1
|
Corner SC, Blackmore WJA, Gransbury GK, Mattioni A, Whitehead GFS, Chilton NF, Mills DP. A fluorobenzene-bound dysprosium half-sandwich dication single-molecule magnet. Chem Sci 2025; 16:610-620. [PMID: 39640023 PMCID: PMC11616726 DOI: 10.1039/d4sc06661h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Dysprosium single-molecule magnets (SMMs) with two mutually trans-anionic ligands have shown large crystal field (CF) splitting, giving record effective energy barriers to magnetic reversal (U eff) and hysteresis temperatures (T H). However, these complexes tend to be bent, imposing a transverse field that reduces the purity of the m J projections of the CF states and promotes magnetic relaxation. A complex with only one charge-dense anionic ligand could have more pure CF states, and thus high U eff and T H. Here we report an SMM with this topology, a half-sandwich Dy(iii) complex [Dy(Cp*)(FPh)6][{Al[OC(CF3)3]3}2(μ-F)]2 (1-Dy; Cp* = C5Me5), and its Y(iii) analogue 1-Y; 1-Dy exhibits U eff = 545(30) cm-1 and T H = 14 K at sweep rates of 22 Oe s-1. The Cp* ligand imposes a strong axial CF, which is assisted by one axial fluorobenzene; the five equatorially-bound neutral fluorobenzenes present only weak transverse interactions to give a pseudo-pentagonal bipyramidal geometry. The salt metathesis reaction of 1-Y with KCp''' (Cp''' = {C5H2(SiMe3)3-1,2,4}) gave the sandwich complex [Y(Cp''')(Cp*)(FPh)2][{Al[OC(CF3)3]3}2(μ-F)] (4-Y), showing that the fluorobenzenes of 1-Y are easily displaced. We envisage that these methodologies could be adapted in future to prepare high-performance axial Dy SMMs with ligands that are more sterically demanding than Cp*.
Collapse
Affiliation(s)
- Sophie C Corner
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - William J A Blackmore
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gemma K Gransbury
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Andrea Mattioni
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - George F S Whitehead
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Research School of Chemistry, The Australian National University Building 137, Sullivans Creek Road Canberra ACT 2601 Australia
| | - David P Mills
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
2
|
Corner SC, Gransbury GK, Mills DP. Influence of weakly coordinating anions binding to the hexa- tert-butyl dysprosocenium cation. Dalton Trans 2024; 54:198-206. [PMID: 39526994 PMCID: PMC11563204 DOI: 10.1039/d4dt02713b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Complexes containing isolated dysprosocenium cations, [Dy(CpR)2][WCA] (CpR = substituted cyclopentadienyl, WCA = weakly coordinating anion), have recently emerged as leading examples of high-temperature single-molecule magnets (SMMs) due to a combination of the axial orientation and rigidity of the CpR rings. However, our understanding of the effects of transverse fields on the magnetic properties of [Dy(CpR)2]+ cations is underdeveloped. Here we investigate the impact of equatorially-bound WCAs via the synthesis of the Dy(III) bis-CpR complexes [Dy(Cpttt)2{AlCl[OC(CF3)3]3-κ-Cl}] (1) and [Dy(Cpttt)2{AlCl(C2H5)[OC(C6F5)3]2-κ-Cl}] (2), and their characterisation by single crystal XRD, elemental analysis, ATR-IR and NMR spectroscopy, and ab initio calculations. Despite the similarity of the Dy coordination spheres in 1 and 2 we find that their effective energy barriers to reversal of magnetisation are vastly different (Ueff = 886(17) cm-1 and 559(18) cm-1, respectively) and they both show waist-restricted magnetic hysteresis at 2 K. Together, these data provide fresh insights into the sensitivity of the magnetic properties of [Dy(CpR)2]+ cations to relatively weak equatorial interactions.
Collapse
Affiliation(s)
- Sophie C Corner
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Gemma K Gransbury
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
3
|
Mondal A, Tang J, Layfield RA. Masked Divalent Reactivity of Heterobimetallic Lanthanide Isocarbonyl Complexes. Angew Chem Int Ed Engl 2024:e202420207. [PMID: 39474701 DOI: 10.1002/anie.202420207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 11/21/2024]
Abstract
A new rare-earth reduction system is described in which trivalent yttrium and dysprosium react as though present in their unstable divalent oxidation state. This masked divalent reactivity is achieved using the isocarbonyl-bridged dimers [(Cp 2 ttt ${{{\rm { Cp}}}_{{\rm { 2}}}^{{\rm { ttt}}}}$ M)(μ-Fp)]2 (M=Y, 1Y; M=Dy, 1Dy; Cpttt=1,2,4-C5 tBu3H2; Fp=CpFe(CO)2), where the reducing electrons originate from the bridging [Fp]- ligands. The reactivity of 1Y and 1Dy is showcased by reducing the N-heterocycles 2,2'-bipyridyl (bipy), phenazine (phnz) and hexaazatrinaphthylene (HAN) to give corresponding mono-, di- and tri-metallic rare-earth complexes, respectively, with the heterocyclic ligands present in their singly, doubly and triply reduced forms, respectively. The dynamic magnetic properties of the dysprosium compounds are described. Compound 1Dy is a single-molecule magnet (SMM) with an appreciable energy barrier of 449(17) cm-1, whereas [(Cp 2 ttt ${{{\rm { Cp}}}_{{\rm { 2}}}^{{\rm { ttt}}}}$ Dy)2(μ-phnz)] (3Dy) is not an SMM because of a strong, competing equatorial crystal field. Surprisingly, [(Cp 2 ttt ${{{\rm { Cp}}}_{{\rm { 2}}}^{{\rm { ttt}}}}$ Dy)3(HAN)] (4Dy) is also not an SMM, the origins of which are traced to the impact of the tert-butyl substituents on the dysprosium centre and its interaction with the radical [HAN]3- ligand.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5626, 130022, Changchun, China
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| |
Collapse
|
4
|
Kallmeier F, Matthews AJR, Nelmes GR, Lawson NR, Hicks J. Mechanochemical synthesis of iron aluminyl complexes. Dalton Trans 2024; 53:12450-12454. [PMID: 39011575 DOI: 10.1039/d4dt01774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A series of iron aluminyl complexes have been synthesised in good crystalline yields from reactions between bulky diamido aluminium iodide complexes and K[Fe(CO)2Cp] in the solid state. The series of metal-metal bonded complexes have been characterised by X-ray crystallography and were investigated using density functional theory to probe the effects of ligand substitution on the Al-Fe bond.
Collapse
Affiliation(s)
- Fabian Kallmeier
- Research School of Chemistry, Australian National University, ACT, 2601, Australia.
| | - Aidan J R Matthews
- Research School of Chemistry, Australian National University, ACT, 2601, Australia.
| | - Gareth R Nelmes
- Research School of Chemistry, Australian National University, ACT, 2601, Australia.
| | - Nina R Lawson
- Research School of Chemistry, Australian National University, ACT, 2601, Australia.
| | - Jamie Hicks
- Research School of Chemistry, Australian National University, ACT, 2601, Australia.
| |
Collapse
|
5
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Halobenzene Adducts of a Dysprosocenium Single-Molecule Magnet. Inorg Chem 2024; 63:9552-9561. [PMID: 38359351 PMCID: PMC11134494 DOI: 10.1021/acs.inorgchem.3c04105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Dysprosium complexes with strong axial crystal fields are promising candidates for single-molecule magnets (SMMs), which could be used for high-density data storage. Isolated dysprosocenium cations, [Dy(CpR)2]+ (CpR = substituted cyclopentadienyl), have recently shown magnetic hysteresis (a memory effect) above the temperature of liquid nitrogen. Synthetic efforts have focused on reducing strong transverse ligand fields in these systems as they are known to enhance magnetic relaxation by spin-phonon mechanisms. Here we show that equatorial coordination of the halobenzenes PhX (X = F, Cl, Br) and o-C6H4F2 to the cation of a recently reported dysprosocenium complex [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4] (Cpttt = C5H2tBu3-1,2,4; Cp* = C5Me5) reduces magnetic hysteresis temperatures compared to that of the parent cation. We find that this is due to increased effectiveness of both one- (Orbach) and two-phonon (Raman) relaxation mechanisms, which correlate with the electronegativity and number of interactions with the halide despite κ1-coordination of a single halobenzene having a minimal effect on the metrical parameters of [Dy(Cpttt)(Cp*)(PhX-κ1-X)]+ cations vs the isolated [Dy(Cpttt)(Cp*)]+ cation. We observe unusual divergent behavior of relaxation rates at low temperatures in [Dy(Cpttt)(Cp*)(PhX)][Al{OC(CF3)3}4], which we attribute to a phonon bottleneck effect. We find that, despite the transverse fields introduced by the monohalobenzenes in these cations, the interactions are sufficiently weak that the effective barriers to magnetization reversal remain above 1000 cm-1, being only ca. 100 cm-1 lower than for the parent complex, [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4].
Collapse
Affiliation(s)
| | | | | | - George F. S. Whitehead
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Synthesis and Magnetic Properties of Bis-Halobenzene Decamethyldysprosocenium Cations. Inorg Chem 2024; 63:9562-9571. [PMID: 38382535 PMCID: PMC11134500 DOI: 10.1021/acs.inorgchem.3c04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
The decamethyldysprosocenium cation, [Dy(Cp*)2]+ (Cp* = {C5Me5}), was a target single-molecule magnet (SMM) prior to the isolation of larger dysprosocenium cations, which have recently shown magnetic memory effects up to 80 K. However, the relatively short Dy···Cp*centroid distances of [Dy(Cp*)2]+, together with the reduced resonance of its vibrational modes with electronic states compared to larger dysprosocenium cations, could lead to more favorable SMM behavior. Here, we report the synthesis and magnetic properties of a series of solvated adducts containing bis-halobenzene decamethyldysprosocenium cations, namely [Dy(Cp*)2(PhX-κ-X)2][Al{OC(CF3)3}4] (X = F or Cl) and [Dy(Cp*)2(C6H4F2-κ2-F,F)(C6H4F2-κ-F)][Al{OC(CF3)3}4]. These complexes were prepared by the sequential reaction of [Dy(Cp*)2(μ-BH4)]∞ with allylmagnesium chloride and [NEt3H][Al{OC(CF3)3}4], followed by recrystallization from parent halobenzenes. The complexes were characterized by powder and single crystal X-ray diffraction, NMR and ATR-IR spectroscopy, elemental analysis, and SQUID magnetometry; experimental data were rationalized by a combination of density functional theory and ab initio calculations. We find that bis-halobenzene adducts of the [Dy(Cp*)2]+ cation exhibit highly bent Cp*···Dy···Cp* angles; these cations are also susceptible to decomposition by C-X (X = F, Cl, Br) activation and displacement of halobenzenes by O-donor ligands. The effective energy barrier to reversal of magnetization measured for [Dy(Cp*)2(PhF-κ-F)2][Al{OC(CF3)3}4] (930(6) cm-1) sets a new record for SMMs containing {Dy(Cp*)2} fragments, though all SMM parameters are lower than would be predicted for an isolated [Dy(Cp*)2]+ cation, as expected due to transverse ligand fields introduced by halobenzenes and the large deviation of the Cp*···Dy···Cp* angle from linearity promoting magnetic relaxation.
Collapse
Affiliation(s)
- Sophie
C. Corner
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - George F. S. Whitehead
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Yao MX, Gao YQ, An ZW, Zhu DM. The effect of magnetic coupling along the magnetic axis on slow magnetic relaxation in Dy III complexes with D5h configuration based on an aggregation-induced-emission-active ligand. Dalton Trans 2024; 53:5133-5146. [PMID: 38380458 DOI: 10.1039/d3dt04257j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The adjustment of crystal symmetry and intramolecular magnetic coupling is of great importance for the construction of high-performance single-molecule magnets. By using an aggregation-induced-emission-active pyridine-carbohydrazone-based Schiff base ligand and phosphine oxides, four dinuclear and one one-dimensional DyIII-based complexes, [Dy2(TPE-pc)2(Bu3PO)2Cl2]·2CH3CN·2H2O (1), [Dy2(TPE-pc)2(Cy3PO)2Cl2] (2), [Dy2(TPE-pc)2(MePA)2Cl2]·2CH3OH (3), [Dy2(TPE-pc)2(Ph3PO)2Cl2]2 (4) and [Dy2(TPE-pc)2(DPPO)Cl2]n (5) (H2TPE-pc = (E)-N'-(2-hydroxy-5-(1,2,2-triphenylvinyl)benzylidene)picolinohydrazide, MePA = N-phenyl-N',N''-bis(morpholinyl) phosphoric triamide, DPPO = piperazine-1,4-diylbis(diphenyl phosphine oxide)), were isolated. All complexes are made up of an enol oxygen-bridged Dy2 unit, where DyIII ions possess a pentagonal bipyramidal geometry with pseudo D5h symmetry. Magnetic measurements reveal that intramolecular DyIII-DyIII couplings are ferromagnetic and all complexes display a significant slow magnetic relaxation phenomenon below 30 K under a zero dc field. Ab initio calculations indicate that the anisotropic magnetic axes of all DyIII ions are approximately perpendicular to the higher-order symmetric axes in all complexes, and that DyIII-DyIII magnetic couplings along the magnetic axes effectively suppress the ground state quantum tunneling effect of magnetization and promote the occurrence of slow magnetic relaxation. Raman relaxation prevails in all complexes. In addition, the H2TPE-pc ligand shows an aggregation-induced emission (AIE) effect; however, all complexes exhibit an aggregation-caused quenching (ACQ) phenomenon.
Collapse
Affiliation(s)
- Min-Xia Yao
- School of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Yu-Qi Gao
- School of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Zhong-Wu An
- School of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Dong-Mei Zhu
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
8
|
Nahon EE, Nelmes GR, Brothers PJ, Hicks J. Intramolecular C-N bond activation by a transient boryl anion. Chem Commun (Camb) 2023; 59:14281-14284. [PMID: 37964585 DOI: 10.1039/d3cc05182j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Using a flexible diamido framework, a bulky boron bromide has been prepared as a precusor to a boryl anion with an extremely wide N-B-N angle. Reduction of the compound with lithium metal resulted in intramolecular C-N bond activation and migration of an aryl group onto the boron centre. Reaction of the boron bromide with K[FeCp(CO)2] resulted in nucleophilic reactivity of a carbonyl oxygen and the cooperative activation of CO.
Collapse
Affiliation(s)
- Emily E Nahon
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Gareth R Nelmes
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Penelope J Brothers
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Jamie Hicks
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
9
|
Arumugam S, Schwarz B, Ravichandran P, Kumar S, Ungur L, Mondal KC. Dipotassiumtetrachloride-bridged dysprosium metallocenes: a single-molecule magnet. Dalton Trans 2023; 52:15326-15333. [PMID: 37387215 DOI: 10.1039/d3dt01325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present work describes the dynamic magnetic properties of the complex [(CpAr3)4DyIII2Cl4K2]·3.5(C7H8) (1), synthesized by employing a tri-aryl-substituted cyclopentadienyl ligand (CpAr3), [4,4'-(4-phenylcyclopenta-1,3-diene-1,2-diyl)bis(methylbenzene) = CpAr3H]. Each Dy(III)-metallocene weakly couples via K2Cl4, displaying slow relaxation of magnetization below 14.5 K under zero applied dc field via KD3 energy levels with an energy barrier of 136.9/133.7 cm-1 on the Dy sites. The single-ion axial anisotropy energy barrier is reduced by geometrical distortion due to the coordination of two chloride ions at each Dy centre.
Collapse
Affiliation(s)
- Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.
| | - Björn Schwarz
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | - Sunil Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, Singapore.
| | | |
Collapse
|
10
|
Gransbury G, Corner SC, Kragskow JGC, Evans P, Yeung HM, Blackmore WJA, Whitehead GFS, Vitorica-Yrezabal IJ, Oakley MS, Chilton NF, Mills DP. AtomAccess: A Predictive Tool for Molecular Design and Its Application to the Targeted Synthesis of Dysprosium Single-Molecule Magnets. J Am Chem Soc 2023; 145:22814-22825. [PMID: 37797311 PMCID: PMC10591469 DOI: 10.1021/jacs.3c08841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 10/07/2023]
Abstract
Isolated dysprosocenium cations, [Dy(CpR)2]+ (CpR = substituted cyclopentadienyl), have recently been shown to exhibit superior single-molecule magnet (SMM) properties over closely related complexes with equatorially bound ligands. However, gauging the crossover point at which the CpR substituents are large enough to prevent equatorial ligand binding, but small enough to approach the metal closely and generate strong crystal field splitting has required laborious synthetic optimization. We therefore created the computer program AtomAccess to predict the accessibility of a metal binding site and its ability to accommodate additional ligands. Here, we apply AtomAccess to identify the crossover point for equatorial coordination in [Dy(CpR)2]+ cations in silico and hence predict a cation that is at the cusp of stability without equatorial interactions, viz., [Dy(Cpttt)(Cp*)]+ (Cpttt = C5H2tBu3-1,2,4, Cp* = C5Me5). Upon synthesizing this cation, we found that it crystallizes as either a contact ion-pair, [Dy(Cpttt)(Cp*){Al[OC(CF3)3]4-κ-F}], or separated ion-pair polymorph, [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4]·C6H6. Upon characterizing these complexes, together with their precursors, yttrium and yttrium-doped analogues, we find that the contact ion-pair shows inferior SMM properties to the separated ion-pair, as expected, due to faster Raman and quantum tunneling of magnetization relaxation processes, while the Orbach region is relatively unaffected. The experimental verification of the predicted crossover point for equatorial coordination in this work tests the limitations of the use of AtomAccess as a predictive tool and also indicates that the application of this type of program shows considerable potential to boost efficiency in exploratory synthetic chemistry.
Collapse
Affiliation(s)
| | | | - Jon G. C. Kragskow
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Peter Evans
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Hing Man Yeung
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - William J. A. Blackmore
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Meagan S. Oakley
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
11
|
Armenis AS, Alexandropoulos DI, Worrell A, Cunha-Silva L, Dunbar KR, Stamatatos TC. Peripheral site modification in a family of dinuclear [Dy 2(hynad) 2-6(NO 3) 0-6(sol) 0-2] 0/2- single-molecule magnets bearing a {Dy 2(μ-OR) 2} 4+ diamond-shaped core and exhibiting dissimilar magnetic dynamics. Dalton Trans 2023; 52:13565-13577. [PMID: 37724338 DOI: 10.1039/d3dt02596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The first use of the organic chelate N-hydroxy-1,8-naphthalimide (hynadH) in DyIII chemistry has unveiled access to a synthetic 'playground' composed of four new dinuclear complexes, all of which possess the same planar {Dy2(μ-OR)2}4+ diamond-shaped core, resulting from the bridging and chelating capacity of the hynad- groups. The structural stability of the central {Dy2} core has allowed for the modulation of the peripheral coordination sites of the metal ions, and specifically the NO3-/hynad- ratio of capping groups, thus affording the compounds [Dy2(hynad)2(NO3)4(DMF)2] (1), (Me4N)2[Dy2(hynad)2(NO3)6] (2), [Dy2(hynad)4(NO3)2(H2O)2] (3), and [Dy2(hynad)6(H2O)2] (4). Because of the chemical and structural modifications in the series 1-4, the DyIII coordination polyhedra are also dissimilar, comprising the muffin (1 and 3), tetradecahedral (2), and spherical tricapped trigonal prismatic (4) geometries. Complexes 1, 2, and 4 exhibit a ferromagnetic response at low temperatures, while 3 is antiferromagnetically coupled. All compounds exhibit out-of-phase (χ''M) ac signals as a function of ac frequency and temperature, thus behaving as single-molecule magnets (SMMs), in the absence or presence of applied dc fields. Interestingly, the hynad--rich and nitrato-free complex 4, demonstrates the largest energy barrier (Ueff = 69.62(1) K) for the magnetization reversal which is attributed to the presence of the two axial triangular faces of the spherical tricapped trigonal prism by the negatively charged O-atoms of the hynad- ligands.
Collapse
Affiliation(s)
| | | | - Anne Worrell
- Department of Chemistry, 1812 Sir Isaac Brock Way, Brock University, L2S 3A1 St Catharines, Ontario, Canada.
| | - Luís Cunha-Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Theocharis C Stamatatos
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE - HT), Platani, P.O. Box 1414, 26504, Patras, Greece
| |
Collapse
|
12
|
Mondal A, Price CG, Tang J, Layfield RA. Targeted Synthesis of End-On Dinitrogen-Bridged Lanthanide Metallocenes and Their Reactivity as Divalent Synthons. J Am Chem Soc 2023; 145:20121-20131. [PMID: 37656516 PMCID: PMC10510326 DOI: 10.1021/jacs.3c07600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 09/03/2023]
Abstract
High-yield syntheses of the lanthanide dinitrogen complexes [(Cp2tttM)2(μ-1,2-N2)] (1M, M = Gd, Tb, Dy; Cpttt = 1,2,4-C5tBu3H2), in which the [N2]2- ligands solely adopt the rare end-on or 1,2-bridging mode, are reported. The bulk of the tert-butyl substituents and the smaller radii of gadolinium, terbium, and dysprosium preclude formation of the side-on dinitrogen bonding mode on steric grounds. Elongation of the nitrogen-nitrogen bond relative to N2 is observed in 1M, and their Raman spectra show a major absorption consistent with N═N double bonds. Computational analysis of 1Gd identifies that the local symmetry of the metallocene units lifts the degeneracy of two 5dπ orbitals, leading to differing overlap with the π* orbitals of [N2]2-, a consequence of which is that the dinitrogen ligand occupies a singlet ground state. Magnetic measurements reveal antiferromagnetic exchange in 1M and single-molecule magnet (SMM) behavior in 1Dy. Ab initio calculations show that the magnetic easy axis in the ground doublets of 1Tb and 1Dy align with the {M-N═N-M} connectivity, in contrast to the usual scenario in dysprosium metallocene SMMs, where the axis passes through the cyclopentadienyl ligands. The [N2]2- ligands in 1M allow these compounds to be regarded as two-electron reducing agents, serving as synthons for divalent gadolinium, terbium, and dysprosium. Proof of principle for this concept is obtained in the reactions of 1M with 2,2'-bipyridyl (bipy) to give [Cp2tttM(κ2-bipy)] (2M, M = Gd, Tb, Dy), in which the lanthanide is ligated by a bipy radical anion, with strong metal-ligand direct exchange coupling.
Collapse
Affiliation(s)
- Arpan Mondal
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Christopher G.
T. Price
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Jinkui Tang
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, P.R. China
| | - Richard A. Layfield
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
13
|
Delano F, Benner F, Jang S, Demir S. Pyrrolyl-Bridged Metallocene Complexes: From Synthesis, Electronic Structure, to Single-Molecule Magnetism. Inorg Chem 2023; 62:14604-14614. [PMID: 37638984 DOI: 10.1021/acs.inorgchem.3c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The π- and σ-basicity of the pyrrolyl ligand affords several coordination modes. A sterically encumbering coordination sphere around metal centers may foster new coordination modes for the pyrrolyl ligand. Here, we present three dinuclear rare earth complexes [Cp*2RE(μ-pyr)]2, [RE = Y (1), La (2), Dy (3); Cp* = pentamethylcyclopentadienyl, pyr = pyrrolyl], which were synthesized through a protonolysis reaction between allyl complexes and H-pyrrole. Each metal is ligated by two Cp* ligands and the N atom of the pyrrolyl ring while interacting with the π-system of the other pyrrolyl ligand, yielding an unprecedented coordination mode for pyrrolyl best described as [((η5-Cp*)2RE)2(μ-1η2-pyr-2κN)(μ-2η2-pyr-1κN)]. The steric congestion implemented by the Cp* ligands forces this asymmetric coordination of the pyrrolyl ligand. 1-3 were characterized by crystallography, electrochemistry, and spectroscopy. Density functional theory calculations on 1 uncovered the bonding situation between the pyrrolyl ligand and the yttrium(III) ion. Excitingly, 3 displays slow magnetic relaxation under zero dc field with Ueff = 98.9(7) cm-1 and τo = 6.7(1) × 10-8 s, placing it among coveted dinuclear metallocene single-molecule magnets. CASSCF calculations provided the energy of the crystal field states of DyIII and confirmed the barrier height.
Collapse
Affiliation(s)
- Francis Delano
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Seoyun Jang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Price CGT, Mondal A, Durrant JP, Tang J, Layfield RA. Structural and Magnetization Dynamics of Borohydride-Bridged Rare-Earth Metallocenium Cations. Inorg Chem 2023. [PMID: 37314885 DOI: 10.1021/acs.inorgchem.3c01038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The structure and magnetic properties of the bimetallic borohydride-bridged dysprosocenium compound [{(η5-Cpttt)(η5-CpMe4t)Dy}2(μ:κ2:κ2-BH4)]+[B(C6F5)4]- ([3Dy][B(C6F5)4]) are reported along with the solution-phase dynamics of the isostructural yttrium and lutetium analogues (Cpttt is 1,2,4-tri(tert-butyl)cyclopentadienyl, CpMe4t is tetramethyl(tert-butyl)cyclopentadienyl). The synthesis of [3M][B(C6F5)4] was accomplished in the 2:1 stoichiometric reactions of [(η5-Cpttt)(η5-CpMe4t)Dy(BH4)] (2M) with [CPh3][B(C6F5)4], with the metallocenes 2M obtained from reactions of the half-sandwich complexes [(η5-Cpttt)M(BH4)2(THF)] (1M) (M = Y, Dy, Lu) with NaCpMe4t. Crystallographic studies show significant lengthening of the M···B distance on moving through the series 1M, 2M, and 3M, with essentially linear {M···B···M} bridges in 3M. Multinuclear NMR spectroscopy indicates restricted rotation of the Cpttt ligands in 3Y and 3Lu in solution. The single-molecule magnet (SMM) properties of [3M][B(C6F5)4] are characterized by Raman and Orbach processes, with an effective barrier of 533(18) cm-1 and relaxation via the second-excited Kramers doublet. Although quantum tunneling of the magnetization (QTM) was not observed for [3M][B(C6F5)4], it was, surprisingly, found in its magnetically dilute version, which has a very similar barrier of Ueff = 499(21) cm-1. Consistent with this observation, slightly wider openings of the magnetic hysteresis loop at 2 K are found for [3M][B(C6F5)4] but not for the diluted analogue. The dynamic magnetic properties of the dysprosium SMMs and the role of exchange interactions in 3Dy are interpreted with the aid of multireference ab initio calculations.
Collapse
Affiliation(s)
- Christopher G T Price
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - James P Durrant
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|
15
|
Li YL, Wang HL, Zhu ZH, Lu XL, Liang FP, Zou HH. Alkali metal-linked triangular building blocks assemble a high-nucleation lanthanoid cluster based on single-molecule magnets. iScience 2022; 25:105285. [PMID: 36304113 PMCID: PMC9593797 DOI: 10.1016/j.isci.2022.105285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
The metallic central magnetic axes in high-nucleation clusters with complex structural connections tend to be disorganized and cancel each other out. Therefore, high-nucleation clusters cannot easily exhibit single-molecule magnets (SMMs) behaviors. Herein, we select a triple-core building block (Dy3K2, 1) and use linked diamagnetic alkali metal to form an open, spherical, high-nucleation cluster Dy12Na6 (3) with SMM behavior. Furthermore, by changing the reaction conditions, Dy6K2 (2) formed by linking two Dy3 by K(I) is obtained. High-resolution electrospray mass spectrometry of clusters 1-3 effectively captures the building block Dy3, and clusters 1 and 3 and Dy3 have high stability even with the increase in ion source energy. To the best of our knowledge, this is the first time that an SMM based on a high-nucleation cluster has been obtained by connecting magnetic primitives via diamagnetic metal ions. Dy12K6 is currently the highest nuclear ns-4f heterometallic SMM.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xing-Lin Lu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
16
|
Guo Z, Wang J, Deacon GB, Junk PC. Selective Oxidation of a Single Metal Site of Divalent Calix[4]pyrrolide Compounds [Ln 2(N 4Et 8)(thf) 4] (Ln = Sm or Eu), Giving Mixed Valent Lanthanoid(II/III) Complexes. Inorg Chem 2022; 61:18678-18689. [DOI: 10.1021/acs.inorgchem.2c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhifang Guo
- College of Science & Engineering, James Cook University, Townsville 4811, Queensland, Australia
| | - Jun Wang
- College of Science & Engineering, James Cook University, Townsville 4811, Queensland, Australia
| | - Glen B. Deacon
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Peter C. Junk
- College of Science & Engineering, James Cook University, Townsville 4811, Queensland, Australia
| |
Collapse
|
17
|
Fang W, Zhu Q, Zhu C. Recent advances in heterometallic clusters with f-block metal-metal bonds: synthesis, reactivity and applications. Chem Soc Rev 2022; 51:8434-8449. [PMID: 36164971 DOI: 10.1039/d2cs00424k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the heterometallic synergistic effects from different metals, heterometallic clusters are of great importance in small-molecule activation and catalysis. For example, both biological nitrogen fixation and photosynthetic splitting of water into oxygen are thought to involve multimetallic catalytic sites with d-block transition metals. Benefitting from the larger coordination numbers of f-block metals (rare-earth metals and actinide elements), heterometallic clusters containing f-block metal-metal bonds have long attracted the interest of both experimental and theoretical chemists. Therefore, a series of effective strategies or platforms have been developed in recent years for the construction of heterometallic clusters with f-block metal-metal bonds. More importantly, synergistic effects between f-block metals and transition metals have been observed in small-molecule activation and catalysis. This tutorial review highlights the recent advances in the construction of heterometallic molecular clusters with f-block metal-metal bonds and also their reactivities and applications. It is hoped that this tutorial review will persuade chemists to develop more efficient strategies to construct clusters with f-block metal-metal bonds and also further expand their applications with heterometallic synergistic effects.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Dietz M, Arrowsmith M, Reichl S, Lugo‐Fuentes LI, Jiménez‐Halla JOC, Scheer M, Braunschweig H. Stable Two‐Legged Parent Piano‐Stool and Mixed Diborabenzene‐E
4
(E=P, As) Sandwich Complexes of Group 8. Angew Chem Int Ed Engl 2022; 61:e202206840. [PMID: 35781917 PMCID: PMC9540419 DOI: 10.1002/anie.202206840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Maximilian Dietz
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Stephan Reichl
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93040 Regensburg Germany
| | - Leonardo I. Lugo‐Fuentes
- Departamento de Química, División de Ciencias Naturales y Exactas Unversidad de Guanajuato, Noria Alta S/N Col. Noria Alta Guanajuato, C.P. 36050, Gto. Mexico
| | - J. Oscar C. Jiménez‐Halla
- Departamento de Química, División de Ciencias Naturales y Exactas Unversidad de Guanajuato, Noria Alta S/N Col. Noria Alta Guanajuato, C.P. 36050, Gto. Mexico
| | - Manfred Scheer
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93040 Regensburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
19
|
Dietz M, Arrowsmith M, Reichl S, Lugo-Fuentes L, Jiménez-Halla JOC, Scheer M, Braunschweig H. Stable Two‐Legged Parent Piano‐Stool and Mixed Diborabenzene‐E<sub>4</sub> (E = P, As) Sandwich Complexes of Group 8. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maximilian Dietz
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Inorganic Chemistry GERMANY
| | - Merle Arrowsmith
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Inorganic Chemistry GERMANY
| | - Stephan Reichl
- Universität Regensburg: Universitat Regensburg Inorganic Chemistry GERMANY
| | | | | | - Manfred Scheer
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Inorganic Chemistry GERMANY
| | - Holger Braunschweig
- Julius-Maximilians-Universitat Wurzburg Department of Chemistry Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
20
|
Xi L, Jin CY, Song HW, Wang XT, Li LC, Sutter JP. Supramolecular heptanuclear Ln-Cu complexes involving nitronyl nitroxide biradicals: structure and magnetic behavior. Dalton Trans 2022; 51:6955-6963. [PMID: 35451450 DOI: 10.1039/d2dt00220e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Four novel heptanuclear Ln-Cu complexes with the formula [Ln2Cu(hfac)8(NITPhTzbis)2][LnCu(hfac)5(NITPhTzbis)]2 (LnCu = YCu 1, TbCu 2, DyCu 3 and HoCu 4; hfac = hexafluoroacetylacetonate) were successfully constructed by employing the triazole functionalized nitronyl nitroxide biradical ligand NITPh-Tzbis (NITPh-Tzbis = 5-(1,2,4-triazolyl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). These hetero-tri-spin complexes are composed of two biradical-bridged dinuclear [(LnCu(hfac)5(NITPhTzbis)] units and one trinuclear [Ln2Cu(hfac)8(NITPhTzbis)2] unit which form a heptanuclear supramolecular structure through π-π interactions. Magnetic susceptibility investigations indicate that ferromagnetic exchange interactions dominate at low temperature for this supramolecular system which can be attributed to the Ln-nitroxide exchange and intramolecular NIT⋯NIT coupling mediated by the m-phenylene moiety. The DyCu derivative was found to exhibit a slow magnetic relaxation behavior.
Collapse
Affiliation(s)
- Lu Xi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chao-Yi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Hong-Wei Song
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiao-Tong Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Li-Cun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
21
|
Durrant JP, Day BM, Tang J, Mansikkamäki A, Layfield RA. Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Single-Molecule Magnets. Angew Chem Int Ed Engl 2022; 61:e202200525. [PMID: 35108431 PMCID: PMC9302998 DOI: 10.1002/anie.202200525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 01/12/2023]
Abstract
Replacing a monoanionic cyclopentadienyl (Cp) ligand in dysprosium single-molecule magnets (SMMs) with a dianionic cyclobutadienyl (Cb) ligand in the sandwich complexes [(η4 -Cb'''')Dy(η5 -C5 Me4 t Bu)(BH4 )]- (1), [(η4 -Cb'''')Dy(η8 -Pn† )K(THF)] (2) and [(η4 -Cb'''')Dy(η8 -Pn† )]- (3) leads to larger energy barriers to magnetization reversal (Cb''''=C4 (SiMe3 )4 , Pn† =1,4-di(tri-isopropylsilyl)pentalenyl). Short distances to the Cb'''' ligands and longer distances to the Cp ligands in 1-3 are consistent with the crystal field splitting being dominated by the former. Theoretical analysis shows that the magnetic axes in the ground Kramers doublets of 1-3 are oriented towards the Cb'''' ligands. The theoretical axiality parameter and the relative axiality parameter Z and Zrel are introduced to facilitate comparisons of the SMM performance of 1-3 with a benchmark SMM. Increases in Z and Zrel when Cb''' replaces Cp signposts a route to SMMs with properties that could surpass leading systems.
Collapse
Affiliation(s)
- James P. Durrant
- Department of ChemistryUniversity of Sussex FalmerBrightonBN1 9QRUK
| | - Benjamin M. Day
- Department of ChemistryUniversity of Sussex FalmerBrightonBN1 9QRUK
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource UtilizationChangchunInstitute of Applied ChemistryChinese Academy of SciencesChangchun130022P.R. China
| | | | | |
Collapse
|
22
|
Ouellette ET, Magdalenski JS, Bergman RG, Arnold J. Applications of Low-Valent Transition Metalates: Development of a Reactive Noncarbonyl Rhenium(I) Anion. Acc Chem Res 2022; 55:783-793. [PMID: 35171568 DOI: 10.1021/acs.accounts.2c00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-valent transition metalates─anionic, electronic-rich organometallic complexes─comprise a class of highly reactive chemical reagents that find integral applications in organic synthesis, small-molecule activation, transient species stabilization, and M-E bond formation, among others. The inherent reactivity of such electron-rich metal centers has necessitated the widespread use of strong backbonding ligands, particularly carbonyls, to aid in the isolation and handling of metalate reagents, albeit sometimes at the expense of partially masking their full reactivity. However, recent synthetic explorations into transition-metalate complexes devoid of archetypic back-bonding ligands have led to the discovery of highly reactive metalates capable of performing a variety of novel chemical transformations.Building on our group's long-standing interest in reactive organometallic species, a series of rational progressions in early-to-middle transition-metal chemistry ultimately led to our isolation of a rhenium(I) β-diketiminate cyclopentadienide metalate that displays exceptional reactivity. We have found this Re(I) metalate to be capable of small-molecule activation; notably, the complex reversibly binds dinitrogen in solution and can be utilized to trap N2 for the synthesis of functionalized diazenido species. By employing isolobal analogues to N2 (CO and RNC), we were able to thoroughly monitor the mechanism of activation and conclude that the metalate's sodium counterion plays an integral role in promoting dinitrogen activation through a novel side-on interaction. The Re(I) metalate is also used in forming a variety of M-E bonds, including a series of uncommon rhenium-tetrylene (Si, Ge, and Sn) complexes that display varying degrees of multiple bonding. These metal tetrylenes act to highlight deviations in chemical properties within the group 14 elements. Our metalate's utility also applies to metal-metal bond formation, as demonstrated through the synthesis of a heterotetrametallic rhenium-zinc dimer. In this reaction, the Re(I) metalate performs a dual role as a reductant and metalloligand to stabilize a transient Zn22+ core fragment. Finally, the metalate displays unique reactivity with uranium(III) to yield the first transition metal-actinide inverse-sandwich bonds, in this case with three rhenium fragments bound through their Cp moieties surrounding the uranium center. Notably, throughout these endeavors we demonstrate that the metalate displays reactivity at multiple locations, including directly at the rhenium metal center, at a Cp carbon, through a Cp-sandwich mode, or through reversibly bound dinitrogen.Overall, the rhenium(I) metalate described herein demonstrates utility in diverse applications: small-molecule activation, the stabilization of reduced and/or unstable species, and the formation of unconventional M-E/M-M bonds or heterometallic complexes. Moving forward, we suggest that the continued discovery of noncarbonyl, electron-rich transition-metal anions featuring new or unconventional ligands should produce additional reactive organometallic species capable of stabilizing unique structural motifs and performing novel and unusual chemical transformations.
Collapse
Affiliation(s)
- Erik T. Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julian S. Magdalenski
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Durrant JP, Day BM, Tang J, Mansikkamäki A, Layfield RA. Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Single‐Molecule Magnets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James P. Durrant
- Department of Chemistry University of Sussex Falmer Brighton BN1 9QR UK
| | - Benjamin M. Day
- Department of Chemistry University of Sussex Falmer Brighton BN1 9QR UK
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P.R. China
| | | | | |
Collapse
|
24
|
Zhu Z, Tang J. Metal–metal bond in lanthanide single-molecule magnets. Chem Soc Rev 2022; 51:9469-9481. [DOI: 10.1039/d2cs00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys recent critical advances in lanthanide SMMs, highlighting the influences of metal–metal bonds on the magnetization dynamics.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
25
|
Syntheses, Structures and Magnetic Properties of M2 (M = Fe, Co) Complexes with N6 Coordination Environment: Field-Induced Slow Magnetic Relaxation in Co2. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two dinuclear complexes [M2(H2L)2](ClO4)4·2MeCN (M = Co for Co2 and Fe for Fe2) were synthesized using a symmetric hydrazone ligand with the metal ions in an N6 coordination environment. The crystal structures and magnetic properties were determined by single-crystal X-ray diffraction and magnetic susceptibility measurements. The crystal structure study revealed that the spin centers were all in the high-spin state with a distorted octahedron (Oh) geometry. Dynamic magnetic properties measurements revealed that complex Co2 exhibited field-induced single-molecule magnet properties with two-step relaxation in which the fast relaxation path was from QTM and the slow relaxation path from the thermal relaxation under an applied field.
Collapse
|
26
|
Wu J, Li XL, La Droitte L, Cador O, Le Guennic B, Tang J. Coordination anion effects on the geometry and magnetic interaction of binuclear Dy 2 single-molecule magnets. Dalton Trans 2021; 50:15027-15035. [PMID: 34609397 DOI: 10.1039/d1dt02071d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new dimeric dysprosium(III) complexes, [Dy2(HL)2(SCN)2]·2CH3CN (1) and [Dy2(HL)2(NO3)2]·2CH3CN·2H2O (2), have been assembled using the H3L multidentate ligand (H3L = 2,2'-((((2-hydroxy-5-methyl-1,3-phenylene)bis(methylene))bis((pyridin-2-ylmethyl)azanediyl))bis(methylene))diphenol). The use of different coordination anions for the two complexes results in distinct coordination geometries of the metal sites. The Dy centers in complexes 1 and 2 display capped octahedron and triangular dodecahedron coordination geometries, respectively. Consequently, the two compounds exhibit distinct dc and ac magnetic properties. Complex 1 behaves as a single molecule magnet (SMM) while no SMM behavior is observed for complex 2. Although complexes 1 and 2 possess a similar core of Dy2O2, their different coordination anions lead to two distinct magnetic interactions, namely ferromagnetic and antiferromagnetic, respectively. Ab initio calculations reveal that these interactions may result from strong intramolecular dipolar couplings that are ferromagnetic for 1 but antiferromagnetic for 2, while exchange couplings are antiferromagnetic in both cases.
Collapse
Affiliation(s)
- Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Léo La Droitte
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
27
|
|
28
|
He M, Guo FS, Tang J, Mansikkamäki A, Layfield RA. Synthesis and single-molecule magnet properties of a trimetallic dysprosium metallocene cation. Chem Commun (Camb) 2021; 57:6396-6399. [PMID: 34085074 PMCID: PMC8240697 DOI: 10.1039/d1cc02139g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022]
Abstract
The dimetallic fulvalene-bridged dysprosium complex [{Dy(Cp*)(μ-BH4)}2(Fvtttt)] (1, Cp* = C5Me5) is converted into the trimetallic borohydride-bridged species [{Dy(Cp*)(Fvtttt)}2Dy(μ-BH4)3] (2). In turn, 2 is reacted with a silylium electrophile to give [{Dy(Cp*)(μ-BH4)(Fvtttt)}2Dy][B(C6F5)4] ([3][B(C6F5)3]), the first trimetallic dysprosocenium cation. Compound [3][B(C6F5)3] can also be formed directly from 1 by adding two equivalents of the electrophile. A three-fold enhancement in the effective energy barrier from 2 to 3 is observed and interpreted with the aid of ab initio calculations.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QR, UK.
| | - Fu-Sheng Guo
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QR, UK.
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5626, Changchun 130022, China
| | | | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QR, UK.
| |
Collapse
|
29
|
Jin P, Yu K, Zhai Y, Luo Q, Wang Y, Zhang X, Lv Y, Zheng Y. Chelating Guanidinates for Dysprosium(
III
)
Single‐Molecule
Magnets
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peng‐Bo Jin
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Ke‐Xin Yu
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Yuan‐Qi Zhai
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Qian‐Cheng Luo
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Yi‐Dian Wang
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Xu‐Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University 277 West Yanta Road, Xi'an Shaanxi 710061 China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University 277 West Yanta Road, Xi'an Shaanxi 710061 China
| | - Yan‐Zhen Zheng
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| |
Collapse
|
30
|
Ward RJ, Pividori D, Carpentier A, Tarlton ML, Kelley SP, Maron L, Meyer K, Walensky JR. Isolation of a [Fe(CO)4]2–-Bridged Diuranium Complex Obtained via Reduction of Fe(CO)5 with Uranium(III). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert J. Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Daniel Pividori
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Ambre Carpentier
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR 5215, LPCNO, Toulouse 31077, France
| | - Michael L. Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR 5215, LPCNO, Toulouse 31077, France
| | - Karsten Meyer
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
31
|
Thomas-Hargreaves LR, Giansiracusa MJ, Gregson M, Zanda E, O'Donnell F, Wooles AJ, Chilton NF, Liddle ST. Correlating axial and equatorial ligand field effects to the single-molecule magnet performances of a family of dysprosium bis-methanediide complexes. Chem Sci 2021; 12:3911-3920. [PMID: 34163660 PMCID: PMC8179472 DOI: 10.1039/d1sc00238d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Treatment of the new methanediide-methanide complex [Dy(SCS)(SCSH)(THF)] (1Dy, SCS = {C(PPh2S)2}2-) with alkali metal alkyls and auxillary ethers produces the bis-methanediide complexes [Dy(SCS)2][Dy(SCS)2(K(DME)2)2] (2Dy), [Dy(SCS)2][Na(DME)3] (3Dy) and [Dy(SCS)2][K(2,2,2-cryptand)] (4Dy). For further comparisons, the bis-methanediide complex [Dy(NCN)2][K(DB18C6)(THF)(toluene)] (5Dy, NCN = {C(PPh2NSiMe3)2}2-, DB18C6 = dibenzo-18-crown-6 ether) was prepared. Magnetic susceptibility experiments reveal slow relaxation of the magnetisation for 2Dy-5Dy, with open magnetic hysteresis up to 14, 12, 15, and 12 K, respectively (∼14 Oe s-1). Fitting the alternating current magnetic susceptibility data for 2Dy-5Dy gives energy barriers to magnetic relaxation (U eff) of 1069(129)/1160(21), 1015(32), 1109(70), and 757(39) K, respectively, thus 2Dy-4Dy join a privileged group of SMMs with U eff values of ∼1000 K and greater with magnetic hysteresis at temperatures >10 K. These structurally similar Dy-components permit systematic correlation of the effects of axial and equatorial ligand fields on single-molecule magnet performance. For 2Dy-4Dy, the Dy-components can be grouped into 2Dy-cation/4Dy and 2Dy-anion/3Dy, where the former have almost linear C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with short average Dy[double bond, length as m-dash]C distances, and the latter have more bent C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with longer average Dy[double bond, length as m-dash]C bonds. Both U eff and hysteresis temperature are superior for the former pair compared to the latter pair as predicted, supporting the hypothesis that a more linear axial ligand field with shorter M-L distances produces enhanced SMM properties. Comparison with 5Dy demonstrates unusually clear-cut examples of: (i) weakening the equatorial ligand field results in enhancement of the SMM performance of a monometallic system; (ii) a positive correlation between U eff barrier and axial linearity in structurally comparable systems.
Collapse
Affiliation(s)
| | - Marcus J Giansiracusa
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Emanuele Zanda
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Felix O'Donnell
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
32
|
Mayans J, Escuer A. Correlating the axial Zero Field Splitting with the slow magnetic relaxation in Gd III SIMs. Chem Commun (Camb) 2021; 57:721-724. [PMID: 33496705 DOI: 10.1039/d0cc07474h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field-induced out-of-phase magnetic response of a GdIII complex, selected by its good isolation in the network, has been analyzed and the behaviour of this quasi-isotropic cation has been related to its weak axial zero field splitting ∼0.1 cm-1.
Collapse
Affiliation(s)
- Júlia Mayans
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, València 46980, Spain.
| | - Albert Escuer
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience (IN2UB) and Nanotecnology, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona-08028, Spain
| |
Collapse
|
33
|
Wang J, Li Q, Wu S, Chen Y, Wan R, Huang G, Liu Y, Liu J, Reta D, Giansiracusa MJ, Wang Z, Chilton NF, Tong M. Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono‐Decker to Double‐Decker Metallacrown. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Quan‐Wen Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Si‐Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan‐Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Rui‐Chen Wan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Guo‐Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Daniel Reta
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Zhen‐Xing Wang
- Wuhan National High Magnetic Center Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Nicholas F. Chilton
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
34
|
Wang J, Li QW, Wu SG, Chen YC, Wan RC, Huang GZ, Liu Y, Liu JL, Reta D, Giansiracusa MJ, Wang ZX, Chilton NF, Tong ML. Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono-Decker to Double-Decker Metallacrown. Angew Chem Int Ed Engl 2021; 60:5299-5306. [PMID: 33216437 DOI: 10.1002/anie.202014993] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 02/03/2023]
Abstract
Combining Ising-type magnetic anisotropy with collinear magnetic interactions in single-molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15-MCCu -5] (1-Dy) SMM, where a DyIII ion is held in a central pseudo-D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15-MCCu -5] units with a single hydroxide bridge yields the double-decker {Dy[15-MCCu -5]}2 (2-Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2-Dy that are approximately 200 000 times slower at 2 K than for 1-Dy in zero external field. Whereas 1-Dy and the YIII -diluted Dy@2-Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2-Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy-Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d-f SMMs up to 625 cm-1 .
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Quan-Wen Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Rui-Chen Wan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Daniel Reta
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Marcus J Giansiracusa
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zhen-Xing Wang
- Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
35
|
Xu SM, An ZW, Zhang W, Zhang YQ, Yao MX. Ligand field and anion-driven structures and magnetic properties of dysprosium complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Based on the organic ligand H2L, three Dy-based complexes were synthesized, and structurally and magnetically characterized. Theoretical calculations are performed to analyze the performance of single molecule magnets.
Collapse
Affiliation(s)
- Shao-Min Xu
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Zhong-Wu An
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Wei Zhang
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Min-Xia Yao
- College of Chemistry & Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| |
Collapse
|
36
|
Goodwin CAP. Blocking like it's hot: a synthetic chemists' path to high-temperature lanthanide single molecule magnets. Dalton Trans 2020; 49:14320-14337. [PMID: 33030172 DOI: 10.1039/d0dt01904f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Progress in the synthesis, design, and characterisation of single-molecule magnets (SMMs) has expanded dramatically from curiosity driven beginnings to molecules that retain magnetization above the boiling point of liquid nitrogen. This is in no small part due to the increasingly collaborative nature of this research where synthetic targets are guided by theoretical design criteria. This article aims to summarize these efforts and progress from the perspective of a synthetic chemist with a focus on how chemistry can modulate physical properties. A simple overview is presented of lanthanide electronic structure in order to contextualize the synthetic advances that have led to drastic improvements in the performance of lanthanide-based SMMs from the early 2000s to the late 2010s.
Collapse
|
37
|
Krylov D, Velkos G, Chen CH, Büchner B, Kostanyan A, Greber T, Avdoshenko SM, Popov AA. Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy 2S@C 82. Inorg Chem Front 2020; 7:3521-3532. [PMID: 33442482 PMCID: PMC7116581 DOI: 10.1039/d0qi00771d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy inter-actions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in C s and C 3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the C s isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in C s and C 3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity.
Collapse
Affiliation(s)
- Denis Krylov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany.,Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Chia-Hsiang Chen
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Aram Kostanyan
- Physik-Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Thomas Greber
- Physik-Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Stanislav M Avdoshenko
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| |
Collapse
|
38
|
Jin C, Li XL, Liu Z, Mansikkamäki A, Tang J. An investigation into the magnetic interactions in a series of Dy 2 single-molecule magnets. Dalton Trans 2020; 49:10477-10485. [PMID: 32685954 DOI: 10.1039/d0dt01926g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three di-nuclear DyIII complexes [Dy2(H2L)2(tfa)]·Cl·3DMF (1), [Dy2(H2L)2(MeO)(SCN)]·MeOH (2) and [Dy2(H2L)2(MeOH)Cl]·Cl·2MeOH (3) were synthesized and structurally and magnetically characterized. The Dy1/Dy2 centers in these complexes are all nine-coordinate with spherical capped square antiprism (local C4v symmetry) environments. All complexes display single-molecule magnet (SMM) behavior under zero applied dc field with their properties dependent on the nature of the magnetic interactions between the DyIII ions. Ab initio calculations substantiate that all DyIII ions show a weakly axial crystal-field environment with the exception of one of the DyIII ions in complex 2. The ground Kramers doublets show modest amounts of quantum tunneling of magnetization that gets blocked by the interaction between the DyIII ions, leading to a thermally activated slow relaxation of magnetization. The interaction between the ions is ferromagnetic and mostly originates from the dipolar interaction. However, anti-ferromagnetic intermolecular interaction plays an important role and in the case of complex 2 it is sufficiently strong to mask the ferromagnetic intramolecular interaction.
Collapse
Affiliation(s)
- Chaoyi Jin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | | | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
39
|
Kühne IA, Anson CE, Powell AK. The Influence of Halide Substituents on the Structural and Magnetic Properties of Fe6Dy3 Rings. Front Chem 2020; 8:701. [PMID: 32923426 PMCID: PMC7456939 DOI: 10.3389/fchem.2020.00701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
We report the synthesis and magnetic properties of three new nine-membered Fe(III)-Dy(III) cyclic coordination clusters (CCCs), with a core motif of [Fe6Dy3(μ-OMe)9(vanox)6(X-benz)6] where the benzoate ligands are substituted in the para-position with X = F (1), Cl (2), Br (3). Single crystal X-ray diffraction structure analyses show that for the smaller fluorine or chlorine substituents the resulting structures exhibit an isostructural Fe6Dy3 core, whilst the 4-bromobenzoate ligand leads to structural distortions which affect the dynamic magnetic behavior. The magnetic susceptibility and magnetization of 1-3 were investigated and show similar behavior in the dc (direct current) magnetic data. Additional ac (alternating current) magnetic measurements show that all compounds exhibit frequency-dependent and temperature-dependent signals in the in-phase and out-of-phase component of the susceptibility and can therefore be described as field-induced SMMs. The fluoro-substituted benzoate cluster 1 shows a magnetic behavior closely similar to that of the corresponding unsubstituted Fe6Dy3 cluster, with Ueff = 21.3 K within the Orbach process. By increasing the size of the substituent toward 4-chlorobenzoate within 2, an increase of the energy barrier to Ueff = 36.1 K was observed. While the energy barrier becomes higher from 1 to 2, highlighting that the introduction of different substituents on the benzoate ligand in the para-position has an impact on the magnetic properties, cluster 3 shows a significantly different SMM behavior where Ueff is reduced in the Orbach regime to only 4.9 K.
Collapse
Affiliation(s)
- Irina A. Kühne
- Institut für Anorganische Chemie, KIT (Karlsruhe Institute of Technology), Karlsruhe, Germany
- School of Physics, University College Dublin (UCD), Dublin, Ireland
| | - Christopher E. Anson
- Institut für Anorganische Chemie, KIT (Karlsruhe Institute of Technology), Karlsruhe, Germany
| | - Annie K. Powell
- Institut für Anorganische Chemie, KIT (Karlsruhe Institute of Technology), Karlsruhe, Germany
- Institut für Nanotechnologie, KIT (Karlsruhe Institute of Technology), Eggenstein-Leopoldshafen, Germany
- *Correspondence: Annie K. Powell
| |
Collapse
|
40
|
Long J, Basalov IV, Lyssenko KA, Cherkasov AV, Mamontova E, Guari Y, Larionova J, Trifonov AA. Synthesis, Structure, Magnetic and Photoluminescent Properties of Dysprosium(III) Schiff Base Single-Molecule Magnets: Investigation of the Relaxation of the Magnetization. Chem Asian J 2020; 15:2706-2715. [PMID: 32633054 DOI: 10.1002/asia.202000658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Indexed: 12/15/2022]
Abstract
We report here the synthesis, structure, magnetic and photoluminescent properties of three new bifunctional Schiff-base complexes [Dy(L1 )2 (py)2 ][B(Ph)4 ]⋅py (1), [Dy(L1 )2 Cl(DME)] ⋅ 0.5DME (2) and [Dy(L2 )2 Cl] ⋅ 2.5(C7 H8 ) (3) (HL1 =Phenol, 2,4-bis(1,1-dimethylethyl)-6-[[(2-methoxy-5-methylphenyl)imino]methyl]; HL2 =Phenol, 2,4-bis(1,1-dimethylethyl)-6-[[(2-methoxyphenyl)imino]methyl]). The coordination environment of the Dy3+ ion and the direction of the anisotropic axis may be controlled by the combination of the substituent groups of the Schiff bases, the nature of the counter-ions (Cl- vs. BPh4 - ) and the coordinative solvent molecules. A zero-field slow relaxation of the magnetization is evidenced for all complexes but strong differences in the relaxation dynamics are observed depending on the Dy3+ site geometry. In this sense, complex 1 exhibits an anisotropy barrier of 472 cm-1 , which may be favourably compared to other related examples due to the shortening of the Dy-O bond in the axial direction. Besides, the three complexes exhibit a ligand-based luminescence making them as bifunctional magneto-luminescent systems.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ivan V Basalov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | - Konstantin A Lyssenko
- Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.,Lomonosov Moscow State Univ., Dept. Chem, Leninskie Gory 1, Build 3, Moscow, 119991, Russia
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | | | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Alexander A Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia.,Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| |
Collapse
|
41
|
Meng Y, Xiong J, Yang M, Qiao Y, Zhong Z, Sun H, Han J, Liu T, Wang B, Gao S. Experimental Determination of Magnetic Anisotropy in Exchange‐Bias Dysprosium Metallocene Single‐Molecule Magnets. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. Dalian 116024 P. R. China
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Mu‐Wen Yang
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Yu‐Sen Qiao
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Zhi‐Qiang Zhong
- Wuhan National High Magnetic Center Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Hao‐Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials Beijing Normal University Beijing 100875 P. R. China
| | - Jun‐Bo Han
- Wuhan National High Magnetic Center Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. Dalian 116024 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
42
|
He M, Guo FS, Tang J, Mansikkamäki A, Layfield RA. Fulvalene as a platform for the synthesis of a dimetallic dysprosocenium single-molecule magnet. Chem Sci 2020; 11:5745-5752. [PMID: 32832050 PMCID: PMC7422961 DOI: 10.1039/d0sc02033h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The dinucleating fulvalenyl ligand [1,1',3,3'-(C5 t Bu2H2)2]2- (Fvtttt) was used to synthesize the dimetallic dysprosocenium cation [{Dy(η5-Cp*)}2(μ-BH4)(η5:η5-Fvtttt)]+ (3) as the salt of [B(C6F5)4]- (Cp* = C5Me5). Compound [3][B(C6F5)4] was obtained using a method in which the double half-sandwich complex [{Dy(BH4)2(THF)}2(Fvtttt)] (1) was reacted with KCp* to give the double metallocene [{Dy(Cp*)(μ-BH4)}2(Fvtttt)] (2), followed by removal of a bridging borohydride ligand upon addition of [(Et3Si)2(μ-H)][B(C6F5)4]. The dimetallic fulvalenyl complexes 1-3 give rise to single-molecule magnet (SMM) behaviour in zero applied field, with the effective energy barriers of 154(15) cm-1, 252(4) cm-1 and 384(18) cm-1, respectively, revealing a significant improvement in performance across the series. The magnetic properties are interpreted with the aid of ab initio calculations, which show substantial increases in the axiality of the crystal field from 1 to 2 to 3 as a consequence of the increasingly dominant role of the Fvtttt and Cp* ligands, with the barrier height and hysteresis properties being attenuated by the equatorial borohydride ligands. The experimental and theoretical results described in this study furnish a blueprint for the design and synthesis of poly-cationic dysprosocenium SMMs with properties that may surpass those of benchmark systems.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton , BN1 9QR , UK .
| | - Fu-Sheng Guo
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton , BN1 9QR , UK .
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Renmin Street 5626 , 130022 Changchun , China .
| | - Akseli Mansikkamäki
- NMR Research Unit , University of Oulu , P.O. Box 8000, FI-90014 , Finland .
| | - Richard A Layfield
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton , BN1 9QR , UK .
| |
Collapse
|
43
|
Errulat D, Gabidullin B, Mansikkamäki A, Murugesu M. Two heads are better than one: improving magnetic relaxation in the dysprosium metallocene upon dimerization by use of an exceptionally weakly-coordinating anion. Chem Commun (Camb) 2020; 56:5937-5940. [PMID: 32347247 DOI: 10.1039/d0cc01980a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Partial metathesis between two weakly-coordinating anions in the archetypical dysprosium metallocene results in the first example of [BPh4]- as a bridging ligand in 4f metals, with a unique η2,η2:η2,η2-bridge. Magnetic susceptibility and relaxation dynamics studies along with ab initio calculations reveal improved slow relaxation of the magnetization in over its mononuclear congener, resulting in an energy barrier of 490 K/340 cm-1 and waist-restricted hysteresis up to 6.5 K.
Collapse
Affiliation(s)
- Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | | | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
44
|
Meng YS, Xiong J, Yang MW, Qiao YS, Zhong ZQ, Sun HL, Han JB, Liu T, Wang BW, Gao S. Experimental Determination of Magnetic Anisotropy in Exchange-Bias Dysprosium Metallocene Single-Molecule Magnets. Angew Chem Int Ed Engl 2020; 59:13037-13043. [PMID: 32347593 DOI: 10.1002/anie.202004537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/10/2022]
Abstract
We investigate a family of dinuclear dysprosium metallocene single-molecule magnets (SMMs) bridged by methyl and halogen groups [Cp'2 Dy(μ-X)]2 (Cp'=cyclopentadienyltrimethylsilane anion; 1: X=CH3 - ; 2: X=Cl- ; 3: X=Br- ; 4: X=I- ). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature-dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low-lying exchange-based energy levels and, consequently, low-temperature magnetic properties.
Collapse
Affiliation(s)
- Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, P. R. China.,Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mu-Wen Yang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yu-Sen Qiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhi-Qiang Zhong
- Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jun-Bo Han
- Wuhan National High Magnetic Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
45
|
Evans P, Reta D, Goodwin CAP, Ortu F, Chilton NF, Mills DP. A double-dysprosocenium single-molecule magnet bound together with neutral ligands. Chem Commun (Camb) 2020; 56:5677-5680. [PMID: 32319462 DOI: 10.1039/c9cc08945d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A dinuclear dysprosocenium dication has been synthesised that is bound together by weak interactions between {Dy(Cp*)2}+ fragments and neutral NEt3AlMe3 molecules. The axiality of the Dy3+ crystal fields are perturbed by these equatorial interactions but a relatively large effective barrier to magnetisation reversal of 860(60) cm-1 and magnetic hysteresis up to 12 K are observed.
Collapse
Affiliation(s)
- Peter Evans
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Daniel Reta
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Conrad A P Goodwin
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Fabrizio Ortu
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nicholas F Chilton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - David P Mills
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
46
|
Izuogu DC, Yoshida T, Cosquer G, Asegbeloyin JN, Zhang H, Thom AJW, Yamashita M. Periodicity of Single‐Molecule Magnet Behaviour of Heterotetranuclear Lanthanide Complexes across the Lanthanide Series: A Compendium. Chemistry 2020; 26:6036-6049. [DOI: 10.1002/chem.202000161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Indexed: 11/06/2022]
Affiliation(s)
- David Chukwuma Izuogu
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department of ChemistryGraduate School of ScienceTohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
- Department of Pure and Industrial ChemistryUniversity of Nigeria, Nsukka 410001 Enugu State Nigeria
| | - Takefumi Yoshida
- Department of ChemistryGraduate School of ScienceTohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
- WPI-Advanced Institute for Materials Research (AIMR)Tohoku University 2-1-1 Katahira Sendai 980-8577 Japan
| | - Goulven Cosquer
- Department of ChemistryGraduate School of ScienceHiroshima University 1-3-1 Kagamiyama Higashihiroshima 739-8526 Japan
| | - Jonnie N. Asegbeloyin
- Department of Pure and Industrial ChemistryUniversity of Nigeria, Nsukka 410001 Enugu State Nigeria
| | - Haitao Zhang
- Department of ChemistryGraduate School of ScienceTohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Alex J. W. Thom
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Masahiro Yamashita
- Department of ChemistryGraduate School of ScienceTohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
- WPI-Advanced Institute for Materials Research (AIMR)Tohoku University 2-1-1 Katahira Sendai 980-8577 Japan
- School of Materials Science and EngineeringNankai University Tianjin 300350 P.R. China
| |
Collapse
|
47
|
Cook AW, Bocarsly JD, Lewis RA, Touchton AJ, Morochnik S, Hayton TW. An iron ketimide single-molecule magnet [Fe 4(N[double bond, length as m-dash]CPh 2) 6] with suppressed through-barrier relaxation. Chem Sci 2020; 11:4753-4757. [PMID: 34122931 PMCID: PMC8159258 DOI: 10.1039/d0sc01578d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reaction of FeBr2 with 1.5 equiv. of LiN[double bond, length as m-dash]CPh2 and 2 equiv. of Zn, in THF, results in the formation of the tetrametallic iron ketimide cluster [Fe4(N[double bond, length as m-dash]CPh2)6] (1) in moderate yield. Formally, two Fe centers in 1 are Fe(i) and two are Fe(ii); however, Mössbauer spectroscopy and SQUID magnetometry suggests that the [Fe4]6+ core of 1 exhibits complete valence electron delocalization, with a thermally-persistent spin ground state of S = 7. AC and DC SQUID magnetometry reveals the presence of slow magnetic relaxation in 1, indicative of single-molecule magnetic (SMM) behaviour with a relaxation barrier of U eff = 29 cm-1. Remarkably, very little quantum tunnelling or Raman relaxation is observed down to 1.8 K, which leads to an open hysteresis loop and long relaxation times (up to 34 s at 1.8 K and zero field and 440 s at 1.67 kOe). These results suggest that transition metal ketimide clusters represent a promising avenue to create long-lifetime single molecule magnets.
Collapse
Affiliation(s)
- Andrew W Cook
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Joshua D Bocarsly
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara Santa Barbara California 93106 USA
| | - Richard A Lewis
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Alexander J Touchton
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Simona Morochnik
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
48
|
Chen SM, Zhang YQ, Xiong J, Wang BW, Gao S. Adducts of Tris(alkyl) Holmium(III) Showing Magnetic Relaxation. Inorg Chem 2020; 59:5835-5844. [DOI: 10.1021/acs.inorgchem.9b03264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi-Ming Chen
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Jin Xiong
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
49
|
Wu J, Demeshko S, Dechert S, Meyer F. Hexanuclear [Cp*Dy] 6 single-molecule magnet. Chem Commun (Camb) 2020; 56:3887-3890. [PMID: 32134051 DOI: 10.1039/c9cc09774k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hexanuclear cluster [(Cp*Dy)6K4Cl16(THF)6], [Cp*Dy]6, has been constructed from six {Cp*DyIII} synthons in which the strongly coordinating Cp*- caps determine the local anisotropy axes. Structural characterization of [Cp*Dy]6 shows two almost parallel triangular (Cp*Dy)3 fragments that are linked by the K+ and Cl- ions. Magnetic measurements reveal slow thermal relaxation and fast quantum tunneling relaxation in the absence of an external dc field. After applying a weak dc field, the quantum tunneling relaxation is efficiently suppressed, giving a sizable energy barrier of 561 K, which represents the current record energy barrier for high nuclearity organometallic SMMs.
Collapse
Affiliation(s)
- Jianfeng Wu
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, D-37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
50
|
Bar AK, Heras Ojea MJ, Tang J, Layfield RA. Coupling of Nitric Oxide and Release of Nitrous Oxide from Rare-Earth-Dinitrosyliron Complexes. J Am Chem Soc 2020; 142:4104-4107. [DOI: 10.1021/jacs.9b13571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arun Kumar Bar
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - María José Heras Ojea
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5626, 130022 Changchun, China
| | - Richard A. Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|