1
|
Huang KY, Li GY, Liang X, Li K, Li L, Cui G, Liu XY. "On-the-Fly" Nonadiabatic Dynamics Simulation on the Ultrafast Photoisomerization of a Molecular Photoswitch Iminothioindoxyl: An RMS-CASPT2 Investigation. J Phys Chem A 2024; 128:7145-7157. [PMID: 39145596 DOI: 10.1021/acs.jpca.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Iminothioindoxyl (ITI) is a new class of photoswitch that exhibits many excellent properties including well-separated absorption bands in the visible region for both conformers, ultrafast Z to E photoisomerization as well as the millisecond reisomerization at room temperature for the E isomer, and switchable ability in both solids and various solvents. However, the underlying ultrafast photoisomerization mechanism at the atomic level remains unclear. In this work, we have employed a combination of high-level RMS-CASPT2-based static electronic structure calculations and nonadiabatic dynamics simulations to investigate the ultrafast photoisomerization dynamics of ITI. Based on the minimum-energy structures, minimum-energy conical intersections, linear interpolation internal coordinate paths, and nonadiabatic dynamics simulations, the overall photoisomerization scenario of ITI upon excitation is established. Upon excitation around 416 nm, the molecule will be excited to the S2 state considering its close energy to the experimentally measured absorption maximum and larger oscillator strength, from which ultrafast decay of S2 to S1 state can take place efficiently with a time constant of 62 fs. However, the photoisomerization is not likely to complete in the S2 state since the dihedral associated with the Z to E isomerization changes little during the relaxation. Upon relaxing to the S1 state, the molecule will decay to the S0 state ultrafast with a time constant of 232 fs. In contrast, the decay of the S1 state is important for the isomerization considering that the dihedral related to the isomerization of the hopping structures is close to 90°. Therefore, the S1/S0 intersection region should be important for the isomerization of ITI. Arriving at the S0 state, the molecule can either go back to the original Z reactant or isomerize to the E products. At the end of the 500 fs simulation time, the E configuration accounts for nearly 37% of the final structures. Moreover, the photoisomerization mechanism is different from the isomerization mechanism in the ground state; i.e., instead of the inversion mechanism in the ground state, the photoisomerization prefers the rotation mechanism. Our results not only agree well with previous experimental studies but also provide some novel insights that could be helpful for future improvements in the performance of the ITI photoswitches.
Collapse
Affiliation(s)
- Kai-Yue Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Gao-Yi Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoqin Liang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Kai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
2
|
Sunny AS, Cleven EC, Kumar P, Venkataramani S, Walls JD, Ramamurthy V. Structure, Dynamics, and Reactivity of Encapsulated Molecules in Restricted Spaces: Arylazoisoxazoles within an Octa Acid Capsule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17638-17655. [PMID: 39110852 DOI: 10.1021/acs.langmuir.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this study, a well-defined organic capsule assembled from two octa acid (OA) molecules acting as host and select arylazoisoxazoles (AAIO) acting as guests were employed to demonstrate that confined molecules have restricted freedom that translates into reaction selectivity in both ground and excited states. The behavior of these AAIO guests in confined capsules was found to be different from that found in both crystals, where there is very little freedom, and in isotropic solvents, where there is complete freedom. Through one-dimensional (1D) and two-dimensional (2D) 1H NMR spectroscopic experiments, we have established a relationship between structure, dynamics and reactivity of molecules confined in an OA capsule. Introduction of CF3 and CH3 substitution at the 4-position of the aryl group of AAIO reveals that in addition to space confinement, weak interactions between the guest and the OA capsule control the dynamics and reactivity of guest molecules. 1H NMR studies revealed that there is a temperature-dependence to guest molecules tumbling (180° rotation along the capsular short axis) within an OA capsule. While 1H NMR points to the occurrence of tumbling motion, MD simulations and simulation of the temperature-dependent NMR signals provide an insight into the mechanism of tumbling within OA capsules. Thermal and photochemical isomerization of AAIO were found to occur within an OA capsule just as in organic solvents. The observed selectivity noted during thermal and photo induced isomerization of OA encapsulated AAIOs can be qualitatively understood in terms of the well-known concepts due to Bell-Evans-Polanyi (BEP principle), Hammond and Zimmerman.
Collapse
Affiliation(s)
- Amal Sam Sunny
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Elliott C Cleven
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | |
Collapse
|
3
|
Shi W, Ma J, Jiang C, Taketsugu T. Advanced theoretical design of light-driven molecular rotary motors: enhancing thermal helix inversion and visible-light activation. Phys Chem Chem Phys 2024; 26:15672-15680. [PMID: 38766713 DOI: 10.1039/d4cp00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this study, we have advanced the field of light-driven molecular rotary motors (LDMRMs) by achieving two pivotal goals: lowering the thermal helix inversion (THI) barrier and extending the absorption wavelength into the visible spectrum. This study involves the structural reengineering of a second-generation visible LDMRM, resulting in the synthesis of a novel class, specifically, 2-((2S)-5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-yl)-3-oxo-2,3-dihydro-1H-dibenzo[e,g]indole-6,9-dicarbonitrile. This redesigned motor stands out with its two photoisomerization stages and two thermal helix inversions, featuring exceptionally low THI barriers (4.00 and 2.05 kcal mol-1 at the OM2/MRCI level for the EM → EP and ZM → ZP processes, respectively). Moreover, it displays absorption wavelengths in the visible light range (482.98 and 465.76 nm for the EP and ZP isomers, respectively, at the TD-PBE0-D3/6-31G(d,p) level), surpassing its predecessors in efficiency, as indicated by the narrow HOMO-LUMO energy gap. Ultrafast photoisomerization kinetics (approximately 0.8-1.6 ps) and high quantum yields (around 0.3-0.6) were observed through trajectory surface hopping simulations. Additionally, the simulated time-resolved fluorescence emission spectrum indicates a significantly reduced "dark state" duration (0.09-0.26 ps) in these newly designed LDMRMs compared to the original ones, marking a substantial leap forward in the design and efficiency of LDMRMs.
Collapse
Affiliation(s)
- Weiliang Shi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Jianzheng Ma
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Chenwei Jiang
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Steinmüller SAM, Odaybat M, Galli G, Prischich D, Fuchter MJ, Decker M. Arylazobenzimidazoles: versatile visible-light photoswitches with tuneable Z-isomer stability. Chem Sci 2024; 15:5360-5367. [PMID: 38577348 PMCID: PMC10988581 DOI: 10.1039/d3sc05246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Benzimidazole heterocycles are of great importance in medicinal chemistry due to their applicability to a wide range of pharmacological targets, therefore representing a prototypical "privileged structure". In photopharmacology, azoheteroarene photoswitches have emerged as valuable tools for a variety of applications due to the high tuneability of their photophysical properties. Benzimidazole-based photoswitches could therefore enable the optically-controlled investigation of many pharmacological targets and find application in materials science. Here we report a combined experimental and computational investigation of such arylazobenzimidazoles, which allowed us to identify derivatives with near-quantitative bidirectional photoswitching using visible light and highly tuneable Z-isomer stability. We further demonstrate that arylazobenzimidazoles bearing a free benzimidazole N-H group not only exhibit efficient bidirectional photoswitching, but also excellent thermal Z-isomer stability, contrary to previously reported fast-relaxing Z-isomers of N-H azoheteroarenes. Finally, we describe derivatives which can be reversibly isomerized with cyan and red light, thereby enabling significantly "red-shifted" photocontrol over prior azoheteroarenes. The understanding gained in this study should enable future photopharmacological efforts by employing photoswitches based on the privileged benzimidazole structure.
Collapse
Affiliation(s)
- Sophie A M Steinmüller
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Magdalena Odaybat
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London London W12 0BZ UK
| | - Giulia Galli
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Davia Prischich
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London London W12 0BZ UK
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London London W12 0BZ UK
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
5
|
Hao Y, Han R, Li S, Liu L, Fang WH. A Complete Unveiling of the Mechanism and Chirality in Photoisomerization of Arylazopyrazole 3pzH: Combined Electronic Structure Calculations and AIMS Dynamic Simulations. J Phys Chem A 2024; 128:528-538. [PMID: 38215031 DOI: 10.1021/acs.jpca.3c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The arylazopyrazole 3pzH as a novel photoswitch exhibits quantitative switching and high thermal stability. In this work, combined electronic structure calculations and ab initio multiple spawning (AIMS) dynamic simulations were performed to systemically investigate the cis ↔ trans photoisomerization mechanism and the chiral preference after photoexcitation of 3pzH to the first excited singlet state (S1). Unlike most of the azoheteroarene photoswitches reported previously, many twisted and T-shaped cis isomers were found to be stable for 3pzH in the S0 state, owing to the moderate interaction between the hydrogen atom and π electrons of the aromatic ring. Two twisted cis isomers with different chirality ((M)-Z1 and (P)-Z1), the most stable T-shaped cis isomer ((T)-Z2), and the most stable planar trans isomer (E2) were selected as the initial structures to carry out the AIMS nonadiabatic dynamic simulations. Following excitation to the S1 state, all of the cis isomers decayed to conical intersection (CI) regions via the same bicycle pedal mechanism, while the evolution of the trans isomers to their CI regions was achieved via rotation around the N═N bond. More importantly, chiral preferences were found for the twisted cis isomers in the S1 state through the AIMS dynamic simulations due to the steric effect and static electronic repulsion. Notably, chirality was also observed in S1 isomerization starting from the planar E2 isomer because of the dynamic effect. After the nonadiabatic transition to the S0 state, the bicycle pedal mechanism was found to play a crucial role in cis ↔ trans photoisomerization. The simulated photoisomerization productivities were generally consistent with past experimental observations. Our calculations not only uncover the underlying reason for the excellent photoswitching properties of 3pzH but also enrich the knowledge of photoisomerization for azoheteroarene photoswitches, which will surely benefit their rational design.
Collapse
Affiliation(s)
- Yuxia Hao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruinong Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuai Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Trân HQ, Kawano S, Thielemann RE, Tanaka K, Ravoo BJ. Calamitic Liquid Crystals for Reversible Light-Modulated Phase Regulation Based on Arylazopyrazole Photoswitches. Chemistry 2024; 30:e202302958. [PMID: 37944022 DOI: 10.1002/chem.202302958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The design of responsive liquid crystals enables a diversity of technological applications. Especially photochromic liquid crystals gained a lot of interest in recent years due to the excellent spatiotemporal control of their phase transitions. In this work we present calamitic light responsive mesogens based on a library of arylazopyrazole photoswitches. These compounds show liquid-crystalline behavior as shown by differential scanning calorimetry, grazing incidence X-ray diffraction and polarized optical microscopy. UV-vis spectroscopy and NMR analysis confirmed the excellent photophysical properties in solution and thin film. Additionally, polarized optical microscopy studies of the pristine compounds show reversible phase transition upon irradiation with light. Moreover, as a dopant in the commercially available liquid crystal 4-cyano-4'-pentylbiphenyl (5CB), the temperature range was reduced to ambient temperatures while preserving the photophysical properties. Remarkably, this co-assembled system shows reversible liquid-crystalline to isotropic phase transition upon irradiation with light of different wavelengths. The spatiotemporal control of the phase transition of the liquid crystals offers opportunities in the development of optical devices.
Collapse
Affiliation(s)
- Hoàn Quân Trân
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Shinichiro Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Rebecca E Thielemann
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
7
|
Ma J, Zhao D, Yu L, Jiang C, Lan Z, Li F. Simultaneously improving the efficiencies of photo- and thermal isomerization of an oxindole-based light-driven molecular rotary motor by a structural redesign. Phys Chem Chem Phys 2023; 25:12800-12809. [PMID: 37129050 DOI: 10.1039/d3cp00559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We designed a novel highly efficient light-driven molecular rotary motor theoretically by using electronic structure calculations and nonadiabatic dynamics simulations, and it showed excellent performance for both photo- and thermal isomerization processes simultaneously. By the small structural modification based on 3-(2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-1-methylindolin-2-one (DDIYM) synthesized by Feringa et al. recently, an oxindole-based light-driven molecular rotary motor, 3-(1,5-dimethyl-4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ylidene)-1-methylindolin-2-one (DDPYM), is proposed, which displays a significant electronic push-pull character and weak steric hindrance for double-bond isomerization. The newly designed motor DDPYM shows a remarkable improvement of the quantum yield for both EP → ZM and ZP → EM photoisomerization processes, compared to the original motor DDIYM. Furthermore, the rotary motion in photoisomerization processes of DDPYM behaves more like a pure axial rotational motion approximately, while that of DDIYM is an obvious precessional motion. The weakness of the steric hindrance reduces the energy barriers of the thermal helix EM → EP and ZM → ZP inversion steps, and would accelerate two ground-state isomerization steps significantly. Our results confirm the feasibility of simultaneously improving the efficiencies of photo- and thermal isomerization of oxindole-based light-driven molecular rotary motors and this design idea sheds light on the future development of more efficient molecular motors.
Collapse
Affiliation(s)
- Jianzheng Ma
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xian 710049, China.
| | - Di Zhao
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xian 710049, China.
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, China
| | - Chenwei Jiang
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xian 710049, China.
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Fuli Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xian 710049, China.
| |
Collapse
|
8
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Hricovíni M, Asher JR, Hricovíni M. Intramolecular crankshaft-type rearrangement in a photoisomerised glycoconjugate †. RSC Adv 2023; 13:9413-9417. [PMID: 36968057 PMCID: PMC10034262 DOI: 10.1039/d3ra01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
High-resolution NMR spectroscopy revealed that a novel glycoconjugate, consisting of two β-glucopyranoses attached to a quinazolinone-like structure, exhibited photoisomerization around the –N–N
<svg xmlns="http://www.w3.org/2000/svg" version="1.0" width="13.200000pt" height="16.000000pt" viewBox="0 0 13.200000 16.000000" preserveAspectRatio="xMidYMid meet"><metadata>
Created by potrace 1.16, written by Peter Selinger 2001-2019
</metadata><g transform="translate(1.000000,15.000000) scale(0.017500,-0.017500)" fill="currentColor" stroke="none"><path d="M0 440 l0 -40 320 0 320 0 0 40 0 40 -320 0 -320 0 0 -40z M0 280 l0 -40 320 0 320 0 0 40 0 40 -320 0 -320 0 0 -40z"/></g></svg>
and CH–C– bonds of the –N–NCH–C– linkage in the same timeframe (the so-called “crankshaft rotation”) upon exposure to UV light. Experimental NMR data combined with DFT calculations discovered that the attachment of carbohydrate residues to photoactive compounds significantly changed the isomerization process and intramolecular rearrangement compared to the unglycosylated system, while the overall molecular structure remained virtually unchanged. A reversible photoinduced intramolecular crankshaft-type rearrangement in a glycoconjugate proceeds simultaneously at both the –N–N and CH–C– bonds.![]()
Collapse
Affiliation(s)
- Michal Hricovíni
- Institute of Chemistry, Slovak Academy of SciencesDúbravská cesta 9845 38 BratislavaSlovak Republic
| | - James R. Asher
- Institute of Inorganic Chemistry, Slovak Academy of SciencesDúbravská cesta 9845 36 BratislavaSlovak Republic
- Faculty of Natural Sciences, Department of Inorganic Chemistry, Comenius UniversityMlynská Dolina, CH284215BratislavaSlovak Republic
| | - Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of SciencesDúbravská cesta 9845 38 BratislavaSlovak Republic+421-2-5941-0222+421-2-5941-0323
| |
Collapse
|
10
|
Ma J, Zhao D, Jiang C, Lan Z, Li F. Effect of Temperature on Photoisomerization Dynamics of a Newly Designed Two-Stroke Light-Driven Molecular Rotary Motor. Int J Mol Sci 2022; 23:ijms23179694. [PMID: 36077091 PMCID: PMC9456002 DOI: 10.3390/ijms23179694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The working mechanism of conventional light-driven molecular rotary motors, especially Feringa-type motors, contains two photoisomerization steps and two thermal helix inversion steps. Due to the existence of a thermal helix inversion step, both the ability to work at lower temperatures and the rotation speed are limited. In this work, a two-stroke light-driven molecular rotary motor, 2-(1,5-dimethyl-4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDPY), is proposed, which is capable of performing unidirectional and repetitive rotation by only two photoisomerization (EP→ZP and ZP→EP) steps. With trajectory surface-hopping simulation at the semi-empirical OM2/MRCI level, the EP→ZP and ZP→EP nonadiabatic dynamics of DDPY were systematically studied at different temperatures. Both EP→ZP and ZP→EP photoisomerizations are on an ultrafast timescale (ca. 200–300 fs). The decay mode of EP→ZP photoisomerization is approximately bi-exponential, while that of ZP→EP photoisomerization is found to be periodic. For EP and ZP isomers of DDPY, after the S0→S1 excitation, the dynamical processes of nonadiabatic decay are both followed by twisting about the central C=C double bond and the pyramidalization of the C atom at the stator-axle linkage. The effect of temperature on the nonadiabatic dynamics of EP→ZP and ZP→EP photoisomerizations of DDPY has been systematically investigated. The average lifetimes of the S1 excited state and quantum yields for both EP→ZP and ZP→EP photoisomerization are almost temperature-independent, while the corresponding unidirectionality of rotation is significantly increased (e.g., 74% for EP→ZP and 72% for ZP→EP at 300 K vs 100% for EP→ZP and 94% for ZP→EP at 50 K) with lowering the temperature.
Collapse
Affiliation(s)
- Jianzheng Ma
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Di Zhao
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chenwei Jiang
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (C.J.); (Z.L.)
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Correspondence: (C.J.); (Z.L.)
| | - Fuli Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
11
|
Wu J, Chen X, Peng LY, Cui G, Xia SH. Excited-State Deactivation Mechanism of 3,5-bis(2-hydroxyphenyl)-1 H-1,2,4-triazole: Electronic Structure Calculations and Nonadiabatic Dynamics Simulations. J Phys Chem A 2022; 126:4002-4012. [PMID: 35730538 DOI: 10.1021/acs.jpca.2c02080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
3,5-bis(2-Hydroxyphenyl)-1H-1,2,4-triazole (bis-HPTA) has attracted wide attention due to the important application in the detection of microorganisms and insecticidal activity. However, the mechanisms of excited-state intramolecular proton transfer (ESIPT) process and decay pathways are still a matter of debate. In this work, we have comprehensively investigated the photodynamics of bis-HPTA by executing combined electronic structure calculations and nonadiabatic surface-hopping dynamics simulations. Based on the computed electronic structure and dynamics information, we propose two nonadiabatic deactivation channels that efficiently populate the ground state from the Franck-Condon region. In the first one, after being excited to the bright S1 state, bis-HPTA molecule undergoes an ultrafast and barrierless ESIPT-1 process. Then, the system encounters with an energetically accessible S1/S0 conical intersection (CI), which funnels the system to the ground state speedily. Afterward, the keto species either arrives at the keto product or return to its enol species via a ground-state proton transfer in the S0 state. In the other excited-state decay channel, the S1 system hops to the ground state through a different CI, which involves the ESIPT-2 process. In our dynamics simulations, about 79.6% of the trajectories decay to the S0 state via the first CI, while the remaining ones employ the second conical intersection. The results of dynamics simulations also demonstrated that the lifetime of the S1 state is estimated as 315 fs. The present work will give elaborating mechanistic information of similar compounds in various environments.
Collapse
Affiliation(s)
- Jiahui Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaohang Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
12
|
Schulte AM, Kolarski D, Sundaram V, Srivastava A, Tama F, Feringa BL, Szymanski W. Light-Control over Casein Kinase 1δ Activity with Photopharmacology: A Clear Case for Arylazopyrazole-Based Inhibitors. Int J Mol Sci 2022; 23:ijms23105326. [PMID: 35628143 PMCID: PMC9140716 DOI: 10.3390/ijms23105326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Protein kinases are responsible for healthy cellular processes and signalling pathways, and their dysfunction is the basis of many pathologies. There are numerous small molecule inhibitors of protein kinases that systemically regulate dysfunctional signalling processes. However, attaining selectivity in kinase inhibition within the complex human kinome is still a challenge that inspires unconventional approaches. One of those approaches is photopharmacology, which uses light-controlled bioactive molecules to selectively activate drugs only at the intended space and time, thereby avoiding side effects outside of the irradiated area. Still, in the context of kinase inhibition, photopharmacology has thus far been rather unsuccessful in providing light-controlled drugs. Here, we present the discovery and optimisation of a photoswitchable inhibitor of casein kinase 1δ (CK1δ), important for the control of cell differentiation, circadian rhythm, DNA repair, apoptosis, and numerous other signalling processes. Varying the position at which the light-responsive azobenzene moiety has been introduced into a known CK1δ inhibitor, LH846, revealed the preferred regioisomer for efficient photo-modulation of inhibitory activity, but the photoswitchable inhibitor suffered from sub-optimal (photo)chemical properties. Replacement of the bis-phenyl azobenzene group with the arylazopyrazole moiety yielded a superior photoswitch with very high photostationary state distributions, increased solubility and a 10-fold difference in activity between irradiated and thermally adapted samples. The reasons behind those findings are explored with molecular docking and molecular dynamics simulations. Results described here show how the evaluation of privileged molecular architecture, followed by the optimisation of the photoswitchable unit, is a valuable strategy for the challenging design of the photoswitchable kinase inhibitors.
Collapse
Affiliation(s)
- Albert M. Schulte
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
| | - Dušan Kolarski
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
| | - Vidya Sundaram
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (V.S.); (A.S.)
| | - Ashutosh Srivastava
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (V.S.); (A.S.)
| | - Florence Tama
- Institute of Transformative BioMolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
- Department of Physics, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Computational Structural Biology Unit, RIKEN-Center for Computational Science, Chuo, Kobe 650-0047, Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
- Correspondence: (B.L.F.); (W.S.)
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence: (B.L.F.); (W.S.)
| |
Collapse
|
13
|
Design and Nonadiabatic Photoisomerization Dynamics Study of a Three-Stroke Light-Driven Molecular Rotary Motor. Int J Mol Sci 2022; 23:ijms23073908. [PMID: 35409268 PMCID: PMC8999534 DOI: 10.3390/ijms23073908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Working cycle of conventional light-driven molecular rotary motors (LDMRMs), especially Feringa-type motors, usually have four steps, two photoisomerization steps, and two thermal helix inversion (THI) steps. THI steps hinder the ability of the motor to operate at lower temperatures and limit the rotation speed of LDMRMs. A three-stroke LDMRM, 2-(2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDIY), is proposed, which is capable of completing an unidirectional rotation by two photoisomerization steps and one thermal helix inversion step at room temperature. On the basis of trajectory surface-hopping simulation at the semi-empirical OM2/MRCI level, the EP→ZP and ZP→EM nonadiabatic photoisomerization dynamics of DDIY were systematically analyzed. Quantum yields of EP→ZP and ZP→EM photoisomerization of DDIY are ca. 34% and 18%, respectively. Both EP→ZP and ZP→EM photoisomerization processes occur on an ultrafast time scale (ca. 100-300 fs). This three-stroke LDMRM may stimulate further research for the development of new families of more efficient LDMRMs.
Collapse
|
14
|
Adrion DM, Lopez SA. Cross-conjugation controls the stabilities and photophysical properties of heteroazoarene photoswitches. Org Biomol Chem 2022; 20:5989-5998. [PMID: 35014651 DOI: 10.1039/d1ob02026a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Azoarene photoswitches are versatile molecules that interconvert from their E-isomer to their Z-isomer with light. Azobenzene is a prototypical photoswitch but its derivatives can be poorly suited for in vivo applications such as photopharmacology due to undesired photochemical reactions promoted by ultraviolet light and the relatively short half-life (t1/2) of the Z-isomer (2 days). Experimental and computational studies suggest that these properties (λmax of the E isomer and t1/2 of the Z-isomer) are inversely related. We identified isomeric azobisthiophenes and azobisfurans from a high-throughput screening study of 1540 azoarenes as photoswitch candidates with improved λmax and t1/2 values relative to azobenzene. We used density functional theory to predict the activation free energies and vertical excitation energies of the E- and Z-isomers of 2,2- and 3,3-substituted azobisthiophenes and azobisfurans. The half-lives depend on whether the heterocycles are π-conjugated or cross-conjugated with the diazo π-bond. The 2,2-substituted azoarenes both have t1/2 values on the scale of 1 hour, while the 3,3-analogues have computed half-lives of 40 and 230 years (thiophene and furan, respectively). The 2,2-substituted heteroazoarenes have significantly higher λmax absorptions than their 3,3-substituted analogues: 76 nm for azofuran and 77 nm for azothiophene.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
15
|
Hricovíni M, Asher JR, Hricovíni M. A study of the photochemical behaviour and relaxation mechanisms of anti– syn isomerisation around quinazolinone –N–N bonds. RSC Adv 2022; 12:27442-27452. [DOI: 10.1039/d2ra04529j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
High-resolution NMR experiments revealed that differently substituted quinazolinone-based Schiff bases undergo anti to syn isomerisation on exposure to ultraviolet light in DMSO solution.
Collapse
Affiliation(s)
- Michal Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| | - James R. Asher
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovak Republic
- Faculty of Natural Sciences, Department of Inorganic Chemistry, Comenius University, Mlynská Dolina, CH2, 84215, Bratislava, Slovak Republic
| | - Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| |
Collapse
|
16
|
Zhang M, Wang M, Guo Y, Shi Y, Wang J, Chen Y, Zhao C, Zhou Y, Xiao Y, Zhang H, Zhao G. Unveiling the nonadiabatic photoisomerization mechanism of hemicyanines for UV photoprotection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119949. [PMID: 34023551 DOI: 10.1016/j.saa.2021.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, the nonadiabatic energy relaxation mechanism of hemicyanines for UV photoprotection were investigated by using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) method for the first time. The absorption spectra and potential energy surfaces (PESs) of four hemicyanines with different positions of substituents were presented. The maximum absorption peaks of the four hemicyanines are located in the UVA region. In addition, all these hemicyanine molecules also have light absorption in both the UVB and UVC regions. At the same time, we found that the trans-cis photoisomerization PESs of all these hemicyanines have a significant conical intersection (CI) point between the first excited state and the ground state. Herein, it was first demonstrated that the UV energy absorbed by the hemicyanines could be dissipated nonadiabatically through the CI point by using the trans-cis photoisomerization dynamics mechanism. This work proves that hemicyanines have the possibility to be applied for UV photoabsorbers, and provides important basis for designing new type of hemicyanines for UV photoprotection.
Collapse
Affiliation(s)
- Mingshui Zhang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Shi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Jun Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China.
| | - Yibing Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Chenyang Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yi Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yongze Xiao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Haoyue Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
17
|
Avdic I, Kempfer-Robertson EM, Thompson LM. Oriented External Electric Field Tuning of Unsubstituted Azoheteroarene Thermal Isomerization Half-Lives. J Phys Chem A 2021; 125:8238-8248. [PMID: 34494847 DOI: 10.1021/acs.jpca.1c06102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azoheteroarenes are relatively new photoswitchable compounds, where one of the phenyl rings of an azobenzene molecule is replaced by a heteroaromatic five-membered ring. Recent findings on methylated azoheteroarenes show that these photoswitches have potential in various optically addressable applications. The thermal stability of molecular switches is one of the primary factors considered in the design process. For molecular memory or energy storage devices, long thermal relaxation times are required. However, inducing a short thermal isomerization lifetime is required to release stored energy or as an alternative to photoswitching to avoid overlapping absorption spectra that reduce switching fidelity. In this study, we investigate how oriented external electric fields can be used to tune the thermal isomerization properties of three unsubstituted heteroaryl azo compounds-azoimidazole, azopyrazole, and azopyrrole. We show that favorable electric field orientations can increase the thermal half-life of studied molecules by as much as 60 times or reduce it from tens of days to seconds, compared to their half-life values in the field-free environment. A deeper understanding of the relationship between structure and kinetic properties provides insight as to how molecular switches can be designed for their electric field response in switching applications.
Collapse
Affiliation(s)
- Irma Avdic
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
| | | | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
| |
Collapse
|
18
|
Absorption and Isomerization of Azobenzene Guest Molecules in Polymeric Nanoporous Crystalline Phases. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PPO co-crystalline (CC) films including azobenzene guest molecules have been prepared and characterized by WAXD, FTIR and UV-Visible measurements. Isomerization reactions of azobenzene (photo-induced trans to cis and spontaneous cis to trans) included in α and β nanoporous-crystalline (NC) phases leading to CC phases, or simply absorbed in amorphous phase have been studied on thick and thin films. Spectroscopic analysis shows that photo-isomerization of azobenzene occurs without expulsion of azobenzene guest molecules from crystalline phases. Sorption studies of α and β NC films immersed into photo-isomerized azobenzene solution reveal a higher selectivity of the β NC phase toward cis azobenzene isomer than the α NC phase, inducing us to propose the β NC phase as particularly suitable for absorbing spherically bulky guest molecules.
Collapse
|
19
|
"On-The-Fly" Non-Adiabatic Dynamics Simulations on Photoinduced Ring-Closing Reaction of a Nucleoside-Based Diarylethene Photoswitch. Molecules 2021; 26:molecules26092724. [PMID: 34066431 PMCID: PMC8125013 DOI: 10.3390/molecules26092724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleoside-based diarylethenes are emerging as an especial class of photochromic compounds that have potential applications in regulating biological systems using noninvasive light with high spatio-temporal resolution. However, relevant microscopic photochromic mechanisms at atomic level of these novel diarylethenes remain to be explored. Herein, we have employed static electronic structure calculations (MS-CASPT2//M06-2X, MS-CASPT2//SA-CASSCF) in combination with non-adiabatic dynamics simulations to explore the related photoinduced ring-closing reaction of a typical nucleoside-based diarylethene photoswitch, namely, PS-IV. Upon excitation with UV light, the open form PS-IV can be excited to a spectroscopically bright S1 state. After that, the molecule relaxes to the conical intersection region within 150 fs according to the barrierless relaxed scan of the C1–C6 bond, which is followed by an immediate deactivation to the ground state. The conical intersection structure is very similar to the ground state transition state structure which connects the open and closed forms of PS-IV, and therefore plays a crucial role in the photochromism of PS-IV. Besides, after analyzing the hopping structures, we conclude that the ring closing reaction cannot complete in the S1 state alone since all the C1–C6 distances of the hopping structures are larger than 2.00 Å. Once hopping to the ground state, the molecules either return to the original open form of PS-IV or produce the closed form of PS-IV within 100 fs, and the ring closing quantum yield is estimated to be 56%. Our present work not only elucidates the ultrafast photoinduced pericyclic reaction of the nucleoside-based diarylethene PS-IV, but can also be helpful for the future design of novel nucleoside-based diarylethenes with better performance.
Collapse
|
20
|
Sheng K, Liu YN, Gupta RK, Kurmoo M, Sun D. Arylazopyrazole-functionalized photoswitchable octanuclear Zn(II)-silsesquioxane nanocage. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9886-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Vela S, Corminboeuf C. The Photoisomerization Pathway(s) of Push-Pull Phenylazoheteroarenes*. Chemistry 2020; 26:14724-14729. [PMID: 32692427 PMCID: PMC7756763 DOI: 10.1002/chem.202002321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Indexed: 12/31/2022]
Abstract
Azoheteroarenes are the most recent derivatives targeted to further improve the properties of azo-based photoswitches. Their light-induced mechanism for trans-cis isomerization is assumed to be very similar to that of the parent azobenzene. As such, they inherited the controversy about the dominant isomerization pathway (rotation vs. inversion) depending on the excited state (nπ* vs. ππ*). Although the controversy seems settled in azobenzene, the extent to which the same conclusions apply to the more structurally diverse family of azoheteroarenes is unclear. Here, by means of non-adiabatic molecular dynamics, the photoisomerization mechanism of three prototypical phenyl-azoheteroarenes with increasing push-pull character is unraveled. The evolution of the rotational and inversion conical intersection energies, the preferred pathway, and the associated kinetics upon both nπ* and ππ* excitations can be linked directly with the push-pull substitution effects. Overall, the working conditions of this family of azo-dyes is clarified and a possibility to exploit push-pull substituents to tune their photoisomerization mechanism is identified, with potential impact on their quantum yield.
Collapse
Affiliation(s)
- Sergi Vela
- Institute of Chemical Sciences and EngineeringLaboratory for Computational Molecular DesignÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and EngineeringLaboratory for Computational Molecular DesignÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
22
|
Heindl AH, Wegner HA. Rational Design of Azothiophenes-Substitution Effects on the Switching Properties. Chemistry 2020; 26:13730-13737. [PMID: 32330338 PMCID: PMC7702042 DOI: 10.1002/chem.202001148] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/22/2022]
Abstract
A series of substituted azothiophenes was prepared and investigated toward their isomerization behavior. Compared to azobenzene (AB), the presented compounds showed red-shifted absorption and almost quantitative photoisomerization to their (Z) states. Furthermore, it was found that electron-withdrawing substitution on the phenyl moiety increases, while electron-donating substitution decreases the thermal half-lives of the (Z)-isomers due to higher or lower stabilization by a lone pair-π interaction. Additionally, computational analysis of the isomerization revealed that a pure singlet state transition state is unlikely in azothiophenes. A pathway via intersystem crossing to a triplet energy surface of lower energy than the singlet surface provided a better fit with experimental data of the (Z)→(E) isomerization. The insights gained in this study provide the necessary guidelines to design effective thiophenylazo-photoswitches for applications in photopharmacology, material sciences, or solar energy harvesting applications.
Collapse
Affiliation(s)
- Andreas H. Heindl
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
23
|
Liu XY, Li ZW, Fang WH, Cui G. Nonadiabatic Exciton and Charge Separation Dynamics at Interfaces of Zinc Phthalocyanine and Fullerene: Orientation Does Matter. J Phys Chem A 2020; 124:7388-7398. [DOI: 10.1021/acs.jpca.0c05865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
24
|
Pesce L, Perego C, Grommet AB, Klajn R, Pavan GM. Molecular Factors Controlling the Isomerization of Azobenzenes in the Cavity of a Flexible Coordination Cage. J Am Chem Soc 2020; 142:9792-9802. [PMID: 32353237 PMCID: PMC7644116 DOI: 10.1021/jacs.0c03444] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Photoswitchable
molecules are employed for many applications, from
the development of active materials to the design of stimuli-responsive
molecular systems and light-powered molecular machines. To fully exploit
their potential, we must learn ways to control the mechanism and kinetics
of their photoinduced isomerization. One possible strategy involves
confinement of photoresponsive switches such as azobenzenes or spiropyrans
within crowded molecular environments, which may allow control over
their light-induced conversion. However, the molecular factors that
influence and control the switching process under realistic conditions
and within dynamic molecular regimes often remain difficult to ascertain.
As a case study, here we have employed molecular models to probe the
isomerization of azobenzene guests within a Pd(II)-based coordination
cage host in water. Atomistic molecular dynamics and metadynamics
simulations allow us to characterize the flexibility of the cage in
the solvent, the (rare) guest encapsulation and release events, and
the relative probability/kinetics of light-induced isomerization of
azobenzene analogues in these host–guest systems. In this way,
we can reconstruct the mechanism of azobenzene switching inside the
cage cavity and explore key molecular factors that may control this
event. We obtain a molecular-level insight on the effects of crowding
and host–guest interactions on azobenzene isomerization. The
detailed picture elucidated by this study may enable the rational
design of photoswitchable systems whose reactivity can be controlled
via host–guest interactions.
Collapse
Affiliation(s)
- Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Angela B Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland.,Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
25
|
Zhang YH, Sun XW, Zhang TS, Liu XY, Cui G. Nonadiabatic Dynamics Simulations on Early-Time Photochemistry of Spirobenzopyran. J Phys Chem A 2020; 124:2547-2559. [PMID: 32187492 DOI: 10.1021/acs.jpca.0c00791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoinduced ring-opening, decay, and isomerization of spirobenzopyran have been explored by the OM2/MRCI nonadiabatic dynamics simulations based on Tully's fewest-switches surface hopping scheme. The efficient S1 to S0 internal conversion as observed in experiments is attributed to the existence of two efficient excited-state decay pathways. The first one is related to the C-N dissociation, and the second one is done to the C-O dissociation. The C-O dissociation pathway is dominant, and more than 90% trajectories decay to the S0 state via the C-O bond-fission related S1/S0 conical intersections. Near these regions in the S0 state, trajectories can either return to spirobenzopyran or proceed to various intermediates including merocyanine via a series of bond rotations. Our nonadiabatic dynamics simulations also demonstrate that the hydrogen-out-of-plane (HOOP) motion is important for efficient and ultrafast excited-state deactivation. On the other hand, we have also found that the replacement of methyl groups by hydrogen atoms in spirobenzopyran can artificially introduce different intramolecular hydrogen transfers leading to hydrogen-transferred intermediates. This finding is important for the community and demonstrates that such a kind of structural truncation, sometimes, could be problematic, leading to incorrect photodynamics. Our present work provides valuable insights into the photodynamics of spirobenzopyran, which could be helpful for the design of spiropyran-based photochromic materials.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xin-Wei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
26
|
Rustler K, Nitschke P, Zahnbrecher S, Zach J, Crespi S, König B. Photochromic Evaluation of 3(5)-Arylazo-1H-pyrazoles. J Org Chem 2020; 85:4079-4088. [DOI: 10.1021/acs.joc.9b03097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karin Rustler
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Philipp Nitschke
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sophie Zahnbrecher
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Zach
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
28
|
Kennedy ADW, Sandler I, Andréasson J, Ho J, Beves JE. Visible‐Light Photoswitching by Azobenzazoles. Chemistry 2020; 26:1103-1110. [DOI: 10.1002/chem.201904309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Isolde Sandler
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | - Junming Ho
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | |
Collapse
|
29
|
Slavov C, Yang C, Heindl AH, Wegner HA, Dreuw A, Wachtveitl J. Thiophenylazobenzene: An Alternative Photoisomerization Controlled by Lone-Pair⋅⋅⋅π Interaction. Angew Chem Int Ed Engl 2020; 59:380-387. [PMID: 31595575 PMCID: PMC6973119 DOI: 10.1002/anie.201909739] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/01/2019] [Indexed: 01/15/2023]
Abstract
Azoheteroarene photoswitches have attracted attention due to their unique properties. We present the stationary photochromism and ultrafast photoisomerization mechanism of thiophenylazobenzene (TphAB). It demonstrates impressive fatigue resistance and photoisomerization efficiency, and shows favorably separated (E)- and (Z)-isomer absorption bands, allowing for highly selective photoconversion. The (Z)-isomer of TphAB adopts an unusual orthogonal geometry where the thiophenyl group is perfectly perpendicular to the phenyl group. This geometry is stabilized by a rare lone-pair⋅⋅⋅π interaction between the S atom and the phenyl group. The photoisomerization of TphAB occurs on the sub-ps to ps timescale and is governed by this interaction. Therefore, the adoption and disruption of the orthogonal geometry requires significant movement along the inversion reaction coordinates (CNN and NNC angles). Our results establish TphAB as an excellent photoswitch with versatile properties that expand the application possibilities of AB derivatives.
Collapse
Affiliation(s)
- Chavdar Slavov
- Institute of Physical and Theoretical ChemistryGoethe UniversityFrankfurt am MainGermany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany
| | - Andreas H. Heindl
- Institute of Organic ChemistryCenter for Materials Research (LaMa)Justus Liebig UniversityGiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryCenter for Materials Research (LaMa)Justus Liebig UniversityGiessenGermany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe UniversityFrankfurt am MainGermany
| |
Collapse
|
30
|
Slavov C, Yang C, Heindl AH, Wegner HA, Dreuw A, Wachtveitl J. Thiophenylazobenzene: An Alternative Photoisomerization Controlled by Lone‐Pair⋅⋅⋅π Interaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chavdar Slavov
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt am Main Germany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg Heidelberg Germany
| | - Andreas H. Heindl
- Institute of Organic Chemistry Center for Materials Research (LaMa) Justus Liebig University Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry Center for Materials Research (LaMa) Justus Liebig University Giessen Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg Heidelberg Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt am Main Germany
| |
Collapse
|
31
|
Calbo J, Thawani AR, Gibson RSL, White AJP, Fuchter MJ. A combinatorial approach to improving the performance of azoarene photoswitches. Beilstein J Org Chem 2019; 15:2753-2764. [PMID: 31807208 PMCID: PMC6880842 DOI: 10.3762/bjoc.15.266] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Azoarenes remain privileged photoswitches – molecules that can be interconverted between two states using light – enabling a huge range of light addressable multifunctional systems and materials. Two key innovations to improve the addressability and Z-isomer stability of the azoarenes have been ortho-substitution of the benzene ring(s) or replacement of one of the benzenes for a pyrazole (to give arylazopyrazole switches). Here we study the combination of such high-performance features within a single switch architecture. Through computational analysis and experimental measurements of representative examples, we demonstrate that ortho-benzene substitution of the arylazopyrazoles drastically increases the Z-isomer stability and allows further tuning of their addressability. This includes the discovery of new azopyrazoles with a Z-isomer thermal half-life of ≈46 years. Such results therefore define improved designs for high performance azo switches, which will allow for high precision optically addressable applications using such components.
Collapse
Affiliation(s)
- Joaquin Calbo
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Aditya R Thawani
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| | - Rosina S L Gibson
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| |
Collapse
|
32
|
Hanopolskyi AI, De S, Białek MJ, Diskin-Posner Y, Avram L, Feller M, Klajn R. Reversible switching of arylazopyrazole within a metal-organic cage. Beilstein J Org Chem 2019; 15:2398-2407. [PMID: 31666874 PMCID: PMC6808206 DOI: 10.3762/bjoc.15.232] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Arylazopyrazoles represent a new family of molecular photoswitches characterized by a near-quantitative conversion between two states and long thermal half-lives of the metastable state. Here, we investigated the behavior of a model arylazopyrazole in the presence of a self-assembled cage based on Pd–imidazole coordination. Owing to its high water solubility, the cage can solubilize the E isomer of arylazopyrazole, which, by itself, is not soluble in water. NMR spectroscopy and X-ray crystallography have independently demonstrated that each cage can encapsulate two molecules of E-arylazopyrazole. UV-induced switching to the Z isomer was accompanied by the release of one of the two guests from the cage and the formation of a 1:1 cage/Z-arylazopyrazole inclusion complex. DFT calculations suggest that this process involves a dramatic change in the conformation of the cage. Back-isomerization was induced with green light and resulted in the initial 1:2 cage/E-arylazopyrazole complex. This back-isomerization reaction also proceeded in the dark, with a rate significantly higher than in the absence of the cage.
Collapse
Affiliation(s)
- Anton I Hanopolskyi
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Soumen De
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michał J Białek
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
33
|
Zhang Z, He Y, Zhou Y, Yu C, Han L, Li T. Pyrazolylazophenyl Ether‐Based Photoswitches: Facile Synthesis, (Near‐)Quantitative Photoconversion, Long Thermal Half‐Life, Easy Functionalization, and Versatile Applications in Light‐Responsive Systems. Chemistry 2019; 25:13402-13410. [DOI: 10.1002/chem.201902897] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Zhao‐Yang Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yixin He
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ying Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu Han
- School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
34
|
Ding W, Peng X, Cui G, Li Z, Blancafort L, Li Q. Potential‐Energy Surface and Dynamics Simulation of THBDBA: An Annulated Tetraphenylethene Derivative Combining Aggregation‐Induced Emission and Switch Behavior. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Lu Ding
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
- Beijing Key Laboratory of Ionic Liquids Clean Process Institute of Process EngineeringChinese Academy of Sciences 100190 Beijing China
| | - Xing‐Liang Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
| | - Gang‐Long Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry InstitutionBeijing Normal University 100875 Beijing China
| | - Ze‐Sheng Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de Girona 17003 Girona Spain
| | - Quan‐Song Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of Ministry of EducationSchool of Chemistry and Chemical Engineering,Beijing Institute of Technology 100081 Beijing China
| |
Collapse
|
35
|
Kumar P, Srivastava A, Sah C, Devi S, Venkataramani S. Arylazo‐3,5‐dimethylisoxazoles: Azoheteroarene Photoswitches Exhibiting High
Z
‐Isomer Stability, Solid‐State Photochromism, and Reversible Light‐Induced Phase Transition. Chemistry 2019; 25:11924-11932. [DOI: 10.1002/chem.201902150] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Pravesh Kumar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Anjali Srivastava
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Chitranjan Sah
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sudha Devi
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sugumar Venkataramani
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| |
Collapse
|
36
|
Wei Y, Zheng M, Chen L, Zhou X, Liu S. Near-infrared to violet triplet-triplet annihilation fluorescence upconversion of Os(ii) complexes by strong spin-forbidden transition. Dalton Trans 2019; 48:11763-11771. [PMID: 31298244 DOI: 10.1039/c9dt02276g] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three Os(ii) complexes were synthesized with ligands 2,2'-dipyridyl (dipy), 1,10-phenanthroline monohydrate (phen), and 4,7-diphenyl-1,10-phenanthroline (diphen), and applied as triplet photosensitizers for triplet-triplet annihilation (TTA) fluorescence upconversion. The strong spin-orbital coupling made direct spin-forbidden transition of S0-T1 feasible. Lifetimes of the lowest triplet state of these complexes were determined to be 107 ns, 373 ns, and 386 ns for Os-dipy, Os-phen, and Os-diphen, respectively, using nanosecond transient absorption spectra. From steady-state phosphorescence emission spectra, energies of the triplet states were derived to be 1.75 eV, 1.80 eV, and 1.74 eV for Os-dipy, Os-phen, and Os-diphen, respectively. Using these photosensitizers, strong upconverted fluorescence of the triplet acceptors, 9,10-diphenylanthracene (DPA), perylene, and 9,10-bis(phenethynyl) anthracene (BPEA), was observed in the visible to violet range. In particular, fluorescence emission with the largest anti-Stokes shift of 1.14 eV was observed for the Os-phen/DPA system, and the upconverted quantum yield was determined as 5.9% in deoxygenated dichloroethane. Additionally, upconversion was determined in air using mixtures of dichloroethane and DMSO solvents, and the maximal quantum yield was measured to be 4.5% for Os-phen/DPA.
Collapse
Affiliation(s)
- Yaxiong Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Min Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lin Chen
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui 230601, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
37
|
Zhang TS, Li ZW, Fang Q, Barbatti M, Fang WH, Cui G. Stereoselective Excited-State Isomerization and Decay Paths in cis-Cyclobiazobenzene. J Phys Chem A 2019; 123:6144-6151. [DOI: 10.1021/acs.jpca.9b04372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | | | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
38
|
Kumar R, Ravi C, Joshi A, Semwal R, Adimurthy S. Catalyst‐free Azo‐arylation of Arenes/Heteroarenes at Room Temperature. ChemistrySelect 2019. [DOI: 10.1002/slct.201901308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rahul Kumar
- Natural Products and Green Chemistry DivisionAcademy of Scientific & Innovative ResearchCSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg Bhavnagar- 364 002. Gujarat INDIA
| | - Chitrakar Ravi
- Natural Products and Green Chemistry DivisionAcademy of Scientific & Innovative ResearchCSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg Bhavnagar- 364 002. Gujarat INDIA
| | - Abhisek Joshi
- Natural Products and Green Chemistry DivisionAcademy of Scientific & Innovative ResearchCSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg Bhavnagar- 364 002. Gujarat INDIA
| | - Rashmi Semwal
- Natural Products and Green Chemistry DivisionAcademy of Scientific & Innovative ResearchCSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg Bhavnagar- 364 002. Gujarat INDIA
| | - Subbarayappa Adimurthy
- Natural Products and Green Chemistry DivisionAcademy of Scientific & Innovative ResearchCSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg Bhavnagar- 364 002. Gujarat INDIA
| |
Collapse
|
39
|
Crespi S, Simeth NA, Bellisario A, Fagnoni M, König B. Unraveling the Thermal Isomerization Mechanisms of Heteroaryl Azoswitches: Phenylazoindoles as Case Study. J Phys Chem A 2019; 123:1814-1823. [PMID: 30741541 DOI: 10.1021/acs.jpca.8b11734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The research on heteroaromatic azoswitches has been blossoming in recent years due to their astonishingly broad range of properties. Minimal chemical modifications can drastically change the demeanor of these switches, regarding photophysical and (photo)chemical properties, promoting them as ideal scaffolds for a vast variety of applications based on bistable light-addressable systems. However, most of the characteristics exhibited by heteroaryl azoswitches were found empirically, and only a few works focus on their rationalization. Herein we report on a mechanistic study employing phenylazoindoles as a model reference, combining spectroscopic experiments with comprehensive computational analysis. This approach will elucidate the intrinsic correlations between the molecular structure of the switch and its thermal behavior, allowing a more rational design transferable to various heteroaryl azoswitches.
Collapse
Affiliation(s)
- Stefano Crespi
- Institut für Organische Chemie , Universität Regensburg , Universitätsstrasse 31 , 93040 Regensburg , Germany
| | - Nadja A Simeth
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Alfredo Bellisario
- Department of Physics , University of Pavia , Via Bassi 6 , 27100 Pavia , Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Burkhard König
- Institut für Organische Chemie , Universität Regensburg , Universitätsstrasse 31 , 93040 Regensburg , Germany
| |
Collapse
|
40
|
|
41
|
Tang D, Fang WH, Shen L, Cui G. Combining Meyer–Miller Hamiltonian with electronic structure methods for on-the-fly nonadiabatic dynamics simulations: implementation and application. Phys Chem Chem Phys 2019; 21:17109-17117. [DOI: 10.1039/c9cp02682g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The MM/SQC method combined with electronic structure calculations at the level of OM2/MRCI and on-the-fly nonadiabatic dynamics simulations.
Collapse
Affiliation(s)
- Diandong Tang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
42
|
Nonadiabatic dynamics simulation of photoisomerization mechanism of photoswitch azodicarboxamide: Hydrogen bonding effects. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Xiao P, Li CX, Fang WH, Cui G, Thiel W. Mechanism of the Visible-Light-Mediated Copper-Catalyzed Coupling Reaction of Phenols and Alkynes. J Am Chem Soc 2018; 140:15099-15113. [PMID: 30362731 DOI: 10.1021/jacs.8b10387] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A recent experimental study reported a visible-light-mediated aerobic oxidative coupling reaction of phenol with alkynes that produces hydroxyl-functionalized aryl ketones using inexpensive CuCl as catalyst under mild conditions. Here we apply the complete active space self-consistent field (CASSCF) method and multistate second-order perturbation (MS-CASPT2) theory in combination with density functional theory (DFT) to systematically explore the entire photocatalytic reaction between phenol and phenylacetylene in acetonitrile solution in the presence of molecular oxygen and CuCl. Our main findings are as follows: (1) The visible-light-driven conversion of phenylacetylene to PhCCCu(I) occurs thermally because of efficient excited-state deactivation to the S0 state. (2) The single electron transfer from PhCCCu(I) to molecular oxygen that leads to the PhCCCu(II) cation takes place in the T1 state after an efficient S1 → T1 intersystem crossing. (3) During the initial oxidation of phenol, molecular oxygen prefers to attack the para position of the phenol radical intermediate to produce 1,4-benzoquinone, which further reacts with PhCCCu(II) to generate para-hydroxyl-substituted aryl ketones; this is the origin of the experimentally observed regioselectivity. (4) The C≡C bond of the phenylacetylene moiety is not activated by the triplet-state single electron transfer from PhCCCu(I) to molecular oxygen but is cleaved at a later stage, in the [2+2] cycloaddition between PhCCCu(II) and 1,4-benzoquinone. (5) The substrate phenol plays an active role in several hydrogen transfer and decarboxylation reactions; the barriers to these phenol-assisted reactions are lower than those for the corresponding direct or water-assisted reactions, which explains the experimental finding that adding water does not enhance the photocatalytic reaction yield. In summary, while supporting the general features of the experimentally proposed mechanism, our computational study provides detailed mechanistic insights that should be useful for understanding and further improving visible-light-induced copper-catalyzed coupling reactions.
Collapse
Affiliation(s)
- Pin Xiao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Chun-Xiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
44
|
Tuna D, Spörkel L, Barbatti M, Thiel W. Nonadiabatic dynamics simulations of photoexcited urocanic acid. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
KAWABATA K, AKIMOTO S, NISHI H. Cis-Trans Isomerization Reaction of Sulindac Induced by UV Irradiation in the Aqueous Media. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Shiori AKIMOTO
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | |
Collapse
|
46
|
Xu Y, Gao C, Andréasson J, Grøtli M. Synthesis and Photophysical Characterization of Azoheteroarenes. Org Lett 2018; 20:4875-4879. [PMID: 30079733 DOI: 10.1021/acs.orglett.8b02014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A set of azoheteroarenes have been synthesized with Buchwald-Hartwig coupling and microwave-assisted O2 oxidation as the key steps. Several compounds exhibit good to excellent photoswitching properties (high switching efficiency, good fatigue resistance, and thermal stability of Z-isomer) relevant for photocontrolled applications, which pave the way for use in photopharmacology.
Collapse
Affiliation(s)
- Yongjin Xu
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden
| | - Chunxia Gao
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Physical Chemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden
| |
Collapse
|
47
|
Liu XY, Fang YG, Xie BB, Fang WH, Cui G. QM/MM nonadiabatic dynamics simulations on photoinduced Wolff rearrangements of 1,2,3-thiadiazole. J Chem Phys 2018; 146:224302. [PMID: 29166059 DOI: 10.1063/1.4984589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photoinduced rearrangement reaction mechanism of 1,2,3-thiadiazole remains experimentally elusive. Two possible mechanisms have been proposed to date. The first is a stepwise mechanism via a thiocarbene intermediate; the second is an excited-state concerted rearrangement mechanism. Herein we have adopted both the electronic structure calculations and nonadiabatic dynamics simulations to study the photoinduced rearrangement reactions of 1,2,3-thiadiazole in the S2, S1, and S0 states in solution. On the basis of QM(CASPT2)/MM [quantum mechanics(complete active space self-consistent field second-order perturbation theory)/molecular mechanics] calculations, we have found that (1) the thiocarbene intermediate is not stable; thus, the stepwise mechanism should be unfavorable; (2) the excited-state decay from the S2 via S1 to S0 state is ultrafast and completed within ca. 200 fs; therefore, both the S2 and S1 states should not have a long enough time for the excited-state rearrangements. Instead, we have computationally proposed a modified photoinduced rearrangement mechanism. Upon irradiation, the S2 state is first populated (114.0 kcal/mol), followed by an ultrafast S2 → S1 → S0 excited-state decay along the S-N bond fission, which eventually leads to a very "hot" intermediate with the S-N bond broken (18.3 kcal/mol). Then, thermal rearrangements to thioketene, thiirene, and ethynethiol occur in a concerted asynchronous way. This mechanistic scenario has been verified by full-dimensional trajectory-based nonadiabatic dynamics simulations at the QM(CASPT2)/MM level. Finally, our present computational work provides experimentally interesting mechanistic insights into the photoinduced rearrangement reactions of cyclic and acyclic diazo compounds.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bin-Bin Xie
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
48
|
Mondal P, Granucci G, Rastädter D, Persico M, Burghardt I. Azobenzene as a photoregulator covalently attached to RNA: a quantum mechanics/molecular mechanics-surface hopping dynamics study. Chem Sci 2018; 9:4671-4681. [PMID: 29899961 PMCID: PMC5969502 DOI: 10.1039/c8sc00072g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Abstract
Azobenzene covalently attached to RNA undergoes trans-to-cis photo-switching on a time scale of ∼15 picoseconds – 30 times slower than in vacuo.
The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA–azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a β-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans-to-cis isomerization is slowed down to a time scale of ∼10–15 picoseconds, in contrast to 500 femtoseconds in vacuo, with a quantum yield reduced by a factor of two. By contrast, cis-to-trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis-azobenzene chromophore in the two RNA–azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.
Collapse
Affiliation(s)
- Padmabati Mondal
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany . ;
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale , Università di Pisa , v. Moruzzi 13 , I-56124 Pisa , Italy .
| | - Dominique Rastädter
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany . ;
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale , Università di Pisa , v. Moruzzi 13 , I-56124 Pisa , Italy .
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany . ;
| |
Collapse
|
49
|
Čechová L, Kind J, Dračínský M, Filo J, Janeba Z, Thiele CM, Cigáň M, Procházková E. Photoswitching Behavior of 5-Phenylazopyrimidines: In Situ Irradiation NMR and Optical Spectroscopy Combined with Theoretical Methods. J Org Chem 2018; 83:5986-5998. [DOI: 10.1021/acs.joc.8b00569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucie Čechová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 16, Darmstadt 64287, Germany
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Juraj Filo
- Institute of Chemistry, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 16, Darmstadt 64287, Germany
| | - Marek Cigáň
- Institute of Chemistry, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| |
Collapse
|
50
|
Che M, Gao YJ, Zhang Y, Xia SH, Cui G. Electronic structure calculations and nonadiabatic dynamics simulations of excited-state relaxation of Pigment Yellow 101. Phys Chem Chem Phys 2018; 20:6524-6532. [PMID: 29446425 DOI: 10.1039/c7cp07692d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pigment Yellow 101 (PY101) is widely used as a typical pigment due to its excellent excited-state properties. However, the origin of its photostability is still elusive. In this work, we have systematically investigated the photodynamics of PY101 by performing combined electronic structure calculations and trajectory-based nonadiabatic dynamics simulations. On the basis of the results, we have found that upon photoexcitation to the S1 state, PY101 undergoes an essentially barrierless excited-state intramolecular single proton transfer generating an S1 keto species. In the keto region, there is an energetically accessible S1/S0 conical intersection that funnels the system to the S0 state quickly. In the S0 state, the keto species either goes back to its trans-enol species through a ground-state reverse hydrogen transfer or arrives at the cis-keto region. In addition, we have found an additional excited-state decay channel for the S1 enol species, which is directly linked to an S1/S0 conical intersection located in the enol region. This mechanism has also been confirmed by our dynamics simulations, in which about 54% of the trajectories decay to the S0 state via the enol S1/S0 conical intersection; while the remaining ones employ the keto S1/S0 conical intersection. The gained mechanistic information helps us understand the photostability of the PY101 chromophore and its variants with the same molecular scaffold.
Collapse
Affiliation(s)
- Meng Che
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China.
| | | | | | | | | |
Collapse
|