1
|
Klos N, Osterthun O, Mengers HG, Lanzerath P, Graf von Westarp W, Lim G, Gausmann M, Küsters-Spöring JD, Wiesenthal J, Guntermann N, Lauterbach L, Jupke A, Leitner W, Blank LM, Klankermayer J, Rother D. Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. JACS AU 2024; 4:4546-4570. [PMID: 39735920 PMCID: PMC11672146 DOI: 10.1021/jacsau.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO2, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages. While the different types of catalysts are often seen as competitive approaches, an increasing number of examples highlight, how combinations and concatenations of catalysts of the complete spectrum can open new roads to new products. Therefore, the second part focuses on the different catalysts either in one-step, one-pot transformations or in reaction cascades. In the former, the reaction conditions must be conflated but purification steps are minimized. In the latter, each catalyst can work under optimal conditions and the "hand-over points" should be chosen according to defined criteria like minimal energy usage during separation procedures. The examples are discussed in the context of the contributions of catalysis to the envisaged (bio)economy.
Collapse
Affiliation(s)
- Nina Klos
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Ole Osterthun
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Hendrik G. Mengers
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Patrick Lanzerath
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - William Graf von Westarp
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Guiyeoul Lim
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Marcel Gausmann
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan-Dirk Küsters-Spöring
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan Wiesenthal
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Nils Guntermann
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Lars Lauterbach
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Andreas Jupke
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
- Institute
of Bio- and Geosciences 2: Plant Science (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
| | - Walter Leitner
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Mülheim an der Ruhr, Nordrhein-Westfalen 45470, Germany
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jürgen Klankermayer
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Dörte Rother
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| |
Collapse
|
2
|
Truong-Phuoc L, Duong-Viet C, Nhut JM, Pappa A, Zafeiratos S, Pham-Huu C. Induction Heating for the Electrification of Catalytic Processes. CHEMSUSCHEM 2024:e202402335. [PMID: 39714867 DOI: 10.1002/cssc.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. This shift towards electrifying catalytic processes offers significant environmental benefits. Current practices rely heavily on fossil fuel-based burners, primarily using natural gas, which contribute significantly to greenhouse gas emissions. Therefore, replacing fossil fuels with electricity can significantly reduce the carbon footprint associated with chemical production. Additionally, the energy-intensive production of metal catalysts used in these processes further exacerbates the environmental impact. This review focuses on the electrification of chemical processes, particularly using induction heating (IH), as a method to reduce the environmental impact of both catalyst production and operation. IH shows promise compared to conventional heating methods, since it offers a cleaner, more efficient, and precise way to heat catalysts in chemical processes by directly generating heat within the catalyst itself. It can potentially even enhance the reaction performance through its influence on the reaction mechanism. By exploring recent advancements in IH-driven catalytic processes, the review delves into how this method is revolutionizing catalysis by enhancing performance, selectivity, and sustainability. It highlights recent breakthroughs and discusses perspectives for further exploration in this rapidly developing field.
Collapse
Affiliation(s)
- Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Cuong Duong-Viet
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Jean-Mario Nhut
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Anastasia Pappa
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Spyridon Zafeiratos
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| |
Collapse
|
3
|
Berkemeier T, Pöschl U. Carbon Nanoparticle Oxidation by NO 2 and O 2: Chemical Kinetics and Reaction Pathways. Angew Chem Int Ed Engl 2024; 63:e202413325. [PMID: 39446570 DOI: 10.1002/anie.202413325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Carbon nanoparticle interactions with gases are central to many environmental and technical processes, but the underlying reaction kinetics and mechanisms are not well understood. Here, we investigate the oxidation and gasification of carbon nanoparticles by NO2 and O2 under combustion exhaust conditions. We build on a comprehensive experimental data set and use a kinetic multilayer model (KM-GAP-CARBON) to trace the uptake and release of gas molecules alongside the temporal evolution of particle size and surface composition. The experimental results are captured by a model mechanism that involves different types of carbon atoms (edge/plane-like) and the formation of a reactive oxygen intermediate (activated CO complex) as the rate-limiting step. A transition between distinct chemical regimes driven by NO2 at lower temperatures and O2 at higher temperatures is reflected by an increase in the observable activation energy from ∼ ${ \sim }$ 60 kJ/mol to ∼ ${ \sim }$ 130 kJ/mol. We derive energy profiles for three alternative reaction pathways that involve uni- or bimolecular decomposition of reactive oxygen intermediates.
Collapse
Affiliation(s)
- Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| |
Collapse
|
4
|
Röhrens D, Abouserie A, Dalfollo G, Kahlert J, Wang B, Schönberger AA, Pischinger S, Chen P, Mueller DN, Simon U. Surface Speciation in Microwave-Assisted CO Oxidation over Perovskites─The Role of Water and Activation Pretreatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67662-67673. [PMID: 39592123 DOI: 10.1021/acsami.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As a model for the energy-efficient aftertreatment of exhaust gas components, we studied microwave-assisted (MW) CO oxidation over a (La,Sr)CoO3-δ (LSC) perovskite oxide catalyst under dry and humidified conditions. We found that the use of a MW-based process can offer multiple advantages over traditional thermocatalysis in this scenario, as the nature of the MW-solid interaction offers quick, adaptive, and energy-efficient heating as well as improved yield and lower light-off temperatures. As found by combined CO and water MW-desorption experiments, the presence of technically relevant amounts of water leads to a competition for surface active sites and thus slows the reaction rate without indications for a fundamental change in the mechanism. Remarkably, the performance loss related to the presence of water was less pronounced in the MW-assisted process. Additionally, while we recorded a temperature-dependent degradation of the reaction rate in extended MW-catalysis experiments both in dry and humidified conditions, it quickly recovered after a short reactivation MW-treatment. Our study confirms that surface reaction can be driven by the use of MW-radiation in a similar magnitude that can be achieved by thermal activation at significantly higher temperatures. The nature of the effect of the MW-treatment on the structural and electronic surface properties of the LSC material was investigated by X-ray absorption (XAS) and X-ray photoelectron spectroscopy (XPS). We found evidence of a significant structural, chemical, and electronic reorganization of the oxide surface, possibly consistent with the occurrence of overheated surfaces or "hotspots" during MW-exposure, which may explain the increased catalytic and heating properties of the LSC after the MW-pretreatment. The good catalytic performance, quick response to MW-heating, and long-term stability of the catalyst all indicate the promising potential of a MW-based process for the energy-efficient exhaust aftertreatment using noble-metal-free oxide catalysts.
Collapse
Affiliation(s)
- Daniel Röhrens
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Ahed Abouserie
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Gianluca Dalfollo
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Jannis Kahlert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Bangfen Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| | - Ariel Augusto Schönberger
- Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Forckenbeckstraße 4, Aachen 52074, Germany
| | - Stefan Pischinger
- Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Forckenbeckstraße 4, Aachen 52074, Germany
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - David N Mueller
- Peter Grünberg Institut, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, Aachen, 52074, Germany
| |
Collapse
|
5
|
García-Bellido J, Redondo-Velasco M, Freije-Carrelo L, Burnens G, Moldovan M, Bouyssiere B, Giusti P, Encinar JR. Sensitive Detection and Quantification of Oxygenated Compounds in Complex Samples Using GC-Combustion-MS. Anal Chem 2024; 96:10756-10764. [PMID: 38952275 PMCID: PMC11223096 DOI: 10.1021/acs.analchem.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
This work introduces a new element-selective gas chromatography detector for the accurate quantification of traces of volatile oxygen-containing compounds in complex samples without the need for specific standards. The key to this approach is the use of oxygen highly enriched in 18O as the oxidizing gas in a combustion unit (800 °C) that allows us to directly and unambiguously detect the natural oxygen present in the GC-separated compounds through its incorporation into the volatile species formed after their combustion and their subsequent degradation to 16O in the ion source. The unspecific signal due to the low 16O abundance in the oxidizing gas could be compensated by measuring the m/z 12 that comes as well from the CO2 degradation. Equimolarity was proved with several O-containing compounds with different sizes and functionalities. A detection limit of 28 pg of injected O was achieved, which is the lowest ever reported for any GC detector, which barely worsened to 55 and 214 pg of O when the oxygenate partially or completely coeluted with a very abundant matrix compound. Validation was attained by the analysis of a SRM to obtain accurate (99-103%) and precise (1-4% RSD) results. Robustness was tested after spiking a hydrotreated diesel with 10 O-compounds at the ppm level, which could be discriminated from the matrix crowd and quantified (mean recovery of 102 ± 9%) with a single generic standard. Finally, it was also successfully applied to easily spot and quantify the 33 oxygenates naturally present in a complex wood bio-oil sample.
Collapse
Affiliation(s)
- Javier García-Bellido
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| | | | - Laura Freije-Carrelo
- TotalEnergies
One Tech Belgium, Zone Industrielle C, 7181 Feluy, Belgium
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
| | - Gaëtan Burnens
- TotalEnergies
One Tech Belgium, Zone Industrielle C, 7181 Feluy, Belgium
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
| | - Mariella Moldovan
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| | - Brice Bouyssiere
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
- Universite
de Pau et des Pay de l’Adour, E2S UPPA CNRS, IPREM, Institut
des Sciences Analytiques et de Physico-chimie pour l’Environnement
et les Matériaux UMR5254, 64053 Pau, France
| | - Pierre Giusti
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
- TotalEnergies,
TotalEnergies Research & Technology Gonfreville, 76700 Harfleur, France
| | - Jorge Ruiz Encinar
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
6
|
Koranchalil S, Lobo Justo Pinheiro D, Padilla R, Nielsen M. Homogeneous Catalyzed Direct Conversion of Furfural to Gamma-Valerolactone. CHEMSUSCHEM 2024; 17:e202301608. [PMID: 38415323 DOI: 10.1002/cssc.202301608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Herein, we report the direct conversion of biomass-derived furfural to γ-valerolactone (GVL) in a one-pot system, using the combination of Ru-MACHO-BH and a Brønsted acid (H3PO4). A GVL yield of 84 % is achieved under mild reaction conditions using 1 mol% of Ru-MACHO-BH and 3.8 M H3PO4(aq) at 100 °C for 7 hours.
Collapse
Affiliation(s)
- Sakhitha Koranchalil
- Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK-2800, Lyngby, Denmark
| | | | - Rosa Padilla
- Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK-2800, Lyngby, Denmark
| | - Martin Nielsen
- Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, DK-2800, Lyngby, Denmark
| |
Collapse
|
7
|
Kopp WA, Huang C, Zhao Y, Yu P, Schmalz F, Krep L, Leonhard K. Automatic Potential Energy Surface Exploration by Accelerated Reactive Molecular Dynamics Simulations: From Pyrolysis to Oxidation Chemistry. J Phys Chem A 2023; 127:10681-10692. [PMID: 38059461 DOI: 10.1021/acs.jpca.3c05253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Automatic potential energy surface (PES) exploration is important to a better understanding of reaction mechanisms. Existing automatic PES mapping tools usually rely on predefined knowledge or computationally expensive on-the-fly quantum-chemical calculations. In this work, we have developed the PESmapping algorithm for discovering novel reaction pathways and automatically mapping out the PES using merely one starting species is present. The algorithm explores the unknown PES by iteratively spawning new reactive molecular dynamics (RMD) simulations for species that it has detected within previous RMD simulations. We have therefore extended the RMD simulation tool ChemTraYzer2.1 (Chemical Trajectory Analyzer, CTY) for this PESmapping algorithm. It can generate new seed species, automatically start replica simulations for new pathways, and stop the simulation when a reaction is found, reducing the computational cost of the algorithm. To explore PESs with low-temperature reactions, we applied the acceleration method collective variable (CV)-driven hyperdynamics. This involved the development of tailored CV templates, which are discussed in this study. We validate our approach for known pathways in various pyrolysis and oxidation systems: hydrocarbon isomerization and dissociation (C4H7 and C8H7 PES), mostly dominant at high temperatures and low-temperature oxidation of n-butane (C4H9O2 PES) and cyclohexane (C6H11O2 PES). As a result, in addition to new pathways showing up in the simulations, common isomerization and dissociation pathways were found very fast: for example, 44 reactions of butenyl radicals including major isomerizations and decompositions within about 30 min wall time and low-temperature chemistry such as the internal H-shift of RO2 → QO2H within 1 day wall time. Last, we applied PESmapping to the oxidation of the recently proposed biohybrid fuel 1,3-dioxane and validated that the tool could be used to discover new reaction pathways of larger molecules that are of practical use.
Collapse
Affiliation(s)
- Wassja A Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Can Huang
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Yuqing Zhao
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Peiyang Yu
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Felix Schmalz
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
8
|
Barbosa LFFM, Dubowik PB, Reddemann MA, Kneer R. Development of a cavity ring-down spectrometer toward multi-species composition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:105117. [PMID: 37902462 DOI: 10.1063/5.0149765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
This work presents the development of a cavity ring-down spectrometer (CRDS) designed for the detection of several molecules relevant for air pollution, including the second overtone of ro-vibration transitions from CO at 1.58 µm and NO at 1.79 µm. A unique feature of this CRDS is the use of custom mirrors with a reflectivity of about 99.99% from 1.52 to 1.80 µm, enabling efficient laser coupling into the cavity while ensuring a minimum detectable absorbance of 1.1 × 10-10 cm-1 within an integration time of about 1.2 s. In this work, the successful implementation of the current CRDS is demonstrated in two different wavelength regions. At 1.79 µm, the transitions R17.5 and R4.5 of the second overtone of NO are detected. At 1.58 µm, carbon dioxide and water vapor from untreated ambient air are measured, serving as an example to investigate the suitability of a post-processing procedure for the determination of the molar fraction in a multi-species composition. This post-processing procedure has the benefit of being calibration-free and SI-traceable. Additionally, CRDS measurements of gas mixtures containing CO and CO2 are also shown. In the future, the advantages of the developed cavity ring-down spectrometer will be exploited in order to perform fundamental studies on the transport processes of heterogeneous catalysis by locally resolving the gas phase near a working catalytic surface. The possibility to cover a broad wavelength region with this CRDS opens up the opportunity to investigate different catalytic reactions, including CO oxidation and NO reduction.
Collapse
Affiliation(s)
- Luís Felipe F M Barbosa
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Philip B Dubowik
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Manuel A Reddemann
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Reinhold Kneer
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| |
Collapse
|
9
|
Abstract
Combustion is a reactive oxidation process that releases energy bound in chemical compounds used as fuels─energy that is needed for power generation, transportation, heating, and industrial purposes. Because of greenhouse gas and local pollutant emissions associated with fossil fuels, combustion science and applications are challenged to abandon conventional pathways and to adapt toward the demand of future carbon neutrality. For the design of efficient, low-emission processes, understanding the details of the relevant chemical transformations is essential. Comprehensive knowledge gained from decades of fossil-fuel combustion research includes general principles for establishing and validating reaction mechanisms and process models, relying on both theory and experiments with a suite of analytic monitoring and sensing techniques. Such knowledge can be advantageously applied and extended to configure, analyze, and control new systems using different, nonfossil, potentially zero-carbon fuels. Understanding the impact of combustion and its links with chemistry needs some background. The introduction therefore combines information on exemplary cultural and technological achievements using combustion and on nature and effects of combustion emissions. Subsequently, the methodology of combustion chemistry research is described. A major part is devoted to fuels, followed by a discussion of selected combustion applications, illustrating the chemical information needed for the future.
Collapse
|
10
|
Bio-Derived Furanic Compounds with Natural Metabolism: New Sustainable Possibilities for Selective Organic Synthesis. Int J Mol Sci 2023; 24:ijms24043997. [PMID: 36835429 PMCID: PMC9966152 DOI: 10.3390/ijms24043997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Biomass-derived C6-furanic compounds have become the cornerstone of sustainable technologies. The key feature of this field of chemistry is the involvement of the natural process only in the first step, i.e., the production of biomass by photosynthesis. Biomass-to-HMF (5-hydroxymethylfurfural) conversion and further transformations are carried out externally with the involvement of processes with poor environmental factors (E-factors) and the generation of chemical wastes. Due to widespread interest, the chemical conversion of biomass to furanic platform chemicals and related transformations are thoroughly studied and well-reviewed in the current literature. In contrast, a novel opportunity is based on an alternative approach to consider the synthesis of C6-furanics inside living cells using natural metabolism, as well as further transformations to a variety of functionalized products. In the present article, we review naturally occurring substances containing C6-furanic cores and focus on the diversity of C6-furanic derivatives, occurrence, properties and synthesis. From the practical point of view, organic synthesis involving natural metabolism is advantageous in terms of sustainability (sunlight-driven as the only energy source) and green nature (no eco-persisted chemical wastes).
Collapse
|
11
|
Akdeniz HY, Balli O, Caliskan H. Energy, exergy, thermoecologic, environmental, enviroeconomic and sustainability analyses and assessments of the aircraft engine fueled with biofuel and jet fuel. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2023; 148:3585-3603. [PMID: 36819792 PMCID: PMC9930054 DOI: 10.1007/s10973-023-11982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this study, utilization of a bio-based fuel in a turbojet engine is comprehensively monitored with adapting various useful indicators for the scope of the study based on thermodynamic principles. In this regard, extensive energy and exergy, thermoecologic, environmental, enviroeconomic and sustainability analyses are performed for both the turbojet engines fueled by jet kerosene and fueled by a bio-based fuel. As per the main findings, the mass stream of combustion emissions is measured to be 4.547 kg s-1, when the engine is powered by biofuel. The specific fuel consumption and specific thrust are determined as 0.13 kg kN-1 s-1 and 147.81 kNs kg-1 for jet kerosene-powered case, while they are calculated as 0.15 kg kN-1 s-1 and 148.23 kNs kg-1 for biofuel-powered case. If biofuel is selected over jet-kerosene fuel, it is observed that the engine has better energy efficiency performance by 18.18%. The engine's environmental effect factor value is found as 4.88 for jet-kerosene usage condition, while it is found to be 4.93 for biofuel utilization case. The overall emitted CO2 emissions is measured as 336,672 kg-CO2 year-1 for jet-kerosene usage condition, while it is estimated as 222,012 kg-CO2 year-1 for the biofuel utilization case. Also, as far as biofuel is chosen as alternative to jet-kerosene, the environmental damage cost stream, namely the enviroeconomic parameter of the engine, falls from 59,254.27 US$ year-1 to 39,074.11 US$ year-1. It is observed that sustainable efficiency factor and exergetic sustainability index outputs of the components of air compressor are the same for jet-kerosene and biofuel utilization cases, which are 8.31 and 7.31, respectively.
Collapse
Affiliation(s)
| | - Ozgur Balli
- Aeronautical Engineer at 1’st Air Maintenance Factory Directorate (1.HBFM), General Directorate of Military Factories (AFGM), Ministry of National Defence (MND), Eskisehir, Turkey
| | - Hakan Caliskan
- Department of Mechanical Engineering, Faculty of Engineering, Usak University, 64200 Usak, Turkey
| |
Collapse
|
12
|
Becker J, Liebal UW, Phan AN, Ullmann L, Blank LM. Renewable carbon sources to biochemicals and -fuels: contributions of the smut fungi Ustilaginaceae. Curr Opin Biotechnol 2023; 79:102849. [PMID: 36446145 DOI: 10.1016/j.copbio.2022.102849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
The global demand for food, fuels, and chemicals increases annually. Using renewable C-sources (i.e. biomass, CO2, and organic waste) is a prerequisite for a future free of fossil carbon. The smut fungi Ustilaginaceae naturally produce a versatile spectrum of valuable products, such as organic acids, polyols, and glycolipids, applicable in the food, energy, chemistry, and pharmaceutical sector. Combined with the use of alternative (co-)substrates (e.g. acetate, butanediol, formate, and glycerol), these microorganisms offer excellent potential for industrial biotechnology, thereby overcoming central challenges humankind faces, including CO2 release and land use. Here, we provide insight into fundamental production capacities, present genetic modifications that improve the biotechnical application, and review recent high-performance engineering of Ustilaginaceae toward relevant platform chemicals.
Collapse
Affiliation(s)
- Johanna Becker
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ulf W Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - An Nt Phan
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lena Ullmann
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
13
|
Zheng X, Yu P, Liu Y, Ma Y, Cao Y, Cai Z, Zhou L, Huang K, Zheng S, Jiang L. Efficient Hydrogenation of Methyl Palmitate to Hexadecanol over Cu/m-ZrO 2 Catalysts: Synergistic Effect of Cu Species and Oxygen Vacancies. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaohai Zheng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian362801, P.R. China
| | - Panjie Yu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian362801, P.R. China
| | - Yaxin Liu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
| | - Yongde Ma
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
| | - Yanning Cao
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian362801, P.R. China
| | - Zhenping Cai
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan621908, P.R. China
| | - Kuan Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian362801, P.R. China
| | - Shoutian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, P.R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian350002, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian362801, P.R. China
| |
Collapse
|
14
|
Mengers HG, Guntermann N, Graf von Westarp W, Jupke A, Klankermayer J, Blank LM, Leitner W, Rother D. Three Sides of the Same Coin: Combining Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hendrik G. Mengers
- RWTH Aachen University Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt Worringerweg 1 52074 Aachen Germany
| | - Nils Guntermann
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
| | - William Graf von Westarp
- RWTH Aachen University Fluid Process Engineering – AVT.FVT Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Jupke
- RWTH Aachen University Fluid Process Engineering – AVT.FVT Forckenbeckstraße 51 52074 Aachen Germany
| | - Jürgen Klankermayer
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
| | - Lars M. Blank
- RWTH Aachen University Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt Worringerweg 1 52074 Aachen Germany
| | - Walter Leitner
- RWTH Aachen University Institute of Macromolecular Chemistry – ITMC Worringerweg 2 52074 Aachen Germany
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a. d. Ruhr Germany
| | - Dörte Rother
- Forschungzentrum Jülich GmbH Institute of Bio- and Geosciences: Biotechnology Wilhelm-Johnen-Straße 52425 Jülich Germany
| |
Collapse
|
15
|
Microwave-Assisted CO Oxidation over Perovskites as a Model Reaction for Exhaust Aftertreatment—A Critical Assessment of Opportunities and Challenges. Catalysts 2022. [DOI: 10.3390/catal12070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We introduce a microwave (MW)-assisted heterogeneous catalytical setup, which we carefully examined for its thermal and performance characteristics. Although MW-assisted heterogeneous catalysis has been widely explored in the past, there is still need for attention towards the specific experimental details, which may complicate the interpretation of results and comparability in general. In this study we discuss technical and material related factors influencing the obtained data from MW-assisted heterogeneous catalysis, specifically in regards to the oxidation of carbon monoxide over a selected perovskite catalyst, which shall serve as a model reaction for exhaust gas aftertreatment. A high degree of comparability between different experiments, both in terms of setup and the catalysts, is necessary to draw conclusions regarding this promising technology. Despite significant interest from both fundamental and applied research, many questions and controversies still remain and are discussed in this study. A series of deciding parameters is presented and the influence on the data is discussed. To control these parameters is both a challenge but also an opportunity to gain advanced insight into MW-assisted catalysis and to develop new materials and processes. The results and discussion are based upon experiments conducted in a monomode MW-assisted catalysis system employing powdered solid-state perovskite oxides in a fixed bed reactor. The discussion covers critical aspects concerning the determination of the actual catalyst temperature, the homogeneity of the thermal distribution, time, and local temperature relaxation (i.e., thermal runaway effects and hotspot formation), particle size effects, gas flow considerations, and system design.
Collapse
|
16
|
Cerezo-Navarrete C, Marin IM, García-Miquel H, Corma A, Chaudret B, Martínez-Prieto LM. Magnetically Induced Catalytic Reduction of Biomass-Derived Oxygenated Compounds in Water. ACS Catal 2022. [PMID: 37528952 PMCID: PMC10388291 DOI: 10.1021/acscatal.2c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell FeCo@Ni magnetic nanoparticles were used as the heating agent and the catalyst simultaneously. In this way it was possible to control the product distribution by adjusting the field amplitude applied during the magnetic catalysis, opening a precedent for this type of catalysis. Finally, the encapsulation of the magnetic nanoparticles in carbon (FeCo@Ni@C) strongly improved the stability of the magnetic catalyst in solution, making its reuse possible up to at least eight times in dioxane and four times in water.
Collapse
Affiliation(s)
- Christian Cerezo-Navarrete
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Irene Mustieles Marin
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Héctor García-Miquel
- ITEAM Research Institute, Universitat Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
- Departamento de Química Inorgánica (University of Seville), Instituto de Investigaciones Químicas (CSIC-US); Avenida Americo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
17
|
Li S, Yang S, Li K, Lai Y, Deng C, Wang C. Electrodissolution-Coupled Hafnium Alkoxide Synthesis with High Environmental and Economic Benefits. CHEMSUSCHEM 2022; 15:e202200474. [PMID: 35365962 DOI: 10.1002/cssc.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The conventional thermal method of preparing hafnium alkoxides [Hf(OR)4 , R=alkyl] - excellent precursors for gate-dielectric HfO2 on semiconductors - is severely hindered by its unsatisfactory environmental and economic burdens. Herein, we propose a promising electrodissolution-coupled Hf(OR)4 synthesis (EHS) system for green and efficient electrosynthesis of Hf(OR)4 . The operational principle of the electrically driven system consists of two simultaneous heterogeneous reactions of Hf dissolution and alcohol dehydrogenation, plus a spontaneous solution-based combination reaction. In applying ethanol as solvent and Hf metal as electrodissolution medium, we achieved waste-free production of high-purity hafnium ethoxide [Hf(OEt)4 ] with an equivalent "a concomitant" reduction in CO2 emission of 187.33 g CO2 per kg Hf(OEt)4 and a high net profit of 30 477 USD per kg Hf(OEt)4 . This system is very competitive with the thermal process, which unavoidably releases substantial waste and CO2 for a net profit of 27 700 USD per kg Hf(OEt)4 . We anticipate that the environmental and economic benefits of the EHS process could pave the way for its practical application.
Collapse
Affiliation(s)
- Shuai Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shenghai Yang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, New South Wales, 2304, Australia
| | - Yanqing Lai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Chaoyong Deng
- Ximei Resources Limited Company, Guangzhou, Guangdong, 511449, P. R. China
| | - Changhong Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
18
|
Battin-Leclerc F, Delort N, Meziane I, Herbinet O, Sang Y, Li Y. Possible use as biofuels of monoaromatic oxygenates produced by lignin catalytic conversion: A review. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Wang J, Fan Y, Guo X, Gu Q, Jiang J, Guan Y, He X, Ma Y, Xu H, Wu P. Direct Synthesis and Delamination of Swollen Layered Ferrierite for the Reductive Etherification of Furfural. ChemCatChem 2022. [DOI: 10.1002/cctc.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jilong Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Yaqi Fan
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Xiaowen Guo
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Qingyi Gu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Jingang Jiang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Yejun Guan
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xiao He
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Yanhang Ma
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Hao Xu
- East China Normal University School of Chemistry and Molecular Engneering North Zhongshan Road No. 3663 200062 Shanghai CHINA
| | - Peng Wu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| |
Collapse
|
20
|
Galkin KI. Sustainable production of biofuel precursors by aldol condensation with biomass-derived 5-methylfurfural. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gao X, Zhang J, Song F, Zhang Q, Han Y, Tan Y. Selective oxidation conversion of methanol/dimethyl ether. Chem Commun (Camb) 2022; 58:4687-4699. [PMID: 35302128 DOI: 10.1039/d1cc07276e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As important platform compounds, methanol and dimethyl ether (DME) are vital bridges between the coal chemical, petrochemical and fine chemical industries. At present, the synthesis of methanol/DME has been industrialized, and the production capacity is much larger than the market demand. Therefore, the conversion of methanol/DME into more valuable chemicals is an important and significant topic. The synthesis of high value-added oxygenated chemicals and diesel oil additives from methanol/DME by an oxidation method has attracted substantial attention due to it being green and environmentally friendly and having good atom economy. In this feature article, we have summarized the recent advances in the synthesis of formaldehyde, methyl formate, dimethoxymethane, and polyoxymethylene dimethyl ethers, from the selective oxidation of methanol/DME, and further discussed the adsorption and activation of reactant molecules, selective cleavage of C-O, C-H or O-H bonds in methanol/DME molecules and the C-O chain growth in the target products. In the end, major challenges and future prospects are proposed from the viewpoint of catalyst design and application. It is expected that this feature article will provide theoretical guidance for the activation and cleavage of C-O, C-H, or O-H bonds in other small molecules of alcohol/ether as well as low-carbon alkanes, so as to synthesize high value-added chemicals.
Collapse
Affiliation(s)
- Xiujuan Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| | - Faen Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| | - Qingde Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China. .,Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
| | - Yizhuo Han
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China.
| |
Collapse
|
22
|
Deng CQ, Liu J, Luo JH, Gan LJ, Deng J, Fu Y. Proton-Promoted Nickel-Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022; 61:e202115983. [PMID: 35099846 DOI: 10.1002/anie.202115983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/26/2022]
Abstract
A robust and highly active homogeneous chiral nickel-phosphine complex for the asymmetric hydrogenation of aliphatic γ- and δ-ketoacids has been discovered. The hydrogenation could proceed smoothly in the presence of 0.0133 mol% catalyst loading (S/C=7500). The coordination chemistry and catalytic behavior of Ni(OTf)2 with (S,S)-Ph-BPE were explored by 1 H NMR and HRMS. The mechanistic studies revealed that a proton promoted the activation of the substrate C=O bond and controlled the stereoselectivity through hydrogen bonds. A series of chiral γ- and δ-alkyl substituted lactones were obtained in high yields with excellent enantioselectivities (up to 98 % yield and 99 % ee). In addition, this catalytic system also demonstrated that levulinic acid produced from a biomass feedstock was converted into chiral γ-valerolactone without loss of ee value.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jia-Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
23
|
Püschel S, Sadowski J, Rösler T, Ehmann KR, Vorholt AJ, Leitner W. Auto-Tandem Catalytic Reductive Hydroformylation in a CO 2-Switchable Solvent System. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:3749-3756. [PMID: 35360052 PMCID: PMC8942186 DOI: 10.1021/acssuschemeng.2c00419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Upgradation of olefin-enriched Fischer-Tropsch cuts by the synthesis of alcohols leads to drop-in-capable biosynthetic fuels with low carbon emissions. As an alternative to the conventional two-step production of long-chain alcohols, tandem catalytic systems improve the energy and resource efficiency. Herein, we present an auto-tandem catalytic system for the production of alcohols from olefin-paraffin mixtures. By utilization of a tertiary alkanolamine as the ligand as well as the switchable component in the solvent system, a lean reaction system capable of catalyst recycling was developed. The system was characterized with regard to the switchable solvent separation approach and reaction parameters, resulting in alcohol yields of up to 99.5% and turnover frequencies of up to 764 h-1. By recycling the catalyst in 10 consecutive reactions, a total turnover number of 2810 was achieved.
Collapse
Affiliation(s)
- Sebastian Püschel
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Jan Sadowski
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Thorsten Rösler
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Kira Ruth Ehmann
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Andreas J. Vorholt
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
24
|
Divya PS, Nair S, Kunnikuruvan S. Identification of Crucial Intermediates in the Formation of Humins from Cellulose-Derived Platform Chemicals Under Brønsted Acid Catalyzed Reaction Conditions. Chemphyschem 2022; 23:e202200057. [PMID: 35285118 DOI: 10.1002/cphc.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/04/2022] [Indexed: 11/11/2022]
Abstract
Humins are one of the undesirable products formed during the dehydration of sugars as well as the conversion of 5-hydroxymethylfurfural (HMF) to value-added products. Thus, reducing the formation of humins is an important strategy for improving the yield of the aforementioned reactions. Even after a plethora of studies, the mechanism of formation and the structure of humins are still elusive. In this regard, we have employed density functional theory-based mechanistic studies and microkinetic analysis to identify crucial intermediates formed from glucose, fructose, and HMF that can initiate the polymerization reactions resulting in humins under Brønsted acid-catalyzed reaction conditions. This study brings light into crucial elementary reaction steps that can be targeted for controlling humins formation. Moreover, this work provides a rationale for the experimentally observed aliphatic chains and HMF condensation products in the humins structure. Different possible polymerization routes that could contribute to the structure of humins are also suggested based on the results. Importantly, the findings of this work indicate that increasing the rate of isomerization of glucose to fructose and reducing the rate of reaction between HMF molecules could be an efficient strategy for reducing humins formation.
Collapse
Affiliation(s)
- P S Divya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Swetha Nair
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Sooraj Kunnikuruvan
- IISER Thiruvananthapuram: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, Maruthamala PO, Vithura, 695551, Thiruvananthapuram, INDIA
| |
Collapse
|
25
|
An Overview of Promising Alternative Fuels for Road, Rail, Air, and Inland Waterway Transport in Germany. ENERGIES 2022. [DOI: 10.3390/en15041443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To solve the challenge of decarbonizing the transport sector, a broad variety of alternative fuels based on different concepts, including Power-to-Gas and Power-to-Liquid, and propulsion systems, have been developed. The current research landscape is investigating either a selection of fuel options or a selection of criteria, a comprehensive overview is missing so far. This study aims to close this gap by providing a holistic analysis of existing fuel and drivetrain options, spanning production to utilization. For this purpose, a case study for Germany is performed considering different vehicle classes in road, rail, inland waterway, and air transport. The evaluated criteria on the production side include technical maturity, costs, as well as environmental impacts, whereas, on the utilization side, possible blending with existing fossil fuels and the satisfaction of the required mission ranges are evaluated. Overall, the fuels and propulsion systems, Methanol-to-Gasoline, Fischer–Tropsch diesel and kerosene, hydrogen, battery-electric propulsion, HVO, DME, and natural gas are identified as promising future options. All of these promising fuels could reach near-zero greenhouse gas emissions bounded to some mandatory preconditions. However, the current research landscape is characterized by high insecurity with regard to fuel costs, depending on the predicted range and length of value chains.
Collapse
|
26
|
Deng C, Liu J, Luo J, Gan L, Deng J, Fu Y. Proton‐Promoted Nickel‐Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chen‐Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jia‐Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Li‐Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
27
|
Schlögl R. Chemische Batterien mit CO
2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202007397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Schlögl
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| |
Collapse
|
28
|
Abstract
Efforts to obtain raw materials from CO2 by catalytic reduction as a means of combating greenhouse gas emissions are pushing the boundaries of the chemical industry. The dimensions of modern energy regimes, on the one hand, and the necessary transport and trade of globally produced renewable energy, on the other, will require the use of chemical batteries in conjunction with the local production of renewable electricity. The synthesis of methanol is an important option for chemical batteries and will, for that reason, be described here in detail. It is also shown that the necessary, robust, and fundamental understanding of processes and the material science of catalysts for the hydrogenation of CO2 does not yet exist.
Collapse
Affiliation(s)
- Robert Schlögl
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| |
Collapse
|
29
|
|
30
|
Wang X, Yu Z, Ye L, Zhang M, Xiong J, Zhang R, Li X, Ji N, Lu X. Layered Double Hydroxide‐Derived Bimetallic Ni−Cu Catalysts Prompted the Efficient Conversion of γ‐Valerolactone to 2‐Methyltetrahydrofuran. ChemCatChem 2022. [DOI: 10.1002/cctc.202101441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaotong Wang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Lei Ye
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Ming Zhang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Jian Xiong
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Xiaoyun Li
- School of Agriculture Sun Yat-sen University Guangzhou Guangdong 510275 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| |
Collapse
|
31
|
Püschel S, Hammami E, Rösler T, Ehmann KR, Vorholt AJ, Leitner W. Auto-tandem catalytic reductive hydroformylation with continuous multiphase catalyst recycling. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02000e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work covers auto-tandem catalytic hydroformylation and hydrogenation for the synthesis of alcohols for synthetic fuels from renewable olefin cuts. A multiphase catalyst recycling system was proven to be feasible in continuous flow.
Collapse
Affiliation(s)
- Sebastian Püschel
- Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Enes Hammami
- Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thorsten Rösler
- Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Kira R. Ehmann
- Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Andreas J. Vorholt
- Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
32
|
Garcia J, Eichwald J, Zesiger J, Beng TK. Leveraging the 1,3-azadiene-anhydride reaction for the synthesis of functionalized piperidines bearing up to five contiguous stereocenters. RSC Adv 2021; 12:309-318. [PMID: 35424477 PMCID: PMC8978715 DOI: 10.1039/d1ra07390g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
A modular and scalable strategy, which remodels 3-methylglutaric anhydride to 2-oxopiperidines bearing at least three contiguous stereocenters is described. The approach relies on the chemoselective and stereocontrolled annulation of 1,3-azadienes with the anhydride component. The resulting acid-tethered allylic 2-oxopiperidines are then engaged in several selective fragment growth processes, including catalytic denitrative alkenylation, halolactonization, and Vilsmeier-Haack functionalization.
Collapse
Affiliation(s)
- Jorge Garcia
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jayme Zesiger
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
33
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu 2 Cr 2 O 5 Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous-Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021; 60:26639-26646. [PMID: 34617376 PMCID: PMC9298693 DOI: 10.1002/anie.202107916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Indexed: 11/10/2022]
Abstract
Copper chromite is decorated with iron carbide nanoparticles, producing a magnetically activatable multifunctional catalytic system. This system (ICNPs@Cu2 Cr2 O5 ) can reduce aromatic ketones to aromatic alcohols when exposed to magnetic induction. Under magnetic excitation, the ICNPs generate locally confined hot spots, selectively activating the Cu2 Cr2 O5 surface while the global temperature remains low (≈80 °C). The catalyst selectively hydrogenates a scope of benzylic and non-benzylic ketones under mild conditions (3 bar H2 , heptane), while ICNPs@Cu2 Cr2 O5 or Cu2 Cr2 O5 are inactive when the same global temperature is adjusted by conventional heating. A flow reactor is presented that allows the use of magnetic induction for continuous-flow hydrogenation at elevated pressure. The excellent catalytic properties of ICNPs@Cu2 Cr2 O5 for the hydrogenation of biomass-derived furfuralacetone are conserved for at least 17 h on stream, demonstrating for the first time the application of a magnetically heated catalyst to a continuously operated hydrogenation reaction in the liquid phase.
Collapse
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets.Université de ToulouseINSAUPSLPCNOCNRS-UMR5215135 Avenue de Rangueil31077ToulouseFrance
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
34
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu
2
Cr
2
O
5
Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous‐Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets. Université de Toulouse INSA UPS LPCNO CNRS-UMR5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
35
|
Püschel S, Störtte S, Topphoff J, Vorholt AJ, Leitner W. Green Process Design for Reductive Hydroformylation of Renewable Olefin Cuts for Drop-In Diesel Fuels. CHEMSUSCHEM 2021; 14:5226-5234. [PMID: 34145781 PMCID: PMC9291018 DOI: 10.1002/cssc.202100929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Indexed: 06/12/2023]
Abstract
CO2 -neutral fuels are a way to cleaner and more sustainable mobility. Utilization of bio-syngas via Fischer-Tropsch (FT) synthesis represents an interesting route for the production of tailormade biofuels. Recent developments in FT catalyst research led to olefin-enriched products, enabling the synthesis of alcohol-enriched fuels by reductive hydroformylation of the C=C bond. Several alcohols have already proven to be suitable fuel additives with favorable combustion behavior. Here, a hydroformylation-hydrogenation sequence of FT-olefin-paraffin mixtures was investigated as a potential route to alcohols. A liquid-liquid biphasic system with a rhodium/3,3',3''-phosphanetriyltris(benzenesulfonic acid) trisodium salt (TPPTS) catalyst system was chosen for effective catalyst recycling. After optimizing reaction conditions with a model substrate consisting of 1-octene and n-heptane the conversion of an actual olefin-containing C5 -C10 FT product fraction to alcohols in continuously operated processes for 37 h was achieved with a total turnover number of 23679.
Collapse
Affiliation(s)
- Sebastian Püschel
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Sven Störtte
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Johanna Topphoff
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Andreas J. Vorholt
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Walter Leitner
- Molekulare KatalyseMax-Planck-Institut für Chemische EnergiekonversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH AachenWorringerweg 252074AachenGermany
| |
Collapse
|
36
|
Biswal P, Samser S, Meher SK, Chandrasekhar V, Venkatasubbaiah K. Palladium‐Catalyzed Synthesis of α‐Methyl Ketones from Allylic Alcohols and Methanol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Priyabrata Biswal
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| | - Shaikh Samser
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| | - Sushanta Kumar Meher
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad 500 046 India
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Bhubaneswar 752050 Odisha India
| |
Collapse
|
37
|
Dell'Acqua A, Wille L, Stadler BM, Tin S, de Vries JG. Ozonolysis of α-angelica lactone: a renewable route to malonates. Chem Commun (Camb) 2021; 57:10524-10527. [PMID: 34550135 DOI: 10.1039/d1cc03820f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Industrially relevant intermediates such as malonic acid, malonates and 3-oxopropionates can be easily accessed by ozonolysis of α-angelica lactone, derived from the platform chemical levulinic acid. The roles of the solvent and of the quenching conditions are of key importance for the outcome of the reaction.
Collapse
Affiliation(s)
- Andrea Dell'Acqua
- Leibniz Institut für Katalyse, e. V. Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
| | - Lukas Wille
- Leibniz Institut für Katalyse, e. V. Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
| | - Bernhard M Stadler
- Leibniz Institut für Katalyse, e. V. Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
| | - Sergey Tin
- Leibniz Institut für Katalyse, e. V. Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
| | - Johannes G de Vries
- Leibniz Institut für Katalyse, e. V. Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.
| |
Collapse
|
38
|
Averochkin GM, Gordeev EG, Skorobogatko MK, Kucherov FA, Ananikov VP. Systematic Study of Aromatic-Ring-Targeted Cycloadditions of 5-Hydroxymethylfurfural Platform Chemicals. CHEMSUSCHEM 2021; 14:3110-3123. [PMID: 34060725 DOI: 10.1002/cssc.202100818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The reaction space of the furanics-to-aromatics (F2A) conversion process for 5-hydroxymethylfurfural (HMF)-based platform chemicals has been explored both experimentally and by quantum chemistry methods. For the first time, a structure-activity relationship was established in furan-yne cycloaddition for a number of different HMF derivatives. Correlations between the activation energy of the cycloaddition stage and the structure of the substrates were established by molecular modeling methods. Analysis of the concerted and stepwise mechanisms of cycloaddition in the singlet and triplet electronic states of the molecular system was carried out. A series of biobased 7-oxanorbornadienes was obtained in the reaction with dimethyl acetylenedicarboxylate. Various methods of aromatization of the obtained [4+2] adducts have been examined. Rearrangement catalyzed by a Lewis acid leads to the formation of a phenol derivative, whereas reduction by diiron nonacarbonyl leads to the formation of functionalized benzene. Systematic study of the cycloaddition process has revealed a simple way to analyze and predict the relative reactivity of furanic substrates.
Collapse
Affiliation(s)
- Gleb M Averochkin
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Evgeniy G Gordeev
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Matvei K Skorobogatko
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Fedor A Kucherov
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Laboratory of Metal-Complex and Nanoscale Catalysts, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
39
|
Ab initio and kinetics study of the thermal unimolecular decomposition of 2-furfuryl alcohol. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Giustini A, Aschi M, Park H, Meloni G. Theoretical and experimental study on the O( 3P) + 2,5-dimethylfuran reaction in the gas phase. Phys Chem Chem Phys 2021; 23:19424-19434. [PMID: 34296711 DOI: 10.1039/d1cp01724a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report a joint experimental and computational study on the 2,5-dimethylfuran oxidation reaction in the gas phase initiated by atomic oxygen O(3P). The experiments have been performed by using vacuum-ultraviolet synchrotron radiation at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL), at a temperature of 550 K and a pressure of 8 Torr. The experimental data were supported by quantum-chemical calculations along with a kinetic model, also taking into account the possible involvement of different magnetic states, performed in the framework of the RRKM theory. Propyne, acetaldehyde, methylglyoxal, dimethylglyoxal, 3-penten-2-one, 2,5-dimethylfuran-3(2H)-one, and 1,2-diacetyl ethylene have been identified as the main primary products arising under the conditions of the experiment. Our computational model suggests that these species can be formed at the concentration and branching ratio experimentally observed only in the presence of a non-negligible fraction of non-thermalized intermediates.
Collapse
Affiliation(s)
- Andrea Giustini
- Dipartimento di Scienze Fisiche e Chimiche, Universita' degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Universita' degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Heejune Park
- Department of Chemistry, University of San Francisco, 2130 Fulton St, San Francisco, 94117 California, USA.
| | - Giovanni Meloni
- Dipartimento di Scienze Fisiche e Chimiche, Universita' degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy. and Department of Chemistry, University of San Francisco, 2130 Fulton St, San Francisco, 94117 California, USA.
| |
Collapse
|
41
|
Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO 2-responsive support. Nat Chem 2021; 13:916-922. [PMID: 34226704 PMCID: PMC8440215 DOI: 10.1038/s41557-021-00735-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
With the advent of renewable carbon resources, multifunctional catalysts are becoming essential to hydrogenate selectively biomass-derived substrates and intermediates. However, the development of adaptive catalytic systems, that is, with reversibly adjustable reactivity, able to cope with the intermittence of renewable resources remains a challenge. Here, we report the preparation of a catalytic system designed to respond adaptively to feed gas composition in hydrogenation reactions. Ruthenium nanoparticles immobilized on amine-functionalized polymer-grafted silica act as active and stable catalysts for the hydrogenation of biomass-derived furfural acetone and related substrates. Hydrogenation of the carbonyl group is selectively switched on or off if pure H2 or a H2/CO2 mixture is used, respectively. The formation of alkylammonium formate species by the catalytic reaction of CO2 and H2 at the amine-functionalized support has been identified as the most likely molecular trigger for the selectivity switch. As this reaction is fully reversible, the catalyst performance responds almost in real time to the feed gas composition. ![]()
A multifunctional catalytic system composed of ruthenium nanoparticles immobilized on a silica surface decorated with an amine-functionalized polymer is used for the hydrogenation of biomass-derived furfural acetone and related substrates. The presence or absence of CO2 in the gas feed alters the selectivity of the hydrogenation—producing either a ketone or a saturated alcohol, respectively—in a fully reversible manner.
Collapse
|
42
|
Lu Z, Zheng Q, Zeng G, Kuang Y, Clark JH, Tu T. Highly efficient NHC-iridium-catalyzed β-methylation of alcohols with methanol at low catalyst loadings. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1017-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
König A, Siska M, Schweidtmann AM, Rittig JG, Viell J, Mitsos A, Dahmen M. Designing production-optimal alternative fuels for conventional, flexible-fuel, and ultra-high efficiency engines. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Asare Bediako BB, Qian Q, Han B. Synthesis of C 2+ Chemicals from CO 2 and H 2 via C-C Bond Formation. Acc Chem Res 2021; 54:2467-2476. [PMID: 33844914 DOI: 10.1021/acs.accounts.1c00091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ConspectusThe severity of global warming necessitates urgent CO2 mitigation strategies. Notably, CO2 is a cheap, abundant, and renewable carbon resource, and its chemical transformation has attracted great attention from society. Because CO2 is in the highest oxidation state of the C atom, the hydrogenation of CO2 is the basic means of converting it to organic chemicals. With the rapid development of H2 generation by water splitting using electricity from renewable resources, reactions using CO2 and H2 have become increasingly important. In the past few decades, the advances of CO2 hydrogenation have mostly been focused on the synthesis of C1 products, such as CO, formic acid and its derivatives, methanol, and methane. In many cases, the chemicals with two or more carbons (C2+) are more important. However, the synthesis of C2+ chemicals from CO2 and H2 is much more difficult because it involves controlled hydrogenation and simultaneous C-C bond formation. Obviously, investigations on this topic are of great scientific and practical significance. In recent years, we have been targeting this issue and have successfully synthesized the basic C2+ chemicals including carboxylic acids, alcohols, and liquid hydrocarbons, during which we discovered several important new reactions and new reaction pathways. In this Account, we systematically present our work and insights in a broad context with other related reports.1.We discovered a reaction of acetic acid production from methanol, CO2 and H2, which is different from the well-known methanol carbonylation. We also discovered a reaction of C3+ carboxylic acids syntheses using ethers to react with CO2 and H2, which proceeds via olefins as intermediates. Following the new reaction, we realized the synthesis of acetamide by introducing various amines, which may inspire the development of further catalytic schemes for preparing a variety of special chemicals using carbon dioxide as a building block.2.We designed a series of homogeneous catalysts to accelerate the production of C2+ alcohols via CO2 hydrogenation. In the heterogeneously catalyzed CO2 hydrogenation, we discovered the role of water in enhancing the synthesis of C2+ alcohols. We also developed a series of routes for ethanol production using CO2 and H2 to react with some substrates, such as methanol, dimethyl ether, aryl methyl ether, lignin, or paraformaldehyde.3.We designed a catalyst that can directly hydrogenate CO2 to C5+ hydrocarbons at 200 °C, not via the traditional CO or methanol intermediates. We also designed a route to couple homogeneous and heterogeneous catalysis, where exceptional results are achieved at 180 °C.
Collapse
Affiliation(s)
- Bernard Baffour Asare Bediako
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
45
|
Han Y, Dai J, Xu R, Ai W, Zheng L, Wang Y, Yan W, Chen W, Luo J, Liu Q, Wang D, Li Y. Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhu Han
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jun Dai
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Ruirui Xu
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710000, China
| | - Wenying Ai
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
| | - Wenxing Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Luo
- Center for Electron Microscopy, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Cao Z, Xu Y, Lyu P, Dierks M, Morales‐García Á, Schrader W, Nachtigall P, Schüth F. Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure. CHEMSUSCHEM 2021; 14:373-378. [PMID: 33174387 PMCID: PMC7839488 DOI: 10.1002/cssc.202002248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Indexed: 05/15/2023]
Abstract
The present study describes an interesting and practical catalytic system that allows flexible conversion of lignin into aromatic or aliphatic hydrocarbons, depending on the hydrogen partial pressure. A combination of experiment and theory shows that the product distribution between aromatics and aliphatics can be simply tuned by controlling the availability of hydrogen on the catalyst surface. Noticeably, these pathways lead to almost complete oxygen removal from lignin biomass, yielding high-quality hydrocarbons. Thus, hydrogen-lignin co-refining by using this catalytic system provides high flexibility in hydrogen storage/consumption towards meeting different regional and temporal demands.
Collapse
Affiliation(s)
- Zhengwen Cao
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Yun Xu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Pengbo Lyu
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University128 43Prague 2Czech Republic
| | - Michael Dierks
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Ángel Morales‐García
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University128 43Prague 2Czech Republic
- Present AddressDepartament de Ciència de Materials i Química Física &Institut de Química Teòrica i Computacional (IQTCUB)Universitat de Barcelonac/Martí i Franquès 1–1108028BarcelonaSpain
| | - Wolfgang Schrader
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Petr Nachtigall
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University128 43Prague 2Czech Republic
| | - Ferdi Schüth
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
47
|
Bordet A, Moos G, Welsh C, Licence P, Luska KL, Leitner W. Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems. ACS Catal 2020; 10:13904-13912. [PMID: 33343998 PMCID: PMC7737233 DOI: 10.1021/acscatal.0c03559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Rhodium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Rh@SILP) act as effective catalysts for the hydrogenation of biomass-derived furfuralacetone. The structure of ionic liquid-type (IL) molecular modifiers was systematically varied regarding spacer, side chain, and anion to assess the influence on the NP synthesis and their catalytic properties. Well-dispersed Rh NPs with diameters in the range of 0.6-2.0 nm were formed on all SILP materials, whereby the actual size was dependent significantly on the IL structure. The resulting variations in catalytic activity for hydrogenation of the C=O moiety in furfuralacetone allowed control of the product selectivity to obtain either the saturated alcohol or the ketone in high yield. Experiments conducted under batch and continuous flow conditions demonstrated that Rh NPs immobilized on SILPs with suitable IL structures are more active and much more stable than Rh@SiO2 catalyst synthesized on unmodified silica.
Collapse
Affiliation(s)
- Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Gilles Moos
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Calum Welsh
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Peter Licence
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Kylie L. Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| |
Collapse
|
48
|
Hermens JGH, Freese T, van den Berg KJ, van Gemert R, Feringa BL. A coating from nature. SCIENCE ADVANCES 2020; 6:6/51/eabe0026. [PMID: 33328241 PMCID: PMC7744085 DOI: 10.1126/sciadv.abe0026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 06/01/2023]
Abstract
For almost a century, petrochemical-based monomers like acrylates have been widely used as the basis for coatings, resins, and paints. The development of sustainable alternatives, integrating the principles of green chemistry in starting material, synthesis process, and product function, offers tremendous challenges for science and society. Here, we report on alkoxybutenolides as a bio-based alternative for acrylates and the formation of high-performance coatings. Starting from biomass-derived furfural and an environmentally benign photochemical conversion using visible light and oxygen in a flow reactor provides the alkoxybutenolide monomers. This is followed by radical (co)polymerization, which results in coatings with tunable properties for applications on distinct surfaces like glass or plastic. The performance is comparable to current petrochemical-derived industrial coatings.
Collapse
Affiliation(s)
- Johannes G H Hermens
- Advanced Research Centre CBBC, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Thomas Freese
- Advanced Research Centre CBBC, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Keimpe J van den Berg
- Department Resin Technology, Akzo Nobel Car Refinishes BV, Sassenheim, 2171 AJ, Netherlands
| | - Rogier van Gemert
- Department Resin Technology, Akzo Nobel Car Refinishes BV, Sassenheim, 2171 AJ, Netherlands
| | - Ben L Feringa
- Advanced Research Centre CBBC, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands.
| |
Collapse
|
49
|
Muldoon JA, Harvey BG. Bio-Based Cycloalkanes: The Missing Link to High-Performance Sustainable Jet Fuels. CHEMSUSCHEM 2020; 13:5777-5807. [PMID: 32810345 DOI: 10.1002/cssc.202001641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Indexed: 05/12/2023]
Abstract
The development of sustainable energy solutions that reduce global carbon emissions, while maintaining high living standards, is one of the grand challenges of the current century. Transportation fuels are critical to economic development, globalization, and the advancement of society. Although ground vehicles and small aircraft are beginning a slow transition toward electric propulsion with energy sourced from solar radiation or wind, the extreme power requirements of jet aircraft require a more concentrated source of energy that is conveniently provided by liquid hydrocarbon fuels. This Review describes recent efforts to develop efficient routes for the conversion of crude biomass sources (e. g., lignocellulose) to cycloalkanes. These cycloalkanes impart advantageous properties to jet fuels, including increased density, higher volumetric heat of combustion, and enhanced operability. The combination of bio-based cycloalkanes and synthetic paraffinic kerosenes allows for the preparation of 100 % bio-based fuels that can outperform conventional petroleum-based fuels. In this Review methods are described that convert biomass-derived small molecules, including furfural, furfuryl alcohol, 5-hydroxymethylfurfural, cyclic ketones, phenolics, acyclic ketones, cyclic alcohols, furans, esters, and alkenes to high-density cycloalkanes. In addition to describing the chemical transformations and catalysts that have been developed to efficiently produce various cycloalkanes, this Review includes summaries of key fuel properties, which highlight the ability to generate fuels with customized performance metrics. This work is intended to inspire other researchers to study the conversion of sustainable feedstocks to full-performance aviation fuels. An acceleration of this research is critical to reducing the carbon footprint of commercial and military aviation on a timescale that will help blunt the impacts of global warming.
Collapse
Affiliation(s)
- Jake A Muldoon
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| | - Benjamin G Harvey
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| |
Collapse
|
50
|
Kaithal A, Hölscher M, Leitner W. Carbon monoxide and hydrogen (syngas) as a C1-building block for selective catalytic methylation. Chem Sci 2020; 12:976-982. [PMID: 34163864 PMCID: PMC8179066 DOI: 10.1039/d0sc05404f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 01/14/2023] Open
Abstract
A catalytic reaction using syngas (CO/H2) as feedstock for the selective β-methylation of alcohols was developed whereby carbon monoxide acts as a C1 source and hydrogen gas as a reducing agent. The overall transformation occurs through an intricate network of metal-catalyzed and base-mediated reactions. The molecular complex [Mn(CO)2Br[HN(C2H4P i Pr2)2]] 1 comprising earth-abundant manganese acts as the metal component in the catalytic system enabling the generation of formaldehyde from syngas in a synthetically useful reaction. This new syngas conversion opens pathways to install methyl branches at sp3 carbon centers utilizing renewable feedstocks and energy for the synthesis of biologically active compounds, fine chemicals, and advanced biofuels.
Collapse
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 Mülheim a.d. Ruhr 45470 Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 Mülheim a.d. Ruhr 45470 Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| |
Collapse
|