1
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
3
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
5
|
Zhao Y, Luo H, Ren X, Jia B, Li J, Wang L, Li J. The P2Y 1 receptor in the colonic myenteric plexus of rats and its correlation with opioid-induced constipation. BMC Gastroenterol 2024; 24:23. [PMID: 38191294 PMCID: PMC10773096 DOI: 10.1186/s12876-024-03119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
This study was designed to explore the expression changes of P2Y1 receptors in the distal colonic myenteric layer of rats. An opioid induced constipation(OIC) rat model was generated by intraperitoneal (i.p) injection of loperamide. At 7 days post-treatment, the model rats were assessed by calculating the fecal water content and the gastrointestinal transit ratio. The immunofluorescence (IF)-based histochemical study was used to observe the distribution of P2Y1 receptors in the distal colonic myenteric plexus. Western blotting (WB) was performed to evaluate the expression changes of P2Y1 proteins in the myenteric layer, and the electrophysiological approaches were carried out to determine the regulatory roles of P2Y1 receptors on distal colonic motor function. IF showed that P2Y1 receptors are co-expressed MOR in the enteric nerve cells of the distal colonic myenteric plexus. Moreover, the WB revealed that the protein levels of P2Y1 were significantly decreased in the distal colonic myenteric layer of OIC rats. In vitro tension experiments exhibited that the P2Y1 receptor antagonist MRS2500 enhanced the spontaneous contraction amplitude, adding EM2 and β-FNA did not have any effect on MRS2500. Therefore, P2Y1 receptor expression could be associated with the occurrence of OIC in this rat model and the regulation of colonic motility by MOR may be related to the release of purine neurotransmitters such as ATP in the colonic nervous system.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, 750001, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Huijuan Luo
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, 750001, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Xiaojie Ren
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, 750001, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Binghan Jia
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, 750001, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Jinzhao Li
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, 750001, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Lixin Wang
- The Medical Laboratory Center of General Hospital of Ningxia Medical University, 804 Shengli Street, 750001, Yinchuan, Ningxia Hui Autonomous Region, P.R. China.
| | - Junping Li
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, 750001, Yinchuan, Ningxia Hui Autonomous Region, P.R. China.
| |
Collapse
|
6
|
Hashemzadeh M, Haseefa F, Peyton L, Shadmehr M, Niyas AM, Patel A, Krdi G, Movahed MR. A comprehensive review of the ten main platelet receptors involved in platelet activity and cardiovascular disease. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:168-188. [PMID: 38223314 PMCID: PMC10784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/10/2023] [Indexed: 01/16/2024]
Abstract
Cardiovascular disease (CVD) is a major cause of death worldwide. Although there are many variables that contribute to the development of this disease, it is predominantly the activity of platelets that provides the mechanisms by which this disease prevails. While there are numerous platelet receptors expressed on the surface of platelets, it is largely the consensus that there are 10 main platelet receptors that contribute to a majority of platelet function. Understanding these key platelet receptors is vitally important for patients suffering from myocardial infarction, CVD, and many other diseases that arise due to overactivation or mutations of these receptors. The goal of this manuscript is to review the main platelet receptors that contribute most to platelet activity.
Collapse
Affiliation(s)
- Mehrnoosh Hashemzadeh
- University of Arizona College of MedicinePhoenix, AZ, USA
- Pima CollegeTucson, AZ, USA
| | | | - Lee Peyton
- Pima CollegeTucson, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and ScienceRochester, MN, USA
| | | | | | - Aamir Patel
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Ghena Krdi
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Mohammad Reza Movahed
- University of Arizona College of MedicinePhoenix, AZ, USA
- University of ArizonaTucson, AZ, USA
| |
Collapse
|
7
|
The full activation mechanism of the adenosine A 1 receptor revealed by GaMD and Su-GaMD simulations. Proc Natl Acad Sci U S A 2022; 119:e2203702119. [PMID: 36215480 PMCID: PMC9586258 DOI: 10.1073/pnas.2203702119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The full activation process of G protein-coupled receptor (GPCR) plays an important role in cellular signal transduction. However, it remains challenging to simulate the whole process in which the GPCR is recognized and activated by a ligand and then couples to the G protein on a reasonable simulation timescale. Here, we developed a molecular dynamics (MD) approach named supervised (Su) Gaussian accelerated MD (GaMD) by incorporating a tabu-like supervision algorithm into a standard GaMD simulation. By using this Su-GaMD method, from the active and inactive structure of adenosine A1 receptor (A1R), we successfully revealed the full activation mechanism of A1R, including adenosine (Ado)-A1R recognition, preactivation of A1R, and A1R-G protein recognition, in hundreds of nanoseconds of simulations. The binding of Ado to the extracellular side of A1R initiates conformational changes and the preactivation of A1R. In turn, the binding of Gi2 to the intracellular side of A1R causes a decrease in the volume of the extracellular orthosteric site and stabilizes the binding of Ado to A1R. Su-GaMD could be a useful tool to reconstruct or even predict ligand-protein and protein-protein recognition pathways on a short timescale. The intermediate states revealed in this study could provide more detailed complementary structural characterizations to facilitate the drug design of A1R in the future.
Collapse
|
8
|
Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition. J Biol Chem 2022; 298:102331. [PMID: 35926708 PMCID: PMC9442423 DOI: 10.1016/j.jbc.2022.102331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
G protein–coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed in nonolfactory tissues and emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of a larger mechanism for odor discrimination. Here, we demonstrate that the OR extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid over the orthosteric pocket. We demonstrate using molecular dynamics simulations that ECL2 controls the shape and volume of the odorant-binding pocket, maintains the pocket hydrophobicity, and acts as a gatekeeper of odorant binding. Therefore, we propose the interplay between the specific orthosteric pocket and the variable, less specific ECL2 controls OR specificity and promiscuity. Furthermore, the 3D models created here enabled virtual screening of new OR agonists and antagonists, which exhibited a 70% hit rate in cell assays. Our approach can potentially be generalized to structure-based ligand screening for other G protein–coupled receptors that lack high-resolution 3D structures.
Collapse
|
9
|
Sutcliffe KJ, Corey RA, Alhosan N, Cavallo D, Groom S, Santiago M, Bailey C, Charlton SJ, Sessions RB, Henderson G, Kelly E. Interaction With the Lipid Membrane Influences Fentanyl Pharmacology. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2. [PMID: 35909438 PMCID: PMC7613138 DOI: 10.3389/adar.2022.10280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overdose deaths from fentanyl have reached epidemic proportions in the USA and are increasing worldwide. Fentanyl is a potent opioid agonist that is less well reversed by naloxone than morphine. Due to fentanyl’s high lipophilicity and elongated structure we hypothesised that its unusual pharmacology may be explained by its interactions with the lipid membrane on route to binding to the μ-opioid receptor (MOPr). Through coarse-grained molecular dynamics simulations, electrophysiological recordings and cell signalling assays, we determined how fentanyl and morphine access the orthosteric pocket of MOPr. Morphine accesses MOPr via the aqueous pathway; first binding to an extracellular vestibule, then diffusing into the orthosteric pocket. In contrast, fentanyl may take a novel route; first partitioning into the membrane, before accessing the orthosteric site by diffusing through a ligand-induced gap between the transmembrane helices. In electrophysiological recordings fentanyl-induced currents returned after washout, suggesting fentanyl deposits in the lipid membrane. However, mutation of residues forming the potential MOPr transmembrane access site did not alter fentanyl’s pharmacological profile in vitro. A high local concentration of fentanyl in the lipid membrane, possibly in combination with a novel lipophilic binding route, may explain the high potency and lower susceptibility of fentanyl to reversal by naloxone.
Collapse
Affiliation(s)
- Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Robin A Corey
- Department of Biochemistry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Norah Alhosan
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Damiana Cavallo
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sam Groom
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Marina Santiago
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Chris Bailey
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Steven J Charlton
- Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard B Sessions
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Neumann A, Attah I, Al-Hroub H, Namasivayam V, Müller CE. Discovery of P2Y 2 Receptor Antagonist Scaffolds through Virtual High-Throughput Screening. J Chem Inf Model 2022; 62:1538-1549. [DOI: 10.1021/acs.jcim.1c01235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Isaac Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
11
|
Zimmermann A, Vu O, Brüser A, Sliwoski G, Marnett LJ, Meiler J, Schöneberg T. Mapping the binding sites of UDP and prostaglandin E2 glyceryl ester in the nucleotide receptor P2Y6. ChemMedChem 2022; 17:e202100683. [PMID: 35034430 PMCID: PMC9305961 DOI: 10.1002/cmdc.202100683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Indexed: 12/02/2022]
Abstract
Cyclooxygenase‐2 catalyzes the biosynthesis of prostaglandins from arachidonic acid and the biosynthesis of prostaglandin glycerol esters (PG‐Gs) from 2‐arachidonoylglycerol. PG‐Gs are mediators of several biological actions such as macrophage activation, hyperalgesia, synaptic plasticity, and intraocular pressure. Recently, the human UDP receptor P2Y6 was identified as a target for the prostaglandin E2 glycerol ester (PGE2‐G). Here, we show that UDP and PGE2‐G are evolutionary conserved endogenous agonists at vertebrate P2Y6 orthologs. Using sequence comparison of P2Y6 orthologs, homology modeling, and ligand docking studies, we proposed several receptor positions participating in agonist binding. Site‐directed mutagenesis and functional analysis of these P2Y6 mutants revealed that both UDP and PGE2‐G share in parts one ligand‐binding site. Thus, the convergent signaling of these two chemically very different agonists has already been manifested in the evolutionary design of the ligand‐binding pocket.
Collapse
Affiliation(s)
- Anne Zimmermann
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry GERMANY
| | - Oanh Vu
- Vanderbilt University Department of Chemistry UNITED STATES
| | - Antje Brüser
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry GERMANY
| | - Gregory Sliwoski
- Vanderbilt University School of Medicine Department of Biomedical Informatics UNITED STATES
| | - Lawrence J. Marnett
- Vanderbilt University School of Medicine Department of Biochemistry UNITED STATES
| | - Jens Meiler
- Leipzig University: Universitat Leipzig Institute of Drug discovery GERMANY
| | - Torsten Schöneberg
- Leipzig University: Universitat Leipzig Rudolf Schönheimer Institute of Biochemistry Johannisallee 30 04103 Leipzig GERMANY
| |
Collapse
|
12
|
Liu X, Xue Q, Zhang H, Fu J, Zhang A. Structural basis for molecular recognition of G protein-coupled estrogen receptor by selected bisphenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148558. [PMID: 34328988 DOI: 10.1016/j.scitotenv.2021.148558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Complicated ligand-dependent signaling pathways of bisphenol A (BPA) and its analogues involve not only intranuclear estrogen receptor but also membrane receptor G protein-coupled estrogen receptor (GPER). However, the structural basis for molecular recognition of GPER by the environmental chemicals remains unknown. To reveal the structural dependence of GPER recognition by bisphenols, a systematic molecular dynamics simulation study was performed for selected bisphenols with different electron hybrid orbitals and substituents on their C atoms connecting two phenol rings. BPA was used as a control, bisphenol C(BPC) as an example for a connecting C with sp2 hybrid orbitals to provide more ligand rigidity, bisphenol E(BPE) and bisphenol F(BPF) for decreased steric hindrance and hydrophobicity around the connecting C, and bisphenol B(BPB) and bisphenol AF(BPAF) for increased hydrophobicity and steric hindrance. All the tested bisphenols can bind with GPER at its classic orthosteric site to obtain GPER-ligand complexes, while van der Waals interactions and direct inter-molecular electrostatic energies provide the driving forces for ligand binding. Bulky substituents and structural rigidity of the connecting C dramatically impair hydrogen bonding between GPER and the bisphenols, which results in decreased contribution of both favorable intermolecular hydrogen bonds and unfavorable polar solvation effect to complex stability of BPB and BPC since decreased number of key residues is expected. Increase in substituent lipophilicity enhances the van der Waals interactions and favorable non-polar solvation effect. The six bisphenols of high structural similarity shared two key recognition residues, Leu137TM3 and Trp272TM6, the latter of which was in the highly conserved CWxP motif of TM6 and has been reported as key residue for G protein-coupled receptor activation. Based on the obtained knowledge, GPER affinity and relevant toxicity of BPA alternatives can be easily predicted, and the calculated binding free energies are consistent with the available experimental observations.
Collapse
Affiliation(s)
- Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, PR China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, PR China.
| |
Collapse
|
13
|
Bozdemir E, Vigil FA, Chun SH, Espinoza L, Bugay V, Khoury SM, Holstein DM, Stoja A, Lozano D, Tunca C, Sprague SM, Cavazos JE, Brenner R, Liston TE, Shapiro MS, Lechleiter JD. Neuroprotective Roles of the Adenosine A 3 Receptor Agonist AST-004 in Mouse Model of Traumatic Brain Injury. Neurotherapeutics 2021; 18:2707-2721. [PMID: 34608616 PMCID: PMC8804149 DOI: 10.1007/s13311-021-01113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Traumatic brain injury (TBI) remains one of the greatest public health concerns with increasing morbidity and mortality rates worldwide. Our group reported that stimulation of astrocyte mitochondrial metabolism by P2Y1 receptor agonists significantly reduced cerebral edema and reactive gliosis in a TBI model. Subsequent data on the pharmacokinetics (PK) and rapid metabolism of these compounds suggested that neuroprotection was likely mediated by a metabolite, AST-004, which binding data indicated was an adenosine A3 receptor (A3R) agonist. The neuroprotective efficacy of AST-004 was tested in a control closed cortical injury (CCCI) model of TBI in mice. Twenty-four (24) hours post-injury, mice subjected to CCCI and treated with AST-004 (0.22 mg/kg, injected 30 min post-trauma) exhibited significantly less secondary brain injury. These effects were quantified with less cell death (PSVue794 fluorescence) and loss of blood brain barrier breakdown (Evans blue extravasation assay), compared to vehicle-treated TBI mice. TBI-treated mice also exhibited significantly reduced neuroinflammatory markers, glial-fibrillary acidic protein (GFAP, astrogliosis) and ionized Ca2+-binding adaptor molecule 1 (Iba1, microgliosis), both at the mRNA (qRT-PCR) and protein (Western blot and immunofluorescence) levels, respectively. Four (4) weeks post-injury, both male and female TBI mice presented a significant reduction in freezing behavior during contextual fear conditioning (after foot shock). AST-004 treatment prevented this TBI-induced impairment in male mice, but did not significantly affect impairment in female mice. Impairment of spatial memory, assessed 24 and 48 h after the initial fear conditioning, was also reduced in AST-004-treated TBI-male mice. Female TBI mice did not exhibit memory impairment 24 and 48 h after contextual fear conditioning and similarly, AST-004-treated female TBI mice were comparable to sham mice. Finally, AST-004 treatments were found to increase in vivo ATP production in astrocytes (GFAP-targeted luciferase activity), consistent with the proposed mechanism of action. These data reveal AST-004 as a novel A3R agonist that increases astrocyte energy production and enhances their neuroprotective efficacy after brain injury.
Collapse
Affiliation(s)
- Eda Bozdemir
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Fabio A. Vigil
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Sang H. Chun
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Sarah M. Khoury
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Aiola Stoja
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Damian Lozano
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Ceyda Tunca
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Shane M. Sprague
- Department of Neurosurgery, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Jose E. Cavazos
- Department of Neurology, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Theodore E. Liston
- Astrocyte Pharmaceuticals Inc, 245 First Street, Suite 1800, Cambridge, MA 02142 USA
| | - Mark S. Shapiro
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - James D. Lechleiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| |
Collapse
|
14
|
Traserra S, Barber C, Maclnnes J, Relea L, MacPherson LC, Cunningham MR, Vergara P, Accarino A, Kennedy C, Jimenez M. Different responses of the blockade of the P2Y1 receptor with BPTU in human and porcine intestinal tissues and in cell cultures. Neurogastroenterol Motil 2021; 33:e14101. [PMID: 33619847 DOI: 10.1111/nmo.14101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastrointestinal smooth muscle relaxation is accomplished by activation of P2Y1 receptors, therefore this receptor plays an important role in regulation of gut motility. Recently, BPTU was developed as a negative allosteric modulator of the P2Y1 receptor. Accordingly, the aim of this study was to assess the effect of BPTU on purinergic neurotransmission in pig and human gastrointestinal tissues. METHODS Ca2+ imaging in tSA201 cells that express the human P2Y1 receptor, organ bath and microelectrodes in tissues were used to evaluate the effects of BPTU on purinergic responses. KEY RESULTS BPTU concentration dependently (0.1 and 1 µmol L-1 ) inhibited the rise in intracellular Ca2+ evoked by ADP in tSA201 cells. In the pig small intestine, 30 µmol L-1 BPTU reduced the fast inhibitory junction potential by 80%. Smooth muscle relaxations induced by electrical field stimulation were reduced both in pig ileum (EC50 = 6 µmol L-1 ) and colon (EC50 = 35 µmol L-1 ), but high concentrations of BPTU (up to 100 µmol L-1 ) had no effect on human colonic muscle. MRS2500 (1 µmol L-1 ) abolished all responses. Finally, 10 µmol L-1 ADPβS inhibited spontaneous motility and this was partially reversed by 30 µmol L-1 BPTU in pig, but not human colonic tissue and abolished by MRS2500 (1 µmol L-1 ). CONCLUSIONS & INFERENCES BPTU blocks purinergic responses elicited via P2Y1 receptors in cell cultures and in pig gastrointestinal tissue. However, the concentrations needed are higher in pig tissue compared to cell cultures and BPTU was ineffective in human colonic tissue.
Collapse
Affiliation(s)
- Sara Traserra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudia Barber
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Jane Maclnnes
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lucia Relea
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Lewis C MacPherson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Margaret R Cunningham
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd),, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Accarino
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd),, Instituto de Salud Carlos III, Madrid, Spain.,Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd),, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Lei Y, Zhang B, Liu D, Zhao J, Dai X, Gao J, Mao Q, Feng Y, Zhao J, Lin F, Duan Y, Zhang Y, Bao Z, Yang Y, Mou Y, Wang S. Switching a Xanthine Oxidase Inhibitor to a Dual-Target Antagonist of P2Y1 and P2Y12 as an Oral Antiplatelet Agent with a Wider Therapeutic Window in Rats than Ticagrelor. J Med Chem 2020; 63:15752-15772. [DOI: 10.1021/acs.jmedchem.0c01524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu Lei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Dan Liu
- Shenyang Hinewy Pharmaceutical Technology Co., Ltd., 41 Liutang Road, Shenhe District, Shenyang 110016, China
| | - Jian Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Xiwen Dai
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Jun Gao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yulin Duan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Ziyang Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yuwei Yang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
16
|
Salmaso V, Jacobson KA. In Silico Drug Design for Purinergic GPCRs: Overview on Molecular Dynamics Applied to Adenosine and P2Y Receptors. Biomolecules 2020; 10:E812. [PMID: 32466404 PMCID: PMC7356333 DOI: 10.3390/biom10060812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular modeling has contributed to drug discovery for purinergic GPCRs, including adenosine receptors (ARs) and P2Y receptors (P2YRs). Experimental structures and homology modeling have proven to be useful in understanding and predicting structure activity relationships (SAR) of agonists and antagonists. This review provides an excursus on molecular dynamics (MD) simulations applied to ARs and P2YRs. The binding modes of newly synthesized A1AR- and A3AR-selective nucleoside derivatives, potentially of use against depression and inflammation, respectively, have been predicted to recapitulate their SAR and the species dependence of A3AR affinity. P2Y12R and P2Y1R crystallographic structures, respectively, have provided a detailed understanding of the recognition of anti-inflammatory P2Y14R antagonists and a large group of allosteric and orthosteric antagonists of P2Y1R, an antithrombotic and neuroprotective target. MD of A2AAR (an anticancer and neuroprotective target), A3AR, and P2Y1R has identified microswitches that are putatively involved in receptor activation. The approach pathways of different ligands toward A2AAR and P2Y1R binding sites have also been explored. A1AR, A2AAR, and A3AR were utilizes to study allosteric phenomena, but locating the binding site of structurally diverse allosteric modulators, such as an A3AR enhancer LUF6000, is challenging. Ligand residence time, a predictor of in vivo efficacy, and the structural role of water were investigated through A2AAR MD simulations. Thus, new MD and other modeling algorithms have contributed to purinergic GPCR drug discovery.
Collapse
Affiliation(s)
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
17
|
Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18. Biomolecules 2020; 10:biom10050686. [PMID: 32365486 PMCID: PMC7277601 DOI: 10.3390/biom10050686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target.
Collapse
|
18
|
Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kügelgen I, Li B, Miras-Portugal MT, Novak I, Schöneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Müller CE. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol 2020; 177:2413-2433. [PMID: 32037507 DOI: 10.1111/bph.15005] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Massachusetts
| | - Esmerilda G Delicado
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Christian Gachet
- Université de Strasbourg INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ivar von Kügelgen
- Biomedical Research Center, Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Raquel Perez-Sen
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.,IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Neumann A, Müller CE, Namasivayam V. P2Y
1
‐like nucleotide receptors—Structures, molecular modeling, mutagenesis, and oligomerization. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander Neumann
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Christa E. Müller
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Vigneshwaran Namasivayam
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
| |
Collapse
|
20
|
Attah IY, Neumann A, Al-Hroub H, Rafehi M, Baqi Y, Namasivayam V, Müller CE. Ligand binding and activation of UTP-activated G protein-coupled P2Y 2 and P2Y 4 receptors elucidated by mutagenesis, pharmacological and computational studies. Biochim Biophys Acta Gen Subj 2019; 1864:129501. [PMID: 31812541 DOI: 10.1016/j.bbagen.2019.129501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
The nucleotide receptors P2Y2 and P2Y4 are the most closely related G protein-coupled receptors (GPCRs) of the P2Y receptor (P2YR) family. Both subtypes couple to Gq proteins and are activated by the pyrimidine nucleotide UTP, but only P2Y2R is also activated by the purine nucleotide ATP. Agonists and antagonists of both receptor subtypes have potential as drugs e.g. for neurodegenerative and inflammatory diseases. So far, potent and selective, "drug-like" ligands for both receptors are scarce, but would be required for target validation and as lead structures for drug development. Structural information on the receptors is lacking since no X-ray structures or cryo-electron microscopy images are available. Thus, we performed receptor homology modeling and docking studies combined with mutagenesis experiments on both receptors to address the question how ligand binding selectivity for these closely related P2YR subtypes can be achieved. The orthosteric binding site of P2Y2R appeared to be more spacious than that of P2Y4R. Mutation of Y197 to alanine in P2Y4R resulted in a gain of ATP sensitivity. Anthraquinone-derived antagonists are likely to bind to the orthosteric or an allosteric site depending on their substitution pattern and the nature of the orthosteric binding site of the respective P2YR subtype. These insights into the architecture of P2Y2- and P2Y4Rs and their interactions with structurally diverse agonists and antagonist provide a solid basis for the future design of potent and selective ligands.
Collapse
Affiliation(s)
- Isaac Y Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Younis Baqi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123 Muscat, Oman
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany.
| |
Collapse
|
21
|
Li Y, Wang M, Gao N, Li D, Lin J. The effect of dimerization on the activation and conformational dynamics of adenosine A 1 receptor. Phys Chem Chem Phys 2019; 21:22763-22773. [PMID: 31595279 DOI: 10.1039/c9cp04060a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adenosine A1 receptor (A1R) is one of four adenosine receptors in humans, which are involved in the function of the cardiovascular, respiratory and central nervous systems. Experimental results indicate that A1R can form a homodimer and that the protomer-protomer interaction in the A1R dimer is related to certain pharmacological characteristics of A1R activation. In this work, we performed docking, metadynamics simulation, conventional molecular dynamics simulations, Gaussian-accelerated molecular dynamics simulations, potential of mean force calculations, dynamic cross-correlation motions analysis and community network analysis to study the binding mode of 5'-N-ethylcarboxamidoadenosine (NECA) to A1R and the effect of dimerization on the activation of A1R. Our results show that NECA binds to A1R in a similar mode to adenosine in the A1R crystal structure and NECA in the A2AR crystal structure. The A1R homodimer can be activated by one or two agonists with NECA occupying its orthosteric pockets in one (which we call the NECA-A1R system) or both protomers (which we call the dNECA-A1R system). In the NECA-A1R system, activation is predicated in the protomer without NECA bound. In the dNECA-A1R system, only one protomer achieves the active state. These findings suggest an asymmetrical activation mechanism of the homodimer and a negative cooperativity between the two protomers. We envision that our results may further facilitate the drug development of A1R.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Background: :
One of the best known to date GPCR class A (Rhodopsin) includes more
than 100 orphan receptors for which the endogenous ligand is not known or is unclear. One of them
is N-arachidonyl glycine receptor, named GPR18, a receptor that has been reported to be activated
by Δ9-THC, endogenous cannabinoid receptors agonist anandamide and other cannabinoid receptor
ligands suggesting it could be considered as third cannabinoid receptor. GPR18 activity, as well as
its distribution might suggest usage of GPR18 ligands in treatment of endometriosis, cancer, and
neurodegenerative disorders. Yet, so far only few GPR18 antagonists have been described, thus
only ligand-based design approaches appear to be most useful to identify new ligands for this orphan
receptor.
Methods: :
Main goal of this study, GPR18 inactive form homology model was built on the basis of
the evolutionary closest homologous template: Human P2Y1 Receptor crystal structure.
Results: :
Obtained model was further evaluated and showed active/nonactive ligands differentiating
properties with acceptable confidence. Moreover, it allowed for preliminary assessment of proteinligand
interactions for a set of previously described ligands.
Conclusion::
Thus collected data might serve as a starting point for a discovery of novel, active
GPR18 blocking ligands.
Collapse
Affiliation(s)
- Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kiec-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
23
|
Erol I, Cosut B, Durdagi S. Toward Understanding the Impact of Dimerization Interfaces in Angiotensin II Type 1 Receptor. J Chem Inf Model 2019; 59:4314-4327. [PMID: 31429557 DOI: 10.1021/acs.jcim.9b00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiotensin II type 1 receptor (AT1R) is a prototypical class A G protein-coupled receptor (GPCR) that has an important role in cardiovascular pathologies and blood pressure regulation as well as in the central nervous system. GPCRs may exist and function as monomers; however, they can assemble to form higher order structures, and as a result of oligomerization, their function and signaling profiles can be altered. In the case of AT1R, the classical Gαq/11 pathway is initiated with endogenous agonist angiotensin II binding. A variety of cardiovascular pathologies such as heart failure, diabetic nephropathy, atherosclerosis, and hypertension are associated with this pathway. Recent findings reveal that AT1R can form homodimers and activate the noncanonical (β-arrestin-mediated) pathway. Nevertheless, the exact dimerization interface and atomic details of AT1R homodimerization have not been still elucidated. Here, six different symmetrical dimer interfaces of AT1R are considered, and homodimers were constructed using other published GPCR crystal dimer interfaces as template structures. These AT1R homodimers were then inserted into the model membrane bilayers and subjected to all-atom molecular dynamics simulations. Our simulation results along with the principal component analysis and water pathway analysis suggest four different interfaces as the most plausible: symmetrical transmembrane (TM)1,2,8; TM5; TM4; and TM4,5 AT1R dimer interfaces that consist of one inactive and one active protomer. Moreover, we identified ILE2386.33 as a hub residue in the stabilization of the inactive state of AT1R.
Collapse
Affiliation(s)
- Ismail Erol
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Bunyemin Cosut
- Department of Chemistry , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | | |
Collapse
|
24
|
Jójárt B, Orgován Z, Márki Á, Pándy-Szekeres G, Ferenczy GG, Keserű GM. Allosteric activation of metabotropic glutamate receptor 5. J Biomol Struct Dyn 2019; 38:2624-2632. [DOI: 10.1080/07391102.2019.1638302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Balázs Jójárt
- Institute of Food Engineering, University of Szeged, Szeged, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Árpád Márki
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Gáspár Pándy-Szekeres
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
25
|
Yuan S, Dahoun T, Brugarolas M, Pick H, Filipek S, Vogel H. Computational modeling of the olfactory receptor Olfr73 suggests a molecular basis for low potency of olfactory receptor-activating compounds. Commun Biol 2019; 2:141. [PMID: 31044166 PMCID: PMC6478719 DOI: 10.1038/s42003-019-0384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian olfactory system uses hundreds of specialized G-protein-coupled olfactory receptors (ORs) to discriminate a nearly unlimited number of odorants. Cognate agonists of most ORs have not yet been identified and potential non-olfactory processes mediated by ORs are unknown. Here, we used molecular modeling, fingerprint interaction analysis and molecular dynamics simulations to show that the binding pocket of the prototypical olfactory receptor Olfr73 is smaller, but more flexible, than binding pockets of typical non-olfactory G-protein-coupled receptors. We extended our modeling to virtual screening of a library of 1.6 million compounds against Olfr73. Our screen predicted 25 Olfr73 agonists beyond traditional odorants, of which 17 compounds, some with therapeutic potential, were validated in cell-based assays. Our modeling suggests a molecular basis for reduced interaction contacts between an odorant and its OR and thus the typical low potency of OR-activating compounds. These results provide a proof-of-principle for identifying novel therapeutic OR agonists.
Collapse
Affiliation(s)
- Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory of Biomodelling, Faculty of Chemistry & Biological and Chemical Research Centre, Uni-versity of Warsaw, 02-093 Warsaw, Poland
| | - Thamani Dahoun
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marc Brugarolas
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Pick
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Slawomir Filipek
- Laboratory of Biomodelling, Faculty of Chemistry & Biological and Chemical Research Centre, Uni-versity of Warsaw, 02-093 Warsaw, Poland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Filipek S. Molecular switches in GPCRs. Curr Opin Struct Biol 2019; 55:114-120. [DOI: 10.1016/j.sbi.2019.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
|
27
|
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019; 151:12-24. [PMID: 30922852 DOI: 10.1016/j.brainresbull.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/17/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
28
|
Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J Med Chem 2019; 62:88-127. [PMID: 30106578 PMCID: PMC6556150 DOI: 10.1021/acs.jmedchem.8b00875] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) have been tractable drug targets for decades with over one-third of currently marketed drugs targeting GPCRs. Of these, the class A GPCR superfamily is highly represented, and continued drug discovery for this family of receptors may provide novel therapeutics for a vast range of diseases. GPCR allosteric modulation is an innovative targeting approach that broadens the available small molecule toolbox and is proving to be a viable drug discovery strategy, as evidenced by recent FDA approvals and clinical trials. Numerous class A GPCR allosteric modulators have been discovered recently, and emerging trends such as the availability of GPCR crystal structures, diverse functional assays, and structure-based computational approaches are improving optimization and development. This Perspective provides an update on allosterically targeted class A GPCRs and their disease indications and the medicinal chemistry approaches toward novel allosteric modulators and highlights emerging trends and opportunities in the field.
Collapse
Affiliation(s)
- Eric A. Wold
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jianping Chen
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A. Cunningham
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
29
|
Moldovan RP, Wenzel B, Teodoro R, Neumann W, Dukic-Stefanovic S, Kraus W, Rong P, Deuther-Conrad W, Hey-Hawkins E, Krügel U, Brust P. Studies towards the development of a PET radiotracer for imaging of the P2Y 1 receptors in the brain: synthesis, 18F-labeling and preliminary biological evaluation. Eur J Med Chem 2019; 165:142-159. [PMID: 30665144 DOI: 10.1016/j.ejmech.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Purine nucleotides such as ATP and ADP are important extracellular signaling molecules in almost all tissues activating various subtypes of purinoreceptors. In the brain, the P2Y1 receptor (P2Y1R) subtype mediates trophic functions like differentiation and proliferation, and modulates fast synaptic transmission, both suggested to be affected in diseases of the central nervous system. Research on P2Y1R is limited because suitable brain-penetrating P2Y1R-selective tracers are not yet available. Here, we describe the first efforts to develop an 18F-labeled PET tracer based on the structure of the highly affine and selective, non-nucleotidic P2Y1R allosteric modulator 1-(2-[2-(tert-butyl)phenoxy]pyridin-3-yl)-3-[4-(trifluoromethoxy)phenyl]urea (7). A small series of fluorinated compounds was developed by systematic modification of the p-(trifluoromethoxy)phenyl, the urea and the 2-pyridyl subunits of the lead compound 7. Additionally, the p-(trifluoromethoxy)phenyl subunit was substituted by carborane, a boron-rich cluster with potential applicability in boron neutron capture therapy (BNCT). By functional assays, the new fluorinated derivative 1-{2-[2-(tert-butyl)phenoxy]pyridin-3-yl}-3-[4-(2-fluoroethyl)phenyl]urea (18) was identified with a high P2Y1R antagonistic potency (IC50 = 10 nM). Compound [18F]18 was radiosynthesized by using tetra-n-butyl ammonium [18F]fluoride with high radiochemical purity, radiochemical yield and molar activities. Investigation of brain homogenates using hydrophilic interaction chromatography (HILIC) revealed [18F]fluoride as major radiometabolite. Although [18F]18 showed fast in vivo metabolization, the high potency and unique allosteric binding mode makes this class of compounds interesting for further optimizations and investigation of the theranostic potential as PET tracer and BNCT agent.
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Wilma Neumann
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103, Leipzig, Germany
| | - Sladjana Dukic-Stefanovic
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Werner Kraus
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, 04107, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
30
|
New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem Sci 2019; 44:312-330. [PMID: 30612897 DOI: 10.1016/j.tibs.2018.11.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/11/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Many central biological events rely on protein-ligand interactions. The identification and characterization of protein-binding sites for ligands are crucial for the understanding of functions of both endogenous ligands and synthetic drug molecules. G protein-coupled receptors (GPCRs) typically detect extracellular signal molecules on the cell surface and transfer these chemical signals across the membrane, inducing downstream cellular responses via G proteins or β-arrestin. GPCRs mediate many central physiological processes, making them important targets for modern drug discovery. Here, we focus on the most recent breakthroughs in finding new binding sites and binding modes of GPCRs and their potentials for the development of new medicines.
Collapse
|
31
|
|
32
|
Chan HCS, Wang J, Palczewski K, Filipek S, Vogel H, Liu ZJ, Yuan S. Exploring a new ligand binding site of G protein-coupled receptors. Chem Sci 2018; 9:6480-6489. [PMID: 30310578 PMCID: PMC6115637 DOI: 10.1039/c8sc01680a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Identifying a target ligand binding site is an important step for structure-based rational drug design as shown here for G protein-coupled receptors (GPCRs), which are among the most popular drug targets. We applied long-time scale molecular dynamics simulations, coupled with mutagenesis studies, to two prototypical GPCRs, the M3 and M4 muscarinic acetylcholine receptors. Our results indicate that unlike synthetic antagonists, which bind to the classic orthosteric site, the endogenous agonist acetylcholine is able to diffuse into a much deeper binding pocket. We also discovered that the most recently resolved crystal structure of the LTB4 receptor comprised a bound inverse agonist, which extended its benzamidine moiety to the same binding pocket discovered in this work. Analysis on all resolved GPCR crystal structures indicated that this new pocket could exist in most receptors. Our findings provide new opportunities for GPCR drug discovery.
Collapse
Affiliation(s)
| | - Jingjing Wang
- iHuman Institute , ShanghaiTech University , China .
| | | | - Slawomir Filipek
- Faculty of Chemistry , Biological and Chemical Research Centre , University of Warsaw , Poland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Switzerland . ;
| | - Zhi-Jie Liu
- iHuman Institute , ShanghaiTech University , China .
| | - Shuguang Yuan
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Switzerland . ;
| |
Collapse
|
33
|
Yuan X, Raniolo S, Limongelli V, Xu Y. The Molecular Mechanism Underlying Ligand Binding to the Membrane-Embedded Site of a G-Protein-Coupled Receptor. J Chem Theory Comput 2018; 14:2761-2770. [PMID: 29660291 DOI: 10.1021/acs.jctc.8b00046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of P2Y1 receptor (P2Y1R), a class A GPCR, revealed a special extra-helical site for its antagonist, BPTU, which locates in-between the membrane and the protein. However, due to the limitation of crystallization experiments, the membrane was mimicked by use of detergents, and the information related to the binding of BPTU to the receptor in the membrane environment is rather limited. In the present work, we conducted a total of ∼7.5 μs all-atom simulations in explicit solvent using conventional molecular dynamics and multiple enhanced sampling methods, with models of BPTU and a POPC bilayer, both in the absence and presence of P2Y1R. Our simulations revealed that BPTU prefers partitioning into the interface of polar/lipophilic region of the lipid bilayer before associating with the receptor. Then, it interacts with the second extracellular loop of the receptor and reaches the binding site through the lipid-receptor interface. In addition, by use of funnel-metadynamics simulations which efficiently enhance the sampling of bound and unbound states, we provide a statistically accurate description of the underlying binding free energy landscape. The calculated absolute ligand-receptor binding affinity is in excellent agreement with the experimental data (Δ Gb0_theo = -11.5 kcal mol-1, Δ Gb0_exp= -11.7 kcal mol-1). Our study broadens the view of the current experimental/theoretical models and our understanding of the protein-ligand recognition mechanism in the lipid environment. The strategy used in this work is potentially applicable to investigate ligands association/dissociation with other membrane-embedded sites, allowing identification of compounds targeting membrane receptors of pharmacological interest.
Collapse
Affiliation(s)
- Xiaojing Yuan
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica , Chinese Academy of Sciences (CAS) , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Stefano Raniolo
- Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , Università della Svizzera Italiana (USI) , CH-6900 Lugano , Switzerland
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , Università della Svizzera Italiana (USI) , CH-6900 Lugano , Switzerland.,Department of Pharmacy , University of Naples "Federico II" , I-80131 Naples , Italy
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica , Chinese Academy of Sciences (CAS) , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
34
|
Abstract
Platelet P2Y1 receptor signalling via RhoGTPases is necessary for platelet-dependent leukocyte recruitment, where no platelet aggregation is observed. We investigated signalling cascades involved in distinct P2Y1-dependent platelet activities in vitro, using specific inhibitors for phospholipase C (PLC) (U73122, to inhibit the canonical pathway), and RhoGTPases: Rac1 (NSC23766) and RhoA (ROCK inhibitor GSK429286). Human platelet rich plasma (for platelet aggregation) or isolated washed platelets (for chemotaxis assays) was treated with U73122, GSK429286 or NSC23766 prior to stimulation with adenosine diphosphate (ADP) or the P2Y1 specific agonist MRS2365. Aggregation, chemotaxis (towards f-MLP), or platelet-induced human neutrophil chemotaxis (PINC) towards macrophage derived chemokine (MDC) was assessed. Molecular docking of ADP and MRS2365 to P2Y1 was analysed using AutoDock Smina followed by GOLD molecular docking in the Accelrys Discovery Studio software. Inhibition of PLC, but not Rac1 or RhoA, suppressed platelet aggregation induced by ADP and MRS2365. In contrast, platelet chemotaxis and PINC, were significantly attenuated by inhibition of platelet Rac1 or RhoA, but not PLC. MRS2365, compared to ADP had a less pronounced effect on P2Y1-induced aggregation, but a similar efficacy to stimulate platelet chemotaxis and PINC, which might be explained by differences in molecular interaction of ADP compared to MRS2365 with the P2Y1 receptor. Platelet P2Y1 receptor activation during inflammation signals through alternate pathways involving Rho GTPases in contrast to canonical P2Y1 receptor induced PLC signalling. This might be explained by selective molecular interactions of ligands within the orthosteric site of the P2Y1 receptor.
Collapse
|
35
|
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. J Med Chem 2018; 62:24-45. [DOI: 10.1021/acs.jmedchem.7b01844] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
36
|
Conformation and dynamics of the C-terminal region in human phosphoglycerate mutase 1. Acta Pharmacol Sin 2017; 38:1673-1682. [PMID: 28748916 DOI: 10.1038/aps.2017.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1), an important enzyme in glycolysis, is overexpressed in a number of human cancers, thus has been proposed as a promising metabolic target for cancer treatments. The C-terminal portion of the available crystal structures of PGAM1 and its homologous proteins is partially disordered, as evidenced by weak electron density. In this study, we identified the conformational behavior of the C-terminal region of PGAM1 as well as its role during the catalytic cycle. Using the PONDR-FIT server, we demonstrated that the C-terminal region was intrinsically disordered. We applied the Monte Carlo (MC) method to explore the conformational space of the C-terminus and conducted a series of explicit-solvent molecular dynamics (MD) simulations, and revealed that the C-terminal region is inherently dynamic; large-scale conformational changes in the C-terminal segment led to the structural transition of PGAM1 from the closed state to the open state. Furthermore, the C-terminal segment influenced 2,3-bisphosphoglycerate (2,3-BPG) binding. The proposed swing model illustrated a critical role of the C-terminus in the catalytic cycle through the conformational changes. In conclusion, the C-terminal region induces large movements of PGAM1 from the closed state to the open state and influences cofactor binding during the catalytic cycle. This report describes the dynamic features of the C-terminal region in detail and should aid in design of novel and efficient inhibitors of PGAM1. A swing mechanism of the C-terminal region is proposed, to facilitate further studies of the catalytic mechanism and the physiological functions of its homologues.
Collapse
|
37
|
Ciancetta A, O'Connor RD, Paoletta S, Jacobson KA. Demystifying P2Y 1 Receptor Ligand Recognition through Docking and Molecular Dynamics Analyses. J Chem Inf Model 2017; 57:3104-3123. [PMID: 29182323 DOI: 10.1021/acs.jcim.7b00528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We performed a molecular modeling analysis of 100 nucleotide-like bisphosphates and 46 non-nucleotide arylurea derivatives previously reported as P2Y1R binders using the recently solved hP2Y1R structures. We initially docked the compounds at the X-ray structures and identified the binding modes of representative compounds highlighting key patterns in the structure-activity relationship (SAR). We subsequently subjected receptor complexes with selected key agonists (2MeSADP and MRS2268) and antagonists (MRS2500 and BPTU) to membrane molecular dynamics (MD) simulations (at least 200 ns run in triplicate, simulation time 0.6-1.6 μs per ligand system) while considering alternative protonation states of nucleotides. Comparing the temporal evolution of the ligand-protein interaction patterns with available site-directed mutagenesis (SDM) data and P2Y1R apo state simulation provided further SAR insights and suggested reasonable explanations for loss/gain of binding affinity as well as the most relevant charged species for nucleotide ligands. The MD analysis also predicted local conformational changes required for the receptor inactive state to accommodate nucleotide agonists.
Collapse
Affiliation(s)
- Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Robert D O'Connor
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
38
|
Li Y, Yin C, Liu P, Li D, Lin J. Identification of a Different Agonist-Binding Site and Activation Mechanism of the Human P2Y 1 Receptor. Sci Rep 2017; 7:13764. [PMID: 29062134 PMCID: PMC5653743 DOI: 10.1038/s41598-017-14268-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/09/2017] [Indexed: 02/03/2023] Open
Abstract
The human P2Y1 receptor (P2Y1R) is a purinergic G-protein-coupled receptor (GPCR) that functions as a receptor for adenosine 5'-diphosphate (ADP). An antagonist of P2Y1R might potentially have antithrombotic effects, whereas agonists might serve as antidiabetic agents. On the basis of the antagonist-bound MRS2500-P2Y1R crystal structure, we constructed computational models of apo-P2Y1R and the agonist-receptor complex 2MeSADP-P2Y1R. We then performed conventional molecular dynamics (cMD) and accelerated molecular dynamics (aMD) simulations to study the conformational dynamics after binding with agonist/antagonist as well as the P2Y1R activation mechanism. We identified a new agonist-binding site of P2Y1R that is consistent with previous mutagenesis data. This new site is deeper than those of the agonist ADP in the recently simulated ADP-P2Y1R structure and the antagonist MRS2500 in the MRS2500-P2Y1R crystal structure. During P2Y1R activation, the cytoplasmic end of helix VI shifts outward 9.1 Å, the Ser1463.47-Tyr2375.58 hydrogen bond breaks, a Tyr2375.58-Val2626.37 hydrogen bond forms, and the conformation of the χ1 rotamer of Phe2696.44 changes from parallel to perpendicular to helix VI. The apo-P2Y1R system and the MRS2500-P2Y1R system remain inactive. The newly identified agonist binding site and activation mechanism revealed in this study may aid in the design of P2Y1R antagonists/agonists as antithrombotic/antidiabetic agents, respectively.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Can Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
- Pharmaceutical Intelligence Platform, Tianjin Joint Academy of Biomedicine and Technology, Tianjin, 300457, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Pharmaceutical Intelligence Platform, Tianjin Joint Academy of Biomedicine and Technology, Tianjin, 300457, China.
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
39
|
Rafehi M, Neumann A, Baqi Y, Malik EM, Wiese M, Namasivayam V, Müller CE. Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y 2 Receptor. J Med Chem 2017; 60:8425-8440. [PMID: 28938069 DOI: 10.1021/acs.jmedchem.7b00854] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A homology model of the nucleotide-activated P2Y2R was created based on the X-ray structures of the P2Y1 receptor. Docking studies were performed, and receptor mutants were created to probe the identified binding interactions. Mutation of residues predicted to interact with the ribose (Arg110) and the phosphates of the nucleotide agonists (Arg265, Arg292) or that contribute indirectly to binding (Tyr288) abolished activity. The Y114F, R194A, and F261A mutations led to inactivity of diadenosine tetraphosphate and to a reduced response of UTP. Significant reduction in agonist potency was observed for all other receptor mutants (Phe111, His184, Ser193, Phe261, Tyr268, Tyr269) predicted to be involved in agonist recognition. An ionic lock between Asp185 and Arg292 that is probably involved in receptor activation interacts with the phosphate groups. The antagonist AR-C118925 and anthraquinones likely bind to the orthosteric site. The updated homology models will be useful for virtual screening and drug design.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University , PO Box 36, Postal Code 123, Muscat, Oman
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Michael Wiese
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany.,PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| |
Collapse
|
40
|
Weng WH, Li YT, Hsu HJ. Activation-Induced Conformational Changes of Dopamine D3 Receptor Promote the Formation of the Internal Water Channel. Sci Rep 2017; 7:12792. [PMID: 28986565 PMCID: PMC5630584 DOI: 10.1038/s41598-017-13155-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023] Open
Abstract
The atomic-level dopamine activation mechanism for transmitting extracellular ligand binding events through transmembrane helices to the cytoplasmic G protein remains unclear. In the present study, the complete dopamine D3 receptor (D3R), with a homology-modeled N-terminus, was constructed to dock different ligands to simulate conformational alterations in the receptor’s active and inactive forms during microsecond-timescale molecular dynamic simulations. In agonist-bound systems, the D3R N-terminus formed a “lid-like” structure and lay flat on the binding site opening, whereas in antagonist and inverse agonist-bound systems, the N-terminus exposed the binding cavity. Receptor activation was characterized using the different molecular switch residue distances, and G protein-binding site volumes. A continuous water pathway was observed only in the dopamine-Gαi-bound system. In the inactive D3Rs, water entry was hindered by the hydrophobic layers. Finally, a complete activation mechanism of D3R was proposed. Upon agonist binding, the “lid-like” conformation of the N-terminus induces a series of molecular switches to increase the volume of the D3R cytoplasmic binding part for G protein association. Meanwhile, water enters the transmembrane region inducing molecular switches to assist in opening the hydrophobic layers to form a continuous water channel, which is crucial for maintaining a fully active conformation for signal transduction.
Collapse
Affiliation(s)
- Wei-Hsiang Weng
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Ya-Tzu Li
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
41
|
Chan HCS, McCarthy D, Li J, Palczewski K, Yuan S. Designing Safer Analgesics via μ-Opioid Receptor Pathways. Trends Pharmacol Sci 2017; 38:1016-1037. [PMID: 28935293 DOI: 10.1016/j.tips.2017.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
Abstract
Pain is both a major clinical and economic problem, affecting more people than diabetes, heart disease, and cancer combined. While a variety of prescribed or over-the-counter (OTC) medications are available for pain management, opioid medications, especially those acting on the μ-opioid receptor (μOR) and related pathways, have proven to be the most effective, despite some serious side effects including respiration depression, pruritus, dependence, and constipation. It is therefore imperative that both academia and industry develop novel μOR analgesics which retain their opioid analgesic properties but with fewer or no adverse effects. In this review we outline recent progress towards the discovery of safer opioid analgesics.
Collapse
Affiliation(s)
- H C Stephen Chan
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, Lausanne 1015, Switzerland; Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Dillon McCarthy
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Krzysztof Palczewski
- Department of Pharmacology School of Medicine, Case Western Reserve University Cleveland, OH 44106, USA
| | - Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, Lausanne 1015, Switzerland.
| |
Collapse
|
42
|
Liao C, Zhao X, Brewer M, May V, Li J. Conformational Transitions of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor, a Human Class B GPCR. Sci Rep 2017; 7:5427. [PMID: 28710390 PMCID: PMC5511175 DOI: 10.1038/s41598-017-05815-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
The G protein-coupled pituitary adenylate cyclase-activating polypeptide receptor (PAC1R) is a potential therapeutic target for endocrine, metabolic and stress-related disorders. However, many questions regarding the protein structure and dynamics of PAC1R remain largely unanswered. Using microsecond-long simulations, we examined the open and closed PAC1R conformations interconnected within an ensemble of transitional states. The open-to-closed transition can be initiated by “unzipping” the extracellular domain and the transmembrane domain, mediated by a unique segment within the β3-β4 loop. Transitions between different conformational states range between microseconds to milliseconds, which clearly implicate allosteric effects propagating from the extracellular face of the receptor to the intracellular G protein-binding site. Such allosteric dynamics provides structural and mechanistic insights for the activation and modulation of PAC1R and related class B receptors.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Xiaochuan Zhao
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
43
|
Yen HY, Hopper JTS, Liko I, Allison TM, Zhu Y, Wang D, Stegmann M, Mohammed S, Wu B, Robinson CV. Ligand binding to a G protein-coupled receptor captured in a mass spectrometer. SCIENCE ADVANCES 2017; 3:e1701016. [PMID: 28630934 PMCID: PMC5473672 DOI: 10.1126/sciadv.1701016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 05/08/2023]
Abstract
G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors belong to the largest family of membrane-embedded cell surface proteins and are involved in a diverse array of physiological processes. Despite progress in the mass spectrometry of membrane protein complexes, G protein-coupled receptors have remained intractable because of their low yield and instability after extraction from cell membranes. We established conditions in the mass spectrometer that preserve noncovalent ligand binding to the human purinergic receptor P2Y1. Results established differing affinities for nucleotides and the drug MRS2500 and link antagonist binding with the absence of receptor phosphorylation. Overall, therefore, our results are consistent with drug binding, preventing the conformational changes that facilitate downstream signaling. More generally, we highlight opportunities for mass spectrometry to probe effects of ligand binding on G protein-coupled receptors.
Collapse
Affiliation(s)
- Hsin-Yung Yen
- Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jonathan T. S. Hopper
- OMass Technologies Ltd., Centre for Innovation and Enterprise, Begbroke Science Park, Woodstock Road, Oxford OX5 1PF, UK
| | - Idlir Liko
- Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- OMass Technologies Ltd., Centre for Innovation and Enterprise, Begbroke Science Park, Woodstock Road, Oxford OX5 1PF, UK
| | - Timothy M. Allison
- Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Ya Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Dejian Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China
| | - Monika Stegmann
- Departments of Chemistry and Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Departments of Chemistry and Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai 201203, China
| | - Carol V. Robinson
- Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
44
|
Rafehi M, Malik EM, Neumann A, Abdelrahman A, Hanck T, Namasivayam V, Müller CE, Baqi Y. Development of Potent and Selective Antagonists for the UTP-Activated P2Y 4 Receptor. J Med Chem 2017; 60:3020-3038. [PMID: 28306255 DOI: 10.1021/acs.jmedchem.7b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P2Y4 is a Gq protein-coupled receptor activated by uridine-5'-triphosphate (UTP), which is widely expressed in the body, e.g., in intestine, heart, and brain. No selective P2Y4 receptor antagonist has been described so far. Therefore, we developed and optimized P2Y4 receptor antagonists based on an anthraquinone scaffold. Potency was assessed by a fluorescence-based assay measuring inhibition of UTP-induced intracellular calcium release in 1321N1 astrocytoma cells stably transfected with the human P2Y4 receptor. The most potent compound of the present series, sodium 1-amino-4-[4-(2,4-dimethylphenylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (PSB-16133, 61) exhibited an IC50 value of 233 nM, selectivity versus other P2Y receptor subtypes, and is thought to act as an allosteric antagonist. A receptor homology model was built and docking studies were performed to analyze ligand-receptor interactions. Compound 64 (PSB-1699, sodium 1-amino-4-[4-(3-pyridin-3-ylmethylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate) represents the most selective P2Y4 receptor antagonist known to date. Compounds 61 and 64 are therefore anticipated to become useful tools for studying this scarcely investigated receptor.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Theodor Hanck
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University , PO Box 36, Postal Code 123, Muscat, Oman
| |
Collapse
|
45
|
De Min A, Matera C, Bock A, Holze J, Kloeckner J, Muth M, Traenkle C, De Amici M, Kenakin T, Holzgrabe U, Dallanoce C, Kostenis E, Mohr K, Schrage R. A New Molecular Mechanism To Engineer Protean Agonism at a G Protein–Coupled Receptor. Mol Pharmacol 2017; 91:348-356. [DOI: 10.1124/mol.116.107276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
|
46
|
Sengupta D, Sonar K, Joshi M. Characterizing clinically relevant natural variants of GPCRs using computational approaches. Methods Cell Biol 2017; 142:187-204. [DOI: 10.1016/bs.mcb.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Tang B, Li B, Qian Y, Ao M, Guo K, Fang M, Wu Z. The molecular mechanism of hPPARα activation. RSC Adv 2017. [DOI: 10.1039/c6ra27740c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MD simulations were performed to explore the molecular mechanism of hPPARα activation. 11 key residues favouring binding ligands and the movements of helices and loops playing important roles in inducing the active conformation change of hPPARα were discovered.
Collapse
Affiliation(s)
- Bowen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Boqun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Yuqin Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| |
Collapse
|
48
|
Chan HCS, Filipek S, Yuan S. The Principles of Ligand Specificity on beta-2-adrenergic receptor. Sci Rep 2016; 6:34736. [PMID: 27703221 PMCID: PMC5050457 DOI: 10.1038/srep34736] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors are recognized as one of the largest families of membrane proteins. Despite sharing a characteristic seven-transmembrane topology, G protein-coupled receptors regulate a wide range of cellular signaling pathways in response to various physical and chemical stimuli, and prevail as an important target for drug discovery. Notably, the recent progress in crystallographic methods led to a breakthrough in elucidating the structures of membrane proteins. The structures of β2-adrenergic receptor bound with a variety of ligands provide atomic details of the binding modes of agonists, antagonists and inverse agonists. In this study, we selected four representative molecules from each functional class of ligands and investigated their impacts on β2-adrenergic receptor through a total of 12 × 100 ns molecular dynamics simulations. From the obtained trajectories, we generated molecular fingerprints exemplifying propensities of protein-ligand interactions. For each functional class of compounds, we characterized and compared the fluctuation of the protein backbone, the volumes in the intracellular pockets, the water densities in the receptors, the domain interaction networks as well as the movements of transmembrane helices. We discovered that each class of ligands exhibits a distinct mode of interactions with mainly TM5 and TM6, altering the shape and eventually the state of the receptor. Our findings provide insightful prospective into GPCR targeted structure-based drug discoveries.
Collapse
Affiliation(s)
- H C Stephen Chan
- Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Slawomir Filipek
- Laboratory of Biomodeling, Faculty of Chemistry &Biological and Chemical Research Centre, University of Warsaw, ul. Pasteura 1, Warsaw 02-093, Poland
| | - Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
49
|
Yuan S, Chan HCS, Vogel H, Filipek S, Stevens RC, Palczewski K. The Molecular Mechanism of P2Y1 Receptor Activation. Angew Chem Int Ed Engl 2016; 55:10331-5. [PMID: 27460867 PMCID: PMC4996126 DOI: 10.1002/anie.201605147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/27/2016] [Indexed: 01/07/2023]
Abstract
Human purinergic G protein-coupled receptor P2Y1 (P2Y1 R) is activated by adenosine 5'-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1 R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 μs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1 R activation.
Collapse
Affiliation(s)
- Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | - Horst Vogel
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Slawomir Filipek
- Laboratory of Biomodeling, Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Raymond C Stevens
- iHuman Institute, Shanghai Technical University, China and, Departments of Biological Sciences and Chemistry, University of Southern California, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|