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Mia C. Callens
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Harry B. Hicks
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Charmaine Y. X. Poh
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | - Alistair M. Boyd
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Zhong Hui Lim
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Jamie A. Leitch
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
42
|
Kim SH, An JH, Lee JH. Highly chemoselective deoxygenation of N-heterocyclic N-oxides under transition metal-free conditions. Org Biomol Chem 2021; 19:3735-3742. [PMID: 33908554 DOI: 10.1039/d1ob00260k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because their site-selective C-H functionalizations are now considered one of the most useful tools for synthesizing various N-heterocyclic compounds, the highly chemoselective deoxygenation of densely functionalized N-heterocyclic N-oxides has received much attention from the synthetic chemistry community. Here, we provide a protocol for the highly chemoselective deoxygenation of various functionalized N-oxides under visible light-mediated photoredox conditions with Na2-eosin Y as an organophotocatalyst. Mechanistic studies imply that the excited state of the organophotocatalyst is reductively quenched by Hantzsch esters. This operationally simple technique tolerates a wide range of functional groups and allows high-yield, multigram-scale deoxygenation.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| | - Ju Hyeon An
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
43
|
Li X, Gao G, He S, Song Q. Copper-catalyzed 1,6-conjugate addition of para-quinone methides with diborylmethane. Org Chem Front 2021. [DOI: 10.1039/d1qo00632k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Presented herein is the first 1,6-conjugate addition of diborylmethane. This reaction features high yields, mild reaction conditions, and broad functional group compatibilities.
Collapse
Affiliation(s)
- Xin Li
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Guoliang Gao
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Songtao He
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
44
|
Wang X, Wang Y, Huang W, Xia C, Wu L. Direct Synthesis of Multi(boronate) Esters from Alkenes and Alkynes via Hydroboration and Boration Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03418] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049 People’s Republic of China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Wei Huang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People’s Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
45
|
Recent Advances in the Synthesis of C2‐Functionalized Pyridines and Quinolines Using
N
‐Oxide Chemistry. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000910] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Jiao L, Zhou FY. Recent Developments in Transition-Metal-Free Functionalization and Derivatization Reactions of Pyridines. Synlett 2020. [DOI: 10.1055/s-0040-1706552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPyridine is an important structural motif that is prevalent in natural products, drugs, and materials. Methods that functionalize and derivatize pyridines have gained significant attention. Recently, a large number of transition-metal-free reactions have been developed. In this review, we provide a brief summary of recent advances in transition-metal-free functionalization and derivatization reactions of pyridines, categorized according to their reaction modes.1 Introduction2 Metalated Pyridines as Nucleophiles2.1 Deprotonation2.2 Halogen–Metal exchange3 Activated Pyridines as Electrophiles3.1 Asymmetric 2-Allylation by Chiral Phosphite Catalysis3.2 Activation of Pyridines by a Bifunctional Activating Group3.3 Alkylation of Pyridines by 1,2-Migration3.4 Alkylation of Pyridines by [3+2] Addition3.5 Pyridine Derivatization by Catalytic In Situ Activation Strategies3.6 Reactions via Heterocyclic Phosphonium Salts4 Radical Reactions for Pyridine Functionalization4.1 Pyridine Functionalization through Radical Addition Reactions4.2 Pyridine Functionalization through Radical–Radical Coupling Reactions5 Derivatization of Pyridines through the Formation of Meisenheimer-Type Pyridyl Anions6 Conclusion
Collapse
Affiliation(s)
- Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University
| | | |
Collapse
|
47
|
Ghosh P, Kwon NY, Kim S, Han S, Lee SH, An W, Mishra NK, Han SB, Kim IS. C−H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sangil Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry University of Science and Technology Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
48
|
Ghosh P, Kwon NY, Kim S, Han S, Lee SH, An W, Mishra NK, Han SB, Kim IS. C−H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angew Chem Int Ed Engl 2020; 60:191-196. [DOI: 10.1002/anie.202010958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sangil Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry University of Science and Technology Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
49
|
Kutasevich AV, Perevalov VP, Mityanov VS. Recent Progress in Non‐Catalytic C–H Functionalization of Heterocyclic
N
‐Oxides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anton V. Kutasevich
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
| | - Valery P. Perevalov
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
| | - Vitaly S. Mityanov
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Pr., 47 119991 Moscow Russian Federation
| |
Collapse
|
50
|
Sheng X, Xu Q, Lin Z, Hu Z, Pan L, Liu Q, Li Y. External Reductant‐free Stepwise [3+2] Cycloaddition/Reductive Cyclization from 2‐Nitrochalcones and Isocyanides: Synthesis of Pyrrolo[3,4‐
c
]quinoline
N
‐oxides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinyao Sheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ziwen Lin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhongyan Hu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|