1
|
Wang S, Wu Z, Li J, Zhu Y, Zheng S, Jiang C, Lu H. Electrochemical decarboxylative alkylation of β-ketoacids with phenol derivatives. Chem Commun (Camb) 2024; 60:1329-1332. [PMID: 38197300 DOI: 10.1039/d3cc05489f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An electrochemical method for the decarboxylative alkylation of β-ketoacids with phenol derivatives has been developed. The protocol was carried out in readily available unseparated cells at room temperature in the absence of catalysts and oxidants. The corresponding aryl ketones were obtained in satisfactory yields without additional electrolytes, and were easy to produce in gram-scale synthesis. Based on control experiments and cyclic voltammetry, a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Shan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Zhaotian Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Junqiang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Yujun Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
2
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
3
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Wang H, Yu M, Zhang P, Wan H, Cong H, Lei A. Electrochemical dual-oxidation strategy enables access to α-chlorosulfoxides from sulfides. Sci Bull (Beijing) 2022; 67:79-84. [PMID: 36545963 DOI: 10.1016/j.scib.2021.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 01/06/2023]
Abstract
Electrochemistry contributes a strong tool for the manufacture of molecules, addressing intractable challenges in synthetic chemistry by enabling innovative reaction pathways. Herein, a bifunctional reagent, aqueous hydrochloric acid, is used to establish an electrochemical selective dual-oxidation approach that gives access to α-chlorosulfoxides from sulfides. This strategy presents broad substrate scope, high diastereoselectivity, and regioselectivity. The late-stage modification of amino acids and pharmaceutical derivatives further highlights the utility. Furthermore, detailed mechanistic studies reveal that the key success for this selective chemical transformation is the dual-oxidation process at the anode. This electrochemical dual-oxidation strategy may have wide universality; we anticipate diverse applications of this protocol across the many fields of chemistry.
Collapse
Affiliation(s)
- Huamin Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mingming Yu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Panyue Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Bieniek JC, Grünewald M, Winter J, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of
N
,
N
’‑ Disubstituted Indazolin-3-ones via Intramolecular Anodic DehydrogenativeN-NCoupling Reaction. Chem Sci 2022; 13:8180-8186. [PMID: 35919432 PMCID: PMC9278119 DOI: 10.1039/d2sc01827f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
The use of electricity as a traceless oxidant enables a sustainable and novel approach to N,N′-disubstituted indazolin-3-ones by an intramolecular anodic dehydrogenative N–N coupling reaction. This method is characterized by mild reaction conditions, an easy experimental setup, excellent scalability, and a high atom economy. It was used to synthesize various indazolin-3-one derivatives in yields up to 78%, applying inexpensive and sustainable electrode materials and a low supporting electrolyte concentration. Mechanistic studies, based on cyclic voltammetry experiments, revealed a biradical pathway. Furthermore, the access to single 2-aryl substituted indazolin-3-ones by cleavage of the protecting group could be demonstrated. A novel sustainable electrochemical synthetic route to N,N′-disubstituted indazolin-3-ones by direct anodic oxidation with mild reaction conditions, a simple galvanostatic setup, broad scope and excellent scalability is established.![]()
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Michele Grünewald
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| |
Collapse
|
7
|
Leech MC, Petti A, Tanbouza N, Mastrodonato A, Goodall ICA, Ollevier T, Dobbs AP, Lam K. Anodic Oxidation of Aminotetrazoles: A Mild and Safe Route to Isocyanides. Org Lett 2021; 23:9371-9375. [PMID: 34841877 DOI: 10.1021/acs.orglett.1c03475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new electrochemical method for the preparation of isocyanides from easily accessible aminotetrazole derivatives has been developed, which tolerates an unprecedented range of functional groups. The use of chemical, rather than electrochemical, oxidation to afford isocyanides was also demonstrated, which provides access to these compounds for those without electrosynthesis equipment. The practicality of scale-up using flow electrochemistry has been demonstrated, in addition to the possibility of using electrochemically generated isocyanides in further reactions.
Collapse
Affiliation(s)
- Matthew C Leech
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Alessia Petti
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Nour Tanbouza
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Andrea Mastrodonato
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Iain C A Goodall
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Thierry Ollevier
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Adrian P Dobbs
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| | - Kevin Lam
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
8
|
Klein M, Waldvogel SR. Anodic Dehydrogenative Cyanamidation of Thioethers: Simple and Sustainable Synthesis of N-Cyanosulfilimines. Angew Chem Int Ed Engl 2021; 60:23197-23201. [PMID: 34409715 PMCID: PMC8597142 DOI: 10.1002/anie.202109033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Indexed: 12/21/2022]
Abstract
A novel and very simple to perform electrochemical approach for the synthesis of several N-cyanosulfilimines in good to excellent yields was established. This method provides access to biologically relevant sulfoximines by consecutive oxidation using electro-generated periodate. This route can be easily scaled-up to gram quantities. The S,N coupling is carried out at an inexpensive carbon anode by direct oxidation of sulfide. Therefore, the designed process is atom economic and represents a new "green route" for the synthesis of sulfilimines and sulfoximines.
Collapse
Affiliation(s)
- Martin Klein
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
9
|
Klein M, Waldvogel SR. Anodische dehydrierende Cyaniminierung von Thioethern: eine einfache und nachhaltige Synthese von
N
‐Cyansulfiliminen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Klein
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
10
|
Hielscher M, Oehl EK, Gleede B, Buchholz J, Waldvogel SR. Optimization Strategies for the Anodic Phenol‐Arene Cross‐Coupling Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202101226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maximilian Hielscher
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Elisabeth K. Oehl
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Barbara Gleede
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Julian Buchholz
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
11
|
Yue Y, Chao J, Wang Z, Yang Y, Ye Y, Sun C, Guo X, Liu J. Electrooxidative double C-H/C-H coupling of phenols with 3-phenylbenzothiophenes: facile access to benzothiophene derivatives. Org Biomol Chem 2021; 19:7156-7160. [PMID: 34378603 DOI: 10.1039/d1ob01208h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient electrooxidative double C-H/C-H coupling of phenols with 3-phenylbenzothiophene has been developed under external oxidant- and catalyst-free conditions. This strategy could enable the highly tunable access to benzothiophene derivatives and exhibited broad substrate generality under mild conditions. The reaction is likely to proceed via the cross-coupling of the p-methoxylphenol radical and the 3-phenylbenzothiophene radical cation.
Collapse
Affiliation(s)
- Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chem Commun (Camb) 2021; 57:8236-8249. [PMID: 34319313 DOI: 10.1039/d1cc03018c] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic photochemistry and electrochemistry currently receive tremendous attention in organic synthesis as both techniques enable the reagent-less activation of organic molecules without using expensive and hazardous redox reagents. The incorporation of SO2 into organic molecules is a relatively modern research topic, which likewise gains immense popularity since the discovery of the SO2 surrogate DABSO. Sulfur-containing organic molecules are omnipresent in pharmaceuticals and agrochemicals. This review covers the recent progress in electrochemical and photochemical methodologies for the incorporation and uses of SO2 in the synthesis of value-added compounds. Additionally, different work techniques are demonstrated for the synthetic application of SO2.
Collapse
Affiliation(s)
- Stephan P Blum
- Department of Chemistry, Johannes Gutenberg University Mainz, D-55128 Mainz, Germany.
| | | | | | | |
Collapse
|
13
|
Chicas-Baños DF, Frontana-Uribe BA. Electrochemical Generation and Use in Organic Synthesis of C-, O-, and N-Centered Radicals. CHEM REC 2021; 21:2538-2573. [PMID: 34047059 DOI: 10.1002/tcr.202100056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
During the last decade several research groups have been developing electrochemical procedures to access highly functionalized organic molecules. Among the most exciting advances, the possibility of using free radical chemistry has attracted the attention of the most important synthetic groups. Nowadays, electrochemical strategies based on these species with a synthetic purpose are published continuously in scientific journals, increasing the alternatives for the synthetic organic chemistry laboratories. Free radicals can be obtained in organic electrochemical reactions; thus, this review reassembles the last decade's (2010-2020) efforts of the electrosynthetic community to generate and take advantage of the C-, O-, and N-centered radicals' reactivity. The electrochemical reactions that occur, as well as the proposed mechanism, are discussed, trying to give clear information about the used conditions and reactivity of these reactive intermediate species.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico.,Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
14
|
Lugiņina J, Linden M, Bazulis M, Kumpiņš V, Mishnev A, Popov SA, Golubeva TS, Waldvogel SR, Shults EE, Turks M. Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jevgeņija Lugiņina
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Martin Linden
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Māris Bazulis
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Viktors Kumpiņš
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis Aizkraukles Str. 21 Riga 1006 Latvia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 Novosibirsk 630090 Russia
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| |
Collapse
|
15
|
Weng Y, Chen H, Li N, Yang L, Ackermann L. Electrooxidative Metal‐Free Cyclization of 4‐Arylaminocoumarins with DMF as C1‐Source. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou People's Republic of China
- Institut fuer Organische und Biomolekulare Chemie Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou People's Republic of China
| | - Nanhui Li
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou People's Republic of China
| | - Long Yang
- Institut fuer Organische und Biomolekulare Chemie Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| |
Collapse
|
16
|
Tian Z, Gong Q, Huang T, Liu L, Chen T. Practical Electro-Oxidative Sulfonylation of Phenols with Sodium Arenesulfinates Generating Arylsulfonate Esters. J Org Chem 2021; 86:15914-15926. [PMID: 33789426 DOI: 10.1021/acs.joc.1c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical and sustainable synthesis of arylsulfonate esters has been developed through electro-oxidation. This reaction employed the stable and readily available phenols and sodium arenesulfinates as the starting materials and took place under mild reaction conditions without additional oxidants. A wide range of arylsulfonate esters including those bearing functional groups were produced in good to excellent yields. This reaction could also be conducted at a gram scale without a decrease of reaction efficiency. Those results well demonstrated the potential synthetic value of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Zhibin Tian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Qihang Gong
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Seidler J, Strugatchi J, Gärtner T, Waldvogel SR. Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions. ACTA ACUST UNITED AC 2021. [DOI: 10.1557/mre.2020.42] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Wesenberg LJ, Diehl E, Zähringer TJB, Dörr C, Schollmeyer D, Shimizu A, Yoshida J, Hellmich UA, Waldvogel SR. Metal-Free Twofold Electrochemical C-H Amination of Activated Arenes: Application to Medicinally Relevant Precursor Synthesis. Chemistry 2020; 26:17574-17580. [PMID: 32866328 PMCID: PMC7839481 DOI: 10.1002/chem.202003852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/28/2020] [Indexed: 01/13/2023]
Abstract
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C-N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C-H activation that is applicable for example the production of medicinally relevant compounds.
Collapse
Affiliation(s)
- Lars J. Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Erika Diehl
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Till J. B. Zähringer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Carolin Dörr
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akihiro Shimizu
- Department Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka 560–8531Japan
| | - Jun‐ichi Yoshida
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Ute A. Hellmich
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
19
|
Wang Q, Wang Q, Zhang Y, Mohamed YM, Pacheco C, Zheng N, Zare RN, Chen H. Electrocatalytic redox neutral [3 + 2] annulation of N-cyclopropylanilines and alkenes. Chem Sci 2020; 12:969-975. [PMID: 34163863 PMCID: PMC8179209 DOI: 10.1039/d0sc05665k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N-cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N-cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Qile Wang
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Yuexiang Zhang
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Yasmine M Mohamed
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Carlos Pacheco
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305-5080 USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| |
Collapse
|
20
|
Batra A, Singh KN. Recent Developments in Transition Metal‐Free Cross‐Dehydrogenative Coupling Reactions for C–C Bond Formation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000785] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women Sec 36/A 160036 Chandigarh India
| | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University 160014 Chandigarh India
| |
Collapse
|
21
|
Röckl JL, Dörr M, Waldvogel SR. Electrosynthesis 2.0 in 1,1,1,3,3,3‐Hexafluoroisopropanol/Amine Mixtures. ChemElectroChem 2020. [DOI: 10.1002/celc.202000761] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes L. Röckl
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| | - Maurice Dörr
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
22
|
Blum SP, Schollmeyer D, Turks M, Waldvogel SR. Metal- and Reagent-Free Electrochemical Synthesis of Alkyl Arylsulfonates in a Multi-Component Reaction. Chemistry 2020; 26:8358-8362. [PMID: 32338808 PMCID: PMC7383810 DOI: 10.1002/chem.202001180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Indexed: 12/12/2022]
Abstract
This work presents the first electrochemical preparation of alkyl arylsulfonates by direct anodic oxidation of electron-rich arenes. The reaction mechanism features a multi-component reaction consisting of electron-rich arenes, an alcohol of choice and excess SO2 in an acetonitrile-HFIP reaction mixture. In-situ formed monoalkyl sulfites are considered as key intermediates with bifunctional purpose. Firstly, this species functions as nucleophile and secondly, excellent conductivity is provided. Several primary and secondary alcohols and electron-rich arenes are implemented in this reaction to form the alkyl arylsulfonates in yields up to 73 % with exquisite selectivity. Boron-doped diamond electrodes (BDD) are employed in divided cells, separated by a simple commercially available glass frit.
Collapse
Affiliation(s)
- Stephan P. Blum
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| | - Maris Turks
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityP. Valdena 3Riga1048Latvia
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
23
|
Wirtanen T, Rodrigo E, Waldvogel SR. Selective and Scalable Electrosynthesis of 2H-2-(Aryl)-benzo[d]-1,2,3-triazoles and Their N-Oxides by Using Leaded Bronze Cathodes. Chemistry 2020; 26:5592-5597. [PMID: 31995654 PMCID: PMC7318656 DOI: 10.1002/chem.201905874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 01/11/2023]
Abstract
Electrosynthesis of 2H-2-(aryl)benzo[d]-1,2,3-triazoles and their N-oxides from 2-nitroazobenzene derivatives is reported. The electrolysis is conducted in a very simple undivided cell under constant current conditions with a leaded bronze cathode and a glassy carbon anode. The product distribution between 2H-2-(aryl)benzo[d]-1,2,3-triazoles and their N-oxides can be guided by simply controlling the current density and the amount of the charge applied. The reaction tolerates several sensitive functional groups in reductive electrochemistry. The usefulness and the applicability of the synthetic method is demonstrated by a formal synthesis of an antiviral compound.
Collapse
Affiliation(s)
- Tom Wirtanen
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | | |
Collapse
|
24
|
Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes. Chemistry 2020; 26:3241-3246. [PMID: 31875327 PMCID: PMC7155051 DOI: 10.1002/chem.201905774] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/31/2022]
Abstract
Electrophotochemistry has enabled arene C-H trifluoromethylation with the Langlois reagent CF3 SO2 Na under mild reaction conditions. The merger of electrosynthesis and photoredox catalysis provided a chemical oxidant-free approach for the generation of the CF3 radical. The electrophotochemistry was carried out in an operationally simple manner, setting the stage for challenging C-H trifluoromethylations of unactivated arenes and heteroarenes. The robust nature of the electrophotochemical manifold was reflected by a wide scope, including electron-rich and electron-deficient benzenes, as well as naturally occurring heteroarenes. Electrophotochemical C-H trifluoromethylation was further achieved in flow with a modular electro-flow-cell equipped with an in-operando monitoring unit for on-line flow-NMR spectroscopy, providing support for the single electron transfer processes.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lars H. Finger
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
25
|
Wang Y, Tian B, Ding M, Shi Z. Electrochemical Cross-Dehydrogenative Coupling between Phenols and β-Dicarbonyl Compounds: Facile Construction of Benzofurans. Chemistry 2020; 26:4297-4303. [PMID: 31900957 DOI: 10.1002/chem.201904750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 11/10/2022]
Abstract
Preparative electrochemical synthesis is an ideal method for establishing green, sustainable processes. The major benefits of an electro-organic strategy over that of conventional chemical synthesis are the avoidance of reagent waste and mild reaction conditions. Here, an intermolecular cross-dehydrogenative coupling between phenols and β-dicarbonyl compounds has been developed to build various benzofurans under undivided electrolytic conditions. Neither transition metals nor external chemical oxidants are required to facilitate the dehydrogenation and dehydration processes. The key factor in success was the use of nBu4 NBF4 as the electrolyte and hexafluoroisopropanol as the solvent, which play key roles in the cyclocondensation step. This electrolysis is scalable and can be used as a key step in drug synthesis. On the basis of several experimental results, the mechanism, particularly of the remarkable anodic oxidation and cyclization process, was illustrated.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Bailin Tian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Mengning Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
26
|
Zhang S, Struwe J, Hu L, Ackermann L. Nickela-electrocatalyzed C-H Alkoxylation with Secondary Alcohols: Oxidation-Induced Reductive Elimination at Nickel(III). Angew Chem Int Ed Engl 2020; 59:3178-3183. [PMID: 31729814 PMCID: PMC7028089 DOI: 10.1002/anie.201913930] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/26/2022]
Abstract
Nickela-electrooxidative C-H alkoxylations with challenging secondary alcohols were accomplished in a fully dehydrogenative fashion, thereby avoiding stoichiometric chemical oxidants, with H2 as the only stoichiometric byproduct. The nickela-electrocatalyzed oxygenation proved viable with various (hetero)arenes, including naturally occurring secondary alcohols, without racemization. Detailed mechanistic investigation, including DFT calculations and cyclovoltammetric studies of a well-defined C-H activated nickel(III) intermediate, suggest an oxidation-induced reductive elimination at nickel(III).
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lianrui Hu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
27
|
Röckl JL, Pollok D, Franke R, Waldvogel SR. A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls. Acc Chem Res 2020; 53:45-61. [PMID: 31850730 DOI: 10.1021/acs.accounts.9b00511] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The importance of sustainable and green synthetic protocols for the synthesis of fine chemicals has rapidly increased during the last decades in an effort to reduce the use of fossil fuels and other finite resources. The replacement of common reagents by electricity provides a cost- and atom-efficient, environmentally friendly, and inherently safe access to novel synthetic routes. The selective formation of carbon-carbon bonds between two distinct substrates is a crucial tool in organic chemistry. This fundamental transformation enables access to a broad variety of complex molecular architectures. In particular, the aryl-aryl bond formation has high significance for the preparation of organic materials, drugs, and natural products. Besides well-known and well-established reductive- and oxidative-reagent-mediated or transition-metal-catalyzed coupling reactions, novel synthetic protocols have arisen, which require fewer steps than conventional synthetic approaches. Electroorganic conversions can be categorized according to the nature of the electron transfer processes occurring. Direct transformations at inert electrode materials are environmentally benign and cost-effective, whereas catalytic processes at active electrodes and mediated electrosynthesis using an additional soluble reagent can have beneficial properties in terms of selectivity and reactivity. In general, these conversions require challenging optimization of the reaction parameters and the appropriate cell design. Galvanostatic reactions enable fast conversions with a rather simple setup, whereas potentiostatic electrolysis may enhance selectivity. This Account discusses the development of seminal carbon-carbon bond formations over the past two decades, focusing on phenols leading to precursors for ligands in, e.g., hydroformylation reaction. A key element in the success of these electrochemical transformations is the application of electrochemically inert, non-nucleophilic, highly fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which exhibit a large potential window for transformations and enable selective cross-coupling reactions. This selectivity is based on the capability of HFIP to stabilize organic radicals. Inert, carbon-based and metal-free electrode materials like graphite or boron-doped diamond (BDD) open up novel electroorganic pathways. Furthermore, novel active electrode materials have been developed to enable intra- and intermolecular dehydrogenative coupling reactions of electron-rich aryls. The application of 2,2'-biphenol derivatives as ligand components for catalysts requires reactions to be carried out on larger scale. In order to achieve this, continuous flow transformations have been established to overcome the drawbacks of heat transfer, overconversion, and conductivity. Modular cell designs enable the transfer of a broad variety of electroorganic conversions into continuous processes. Recent results demonstrate the application of organic electrochemistry to natural product synthesis of the pharmaceutically relevant opiate alkaloids (-)-thebaine or (-)-oxycodone.
Collapse
Affiliation(s)
- Johannes L. Röckl
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Dennis Pollok
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Str. 1, 45772 Marl, Germany
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätstraße 150, 44801 Bochum, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
28
|
Zhang S, Struwe J, Hu L, Ackermann L. Nickelaelektro‐katalysierte C‐H‐Alkoxylierung mit sekundären Alkoholen: oxidationsinduzierte reduktive Eliminierung an Nickel(III). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913930] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lianrui Hu
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
29
|
Abstract
A metal-free, oxidative coupling of phenols with various nucleophiles, including arenes, 1,3-diketones and other phenols, is reported. Cross-coupling is mediated by a sulfoxide which inverts the reactivity of the phenol partner. Crucially, the process shows high selectivity for cross-versus homo-coupling and allows efficient access to a variety of aromatic scaffolds including biaryls, benzofurans and, through an iterative procedure, aromatic oligomers. A metal-free, oxidative coupling of phenols with various nucleophiles, including arenes, 1,3-diketones and other phenols, is reported.![]()
Collapse
Affiliation(s)
- Zhen He
- Department of Chemistry, University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J P Perry
- Department of Chemistry, University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J Procter
- Department of Chemistry, University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
30
|
Röckl JL, Schollmeyer D, Franke R, Waldvogel SR. Dehydrogenative Anodic C-C Coupling of Phenols Bearing Electron-Withdrawing Groups. Angew Chem Int Ed Engl 2020; 59:315-319. [PMID: 31498544 PMCID: PMC6973026 DOI: 10.1002/anie.201910077] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 01/24/2023]
Abstract
We herein present a metal-free, electrosynthetic method that enables the direct dehydrogenative coupling reactions of phenols carrying electron-withdrawing groups for the first time. The reactions are easy to conduct and scalable, as they are carried out in undivided cells and obviate the necessity for additional supporting electrolyte. As such, this conversion is efficient, practical, and thereby environmentally friendly, as production of waste is minimized. The method features a broad substrate scope, and a variety of functional groups are tolerated, providing easy access to precursors for novel polydentate ligands and even heterocycles such as dibenzofurans.
Collapse
Affiliation(s)
- Johannes L. Röckl
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128Mainz (Germany)
- Graduate School Materials Science in MainzGermany
| | - Dieter Schollmeyer
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128Mainz (Germany)
| | - Robert Franke
- Evonik Performance Materials GmbHPaul-Baumann-Str. 145772MarlGermany
- Lehrstuhl für Theoretische ChemieRuhr-Universität BochumUniversitätstraße 15044801BochumGermany
| | - Siegfried R. Waldvogel
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128Mainz (Germany)
- Graduate School Materials Science in MainzGermany
| |
Collapse
|
31
|
Gleede B, Selt M, Gütz C, Stenglein A, Waldvogel SR. Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative Cross-Coupling of Phenols. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Gleede
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maximilian Selt
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Gütz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
32
|
Röckl JL, Schollmeyer D, Franke R, Waldvogel SR. Dehydrierende anodische C‐C‐Kupplung von Phenolen mit elektronenziehenden Substituenten. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Johannes L. Röckl
- Institut für Organische Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Deutschland
| | - Dieter Schollmeyer
- Institut für Organische Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Straße 1 45772 Marl Deutschland
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum Universitätstraße 150 44801 Bochum Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Deutschland
| |
Collapse
|
33
|
Xiong M, Liang X, Gao Z, Lei A, Pan Y. Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2 + 1 + n] Annulation: Diazo Compounds Act as Radical Acceptors. Org Lett 2019; 21:9300-9305. [PMID: 31713430 DOI: 10.1021/acs.orglett.9b03306] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein is an unprecedented synthesis of isoxazolines and oxazines through electrochemical intermolecular annulation of alkenes with tert-butyl nitrite, in which diazo compounds serve as radical acceptors. Notably, [2 + 1 + 2] and [2 + 1 + 3] annulations occur when styrenes and allylbenzenes are used as substrates, respectively. The latter reaction undergoes group migration to form more stable radical, manifesting radical route instead of conventional 1,3-dipolar cycloaddition occurs. Moreover, scale-up experiments suggest the potential application value of these transformations in industry.
Collapse
Affiliation(s)
- Mingteng Xiong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Xiao Liang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Zhan Gao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Yuanjiang Pan
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| |
Collapse
|
34
|
Röckl JL, Hauck AV, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of Fluorinated Orthoesters from 1,3-Benzodioxoles. ChemistryOpen 2019; 8:1167-1171. [PMID: 31497470 PMCID: PMC6718074 DOI: 10.1002/open.201900127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
A scalable, dehydrogenative, and electrochemical synthesis of novel highly fluorinated orthoesters is reported. This protocol provides easy and direct access to a wide variety of derivatives, using a very simple electrolysis setup. These compounds are surprisingly robust towards base and acid with an unusual high lipophilicity, making them interesting motifs for potentially active compounds in medicinal chemistry or agro applications. The use of electricity enables a safe and environmentally benign chemical transformation as only electrons serve as oxidants.
Collapse
Affiliation(s)
- Johannes L. Röckl
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
- Johannes Gutenberg Universität MainzGraduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Adrian V. Hauck
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
| | - Dieter Schollmeyer
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg University MainzInstitute of Organic ChemistryDuesbergweg 10–1455128MainzGermany
- Johannes Gutenberg Universität MainzGraduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| |
Collapse
|
35
|
Nikl J, Ravelli D, Schollmeyer D, Waldvogel SR. Straightforward Electrochemical Sulfonylation of Arenes and Aniline Derivatives using Sodium Sulfinates. ChemElectroChem 2019. [DOI: 10.1002/celc.201901212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joachim Nikl
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Davide Ravelli
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
- PhotoGreen Lab Department of Chemistry Viale Taramelli 12 27100 Pavia Italy
| | - Dieter Schollmeyer
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
36
|
Elsherbini M, Winterson B, Alharbi H, Folgueiras‐Amador AA, Génot C, Wirth T. Continuous‐Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications. Angew Chem Int Ed Engl 2019; 58:9811-9815. [DOI: 10.1002/anie.201904379] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Mohamed Elsherbini
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Bethan Winterson
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Haifa Alharbi
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | | | - Célina Génot
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Thomas Wirth
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
37
|
Xiong M, Liang X, Liang X, Pan Y, Lei A. Hexafluoro‐2‐Propanol‐Promoted Electro‐Oxidative [3+2] Annulation of 1,3‐Dicarbonyl Compounds and Alkenes. ChemElectroChem 2019. [DOI: 10.1002/celc.201900753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingteng Xiong
- Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang P. R. China
| | - Xingan Liang
- College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Xiao Liang
- Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang P. R. China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
38
|
Elsherbini M, Winterson B, Alharbi H, Folgueiras‐Amador AA, Génot C, Wirth T. Elektrochemischer Durchlaufgenerator für hypervalente Iodreagenzien: Synthetische Anwendungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mohamed Elsherbini
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT Großbritannien
| | - Bethan Winterson
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT Großbritannien
| | - Haifa Alharbi
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT Großbritannien
| | | | - Célina Génot
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT Großbritannien
| | - Thomas Wirth
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3AT Großbritannien
| |
Collapse
|
39
|
Gleede B, Yamamoto T, Nakahara K, Botz A, Graßl T, Neuber R, Matthée T, Einaga Y, Schuhmann W, Waldvogel SR. Influence of the Nature of Boron‐Doped Diamond Anodes on the Dehydrogenative Phenol‐Phenol Cross‐Coupling. ChemElectroChem 2019. [DOI: 10.1002/celc.201900225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Barbara Gleede
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Takashi Yamamoto
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Kenshin Nakahara
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Alexander Botz
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr-University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Tobias Graßl
- CONDIAS GmbH Fraunhofer Straße 1b 25524 Itzehoe Germany
| | - Rieke Neuber
- CONDIAS GmbH Fraunhofer Straße 1b 25524 Itzehoe Germany
| | | | - Yasuaki Einaga
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr-University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Siegfried R. Waldvogel
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
40
|
Dörr M, Lips S, Martínez‐Huitle CA, Schollmeyer D, Franke R, Waldvogel SR. Synthesis of Highly Functionalized
N
,
N
‐Diarylamides by an Anodic C,
N
‐Coupling Reaction. Chemistry 2019; 25:7835-7838. [DOI: 10.1002/chem.201901442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Maurice Dörr
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Carlos Alberto Martínez‐Huitle
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
- Instituto de Química, Avenida Senador Salgado FilhoUniversidade Federal do Rio Grande do Norte 3000 Campus Universitario Lagoa Nova, Natal 5907800, RN Brazil
| | - Dieter Schollmeyer
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Straße 1 45772 Marl Germany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum 44780 Bochum Germany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
41
|
Nikl J, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Direct Metal‐ and Reagent‐Free Sulfonylation of Phenols with Sodium Sulfinates by Electrosynthesis. Chemistry 2019; 25:6891-6895. [DOI: 10.1002/chem.201900850] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Joachim Nikl
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Straße 1 45772 Marl Germany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum 44780 Bochum Germany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
42
|
Li X, Liu C, Wang L, Ye Q, Jin X, Jin Z. Temperature-controlled sequential Suzuki-Miyaura reactions for preparing unsymmetrical terphenyls. Org Biomol Chem 2019; 16:8719-8723. [PMID: 30191227 DOI: 10.1039/c8ob01661e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A one-pot protocol of double Suzuki-Miyaura reactions has been developed for the synthesis of unsymmetrical terphenyls. In the absence of a ligand, potassium bromophenyltrifluoroborate reacts with arylboronic acid and then sequentially with a hetero/aryl bromide by controlling the reaction temperature, providing unsymmetrical p- and m-terphenyl compounds in moderate to good overall yields. This protocol provides a convenient and practical approach to unsymmetrical terphenyls under ligand-free and aerobic conditions.
Collapse
Affiliation(s)
- Xinmin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | | | | | | | | | | |
Collapse
|
43
|
Wang Q, Jiang Y, Zeng C, Sun B. Electrocatalytic Synthesis of Non‐Symmetric Biphenols Mediated by Tri(p‐bromophenyl)amine: Selective Oxidative Cross‐Coupling of Different Phenols and Naphthols. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qing‐Qing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical EngineeringBeijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & BioengineeringBeijing University of Technology Beijing 100124 China
| | - Yang‐Ye Jiang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & BioengineeringBeijing University of Technology Beijing 100124 China
| | - Cheng‐Chu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & BioengineeringBeijing University of Technology Beijing 100124 China
| | - Bao‐Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical EngineeringBeijing Technology and Business University Beijing 100048 China
| |
Collapse
|
44
|
Wang J, Qian P, Hu K, Zha Z, Wang Z. Electrocatalytic Fixation of Carbon Dioxide with Amines and Arylketones. ChemElectroChem 2019. [DOI: 10.1002/celc.201801724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiawei Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Peng Qian
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Kangfei Hu
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| |
Collapse
|
45
|
Affiliation(s)
- Goswinus H. M. de Kruijff
- Institute of Organic ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ) Staudingerweg 9 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institute of Organic ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ) Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
46
|
Dahms B, Kohlpaintner PJ, Wiebe A, Breinbauer R, Schollmeyer D, Waldvogel SR. Selective Formation of 4,4'-Biphenols by Anodic Dehydrogenative Cross- and Homo-Coupling Reaction. Chemistry 2019; 25:2713-2716. [PMID: 30638281 DOI: 10.1002/chem.201805737] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/17/2018] [Indexed: 12/30/2022]
Abstract
A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.
Collapse
Affiliation(s)
- Benedikt Dahms
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Philipp J Kohlpaintner
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Anton Wiebe
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Rolf Breinbauer
- Institut für Organische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Dieter Schollmeyer
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
47
|
Wang Y, Deng L, Wang X, Wu Z, Wang Y, Pan Y. Electrochemically Promoted Nickel-Catalyzed Carbon–Sulfur Bond Formation. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04633] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yang Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lingling Deng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhengguang Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Lips S, Waldvogel SR. Use of Boron‐Doped Diamond Electrodes in Electro‐Organic Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801620] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| |
Collapse
|
49
|
Röckl JL, Imada Y, Chiba K, Franke R, Waldvogel SR. Dehydrogenative Anodic Cyanation Reaction of Phenols in Benzylic Positions. ChemElectroChem 2019. [DOI: 10.1002/celc.201801727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Johannes L. Röckl
- Institute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| | - Yasushi Imada
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| | - Kazuhiro Chiba
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum Universitätstraße 150 44801 Bochum Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in MainzJohannes Gutenberg Universität Mainz Staudinger Weg 9 55128 Mainz Germany
| |
Collapse
|
50
|
Sako M, Aoki T, Zumbrägel N, Schober L, Gröger H, Takizawa S, Sasai H. Chiral Dinuclear Vanadium Complex-Mediated Oxidative Coupling of Resorcinols. J Org Chem 2018; 84:1580-1587. [PMID: 30501179 DOI: 10.1021/acs.joc.8b02494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A method for the highly regio- and enantioselective oxidative coupling of resorcinols has been established by using dibrominated dinuclear vanadium(V) catalyst 1c under air. When resorcinols bearing an aryl substituent were applied as substrates to the coupling, axially chiral biresorcinols were obtained as single regioisomers in high yield with up to 98% ee.
Collapse
Affiliation(s)
- Makoto Sako
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Takanori Aoki
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Nadine Zumbrägel
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan.,Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Lukas Schober
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan.,Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| |
Collapse
|