1
|
Pang XY, Zhou H, Xie X, Jiang W, Yang Y, Sessler JL, Gong HY. 1,3,5-2,4,6-Functionalized Benzene Molecular Cage: An Environmentally Responsive Scaffold that Supports Hierarchical Superstructures. Angew Chem Int Ed Engl 2024; 63:e202407805. [PMID: 38870085 DOI: 10.1002/anie.202407805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
New stimulus-responsive scaffolds are of interest as constituents of hierarchical supramolecular ensembles. 1,3,5-2,4,6-Functionalized, facially segregated benzene moieties have a time-honored role as building blocks for host molecules. However, their user as switchable motifs in the construction of multi-component supramolecular structures remains poorly explored. Here, we report a molecular cage 1, which consists of a bent anthracene dimer 3 paired with 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene 2. As the result of the pH-induced ababab↔bababa isomerization of the constituent-functionalized benzene units derived from 2, this cage can reversibly convert between an open state and a closed form, both in solution and in the solid state. Cage 1 was used to create stimuli-responsive hierarchical superstructures, namely Russian doll-like complexes with [K⊂18-crown-6⊂1]+ and [K⊂cryptand-222⊂1]+. The reversible assembly and disassembly of these superstructures could be induced by switching cage 1 from its open to closed form. The present study thus provides an unusual example where pH-triggered conformation motion within a cage-like scaffold is used to control the formation and disassociation of hierarchical ensembles.
Collapse
Affiliation(s)
- Xin-Yu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yinhua Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jonathan L Sessler
- College of Chemistry, The University of Texas at Austin, Austin, Texas, 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
2
|
Shi K, Jia G, Wu Y, Zhang S, Chen J. Dynamic control of circumrotation of a [2]catenane by acid-base switching. ChemistryOpen 2024; 13:e202300304. [PMID: 38333963 PMCID: PMC11319237 DOI: 10.1002/open.202300304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Dynamic control of the motion in a catenane remains a big challenge as it requires precise design and sophisticated well-organized structures. This paper reports the design and synthesis of a donor-acceptor [2]catenane through mechanical interlocking, employing a crown ether featuring two dibenzylammonium salts on its side arms as the host and a cyclobis(paraquat-p-phenylene) (CBPQT ⋅ 4PF6) ring as the guest molecule. By addition of external acid or base, the catenane can form self-complexed or decomplexed compounds to alter the cavity size of the crown ether ring, consequently affecting circumrotation rate of CBPQT ⋅ 4PF6 ring of the catenane. This study offers insights for the design and exploration of artificial molecular machines with intricate cascading responsive mechanisms.
Collapse
Affiliation(s)
- Kelun Shi
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Guohui Jia
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Ying Wu
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Shilong Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| |
Collapse
|
3
|
de Jong J, Siegler MA, Wezenberg SJ. A Photoswitchable Macrocycle Controls Anion-Templated Pseudorotaxane Formation and Axle Relocalization. Angew Chem Int Ed Engl 2024; 63:e202316628. [PMID: 38059917 DOI: 10.1002/anie.202316628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Important biological processes, such as signaling and transport, are regulated by dynamic binding events. The development of artificial supramolecular systems in which binding between different components is controlled could help emulate such processes. Herein, we describe stiff-stilbene-containing macrocycles that can be switched between (Z)- and (E)-isomers by light, as demonstrated by UV/Vis and 1 H NMR spectroscopy. The (Z)-isomers can be effectively threaded by pyridinium halide axles to give pseudorotaxane complexes, as confirmed by 1 H NMR titration studies and single-crystal X-ray crystallography. The overall stability of these complexes can be tuned by varying the templating counteranion. However, upon light-induced isomerization to the (E)-isomer, the threading capability is drastically reduced. The axle component, in addition, can form a heterodimeric complex with a secondary isophthalamide host. Therefore, when all components are combined, light irradiation triggers axle exchange between the macrocycle and this secondary host, which has been monitored by 1 H NMR spectroscopy and simulated computationally.
Collapse
Affiliation(s)
- Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
4
|
Nieland E, Voss J, Schmidt BM. Photoresponsive Supramolecular Cages and Macrocycles. Chempluschem 2023; 88:e202300353. [PMID: 37638597 DOI: 10.1002/cplu.202300353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The utilisation of light to achieve precise manipulation and control over the structure and function of supramolecular assemblies has emerged as a highly promising approach in the development of complex, configurable, or multifunctional systems and nanoscopic machine-like entities. In this minireview, we highlight recent examples of self-assembled and covalently bound cages and macrocycles with a focus on the external and internal functionalisation of a structure with a photoswitchable unit or the embedment of a photoswitch into the framework of a structure. Functionalising the interior or exterior of a supramolecular cage or macrocycle with a photoresponsive group enables control over different properties, such as guest binding or assembly in the solid-state, while the overall shape of the assembly often undergoes no significant change. By directly integrating a photoswitchable unit into the framework of a supramolecular structure, the isomerisation can either induce a geometry change, the disassembly, or the disassembly and reassembly of the structure. Historical and recent examples covered in this review are based on azobenzene, diarylethene, stilbene photoswitches, or alkene motors that were incorporated into macrocycles and cages constructed by metal-organic, dynamic covalent, or covalent bonds.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jona Voss
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Montgomery CA, Murphy GK. Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control. Beilstein J Org Chem 2023; 19:1171-1190. [PMID: 37592937 PMCID: PMC10428621 DOI: 10.3762/bjoc.19.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Halogen bonding is commonly found with iodine-containing molecules, and it arises when Lewis bases interact with iodine's σ-holes. Halogen bonding and σ-holes have been encountered in numerous monovalent and hypervalent iodine-containing compounds, and in 2022 σ-holes were computationally confirmed and quantified in the iodonium ylide subset of hypervalent iodine compounds. In light of this new discovery, this article provides an overview of the reactions of iodonium ylides in which halogen bonding has been invoked. Herein, we summarize key discoveries and mechanistic proposals from the early iodonium ylide literature that invoked halogen bonding-type mechanisms, as well as recent reports of reactions between iodonium ylides and Lewis basic nucleophiles in which halogen bonding has been specifically invoked. The reactions discussed herein are organized to enable the reader to build an understanding of how halogen bonding might impact yield and chemoselectivity outcomes in reactions of iodonium ylides. Areas of focus include nucleophile σ-hole selectivity, and how ylide structural modifications and intramolecular halogen bonding (e.g., the ortho-effect) can improve ylide stability or solubility, and alter reaction outcomes.
Collapse
Affiliation(s)
- Carlee A Montgomery
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
6
|
de Jong J, Bos JE, Wezenberg SJ. Stimulus-Controlled Anion Binding and Transport by Synthetic Receptors. Chem Rev 2023; 123:8530-8574. [PMID: 37342028 PMCID: PMC10347431 DOI: 10.1021/acs.chemrev.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 06/22/2023]
Abstract
Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.
Collapse
Affiliation(s)
| | | | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
7
|
Wu J, Sun X, Li X, Li X, Feng W, Yuan L. Multi-Responsive Molecular Encapsulation and Release Based on Hydrogen-Bonded Azo-Macrocycle. Molecules 2023; 28:molecules28114437. [PMID: 37298912 DOI: 10.3390/molecules28114437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Research on stimuli-responsive host-guest systems is at the cutting edge of supramolecular chemistry, owing to their numerous potential applications such as catalysis, molecular machines, and drug delivery. Herein, we present a multi-responsive host-guest system comprising azo-macrocycle 1 and 4,4'-bipyridinium salt G1 for pH-, photo-, and cation- responsiveness. Previously, we reported a novel hydrogen-bonded azo-macrocycle 1. The size of this host can be controlled through light-induced E↔Z photo-isomerization of the constituent azo-benzenes. The host is found in this work to be capable of forming stable complexes with bipyridinium/pyridinium salts, and implementing guest capture and release with G1 under light in a controlled manner. The binding and release of the guest in the complexes can also be easily controlled reversibly by using acid and base. Moreover, the cation competition-induced dissociation of the complex 1a2⊃G1 is achieved. These findings are expected to be useful in regulating encapsulation for sophisticated supramolecular systems.
Collapse
Affiliation(s)
- Jinyang Wu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xuan Sun
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xianghui Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Chen-Wu J, Máximo P, Remón P, Parola AJ, Basílio N, Pischel U. Phototransduction in a supramolecular cascade: a mimic for essential features of the vision process. Chem Commun (Camb) 2023; 59:3431-3434. [PMID: 36857686 DOI: 10.1039/d3cc00384a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The tailored design of a light-triggered supramolecular cascade results in an artificial machinery that assimilates the transduction of photons into chemical communication and the final release of a neurotransmitter. This is reminiscent of key steps in the natural vision process.
Collapse
Affiliation(s)
- Jialei Chen-Wu
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071, Huelva, Spain.
| | - Patrícia Máximo
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Patricia Remón
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071, Huelva, Spain.
| | - A Jorge Parola
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Nuno Basílio
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Uwe Pischel
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071, Huelva, Spain.
| |
Collapse
|
9
|
Kerckhoffs A, Moss I, Langton MJ. Photo-switchable anion binding and catalysis with a visible light responsive halogen bonding receptor. Chem Commun (Camb) 2022; 59:51-54. [PMID: 36440635 DOI: 10.1039/d2cc05199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photo-switchable receptors allow for photo-control over guest binding and release with spatial and temporal precision. Here we report the first halogen bonding photo-switchable anion receptors in which chloride binding may be reversibly modulated by irradiation with red and blue light, with over a 50-fold enhancement in chloride binding affinity observed for the Z isomer. We demonstrate that this switchable binding enables unprecedented photo-controlled catalysis of XB-mediated halide abstractions and a Mukaiyama Aldol reaction.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Isabelle Moss
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
10
|
Wezenberg SJ. Photoswitchable molecular tweezers: isomerization to control substrate binding, and what about vice versa? Chem Commun (Camb) 2022; 58:11045-11058. [PMID: 36106956 PMCID: PMC9531670 DOI: 10.1039/d2cc04329g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
The linkage of two identical binding motifs by a molecular photoswitch has proven to be a straightforward and versatile strategy to control substrate binding affinity by light. Stimulus control of binding properties in artificial receptors is partly inspired by the dynamic behavior of proteins and is highly attractive as it could, for example, improve extraction processes and allow (de)activation of membrane transport on demand. This feature article summarizes the development and design principles of molecular tweezers containing a molecular photoswitch as the core unit. Besides the control of binding affinity by isomerization, the effect of substrate binding on the isomerization behavior is discussed where data is available. While the latter often receives less attention, it could be of benefit in the future creation of multi-stimuli-controlled molecular switching and machine-like systems.
Collapse
Affiliation(s)
- Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
11
|
Azobenzene‐based Photochromic Delivery Vehicles for Ions and Small Molecules. Chemistry 2022; 28:e202201902. [DOI: 10.1002/chem.202201902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/07/2022]
|
12
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
13
|
Srivastava A, Grewal S, Bari NK, Saraswat M, Sinha S, Venkataramani S. Light-controlled shape-changing azomacrocycles exhibiting reversible modulation of pyrene fluorescence emission. Org Biomol Chem 2022; 20:5284-5292. [PMID: 35713091 DOI: 10.1039/d2ob00866a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the design, synthesis, and study of light-induced shape-changing azomacrocycles. These systems have been incorporated with azobenzene photoswitches using alkoxy tethers and triazole units to afford flexibility and binding. We envision that such azomacrocycles are capable of reversibly binding with the guest molecule. Remarkably, we have demonstrated fully light-controlled fluorescence quenching and enhancement in the monomeric emission of pyrene (guest). Such modulations have been achieved by the photoisomerization of the azomacrocycle and, in turn, host-guest interactions. Also, the azomacrocycles tend to aggregate and can also be controlled by light or heat. We uncovered such phenomena using spectroscopic, microscopic, and isothermal titration calorimetry (ITC) studies and computations.
Collapse
Affiliation(s)
- Anjali Srivastava
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Surbhi Grewal
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Naimat K Bari
- Institute of Nano Science and Technology (INST) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Mayank Saraswat
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Sharmistha Sinha
- Institute of Nano Science and Technology (INST) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Sugumar Venkataramani
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| |
Collapse
|
14
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual‐Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| |
Collapse
|
15
|
Xiong S, He Q. Photoresponsive macrocycles for selective binding and release of sulfate. Chem Commun (Camb) 2021; 57:13514-13517. [PMID: 34842255 DOI: 10.1039/d1cc05506b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of new photoresponsive macrocyclic anion receptors were synthesized via integration of an azobenzene unit and multiple anion binding sites. They exhibited highly selective binding to dianionic sulfate over other tested anions and the reversible release of sulfate could be triggered by visible light as inferred from mass spectroscopy, crystallographical analysis, NMR spectroscopy, and theoretical calculations.
Collapse
Affiliation(s)
- Shenglun Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| |
Collapse
|
16
|
Synergistic regulation of nonbinary molecular switches by protonation and light. Proc Natl Acad Sci U S A 2021; 118:2112973118. [PMID: 34789566 DOI: 10.1073/pnas.2112973118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
We report a molecular switching ensemble whose states may be regulated in synergistic fashion by both protonation and photoirradiation. This allows hierarchical control in both a kinetic and thermodynamic sense. These pseudorotaxane-based molecular devices exploit the so-called Texas-sized molecular box (cyclo[2]-(2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene); 14+, studied as its tetrakis-PF6 - salt) as the wheel component. Anions of azobenzene-4,4'-dicarboxylic acid (2H+•2) or 4,4'-stilbenedicarboxylic acid (2H+•3) serve as the threading rod elements. The various forms of 2 and 3 (neutral, monoprotonated, and diprotonated) interact differently with 14+, as do the photoinduced cis or trans forms of these classic photoactive guests. The net result is a multimodal molecular switch that can be regulated in synergistic fashion through protonation/deprotonation and photoirradiation. The degree of guest protonation is the dominating control factor, with light acting as a secondary regulatory stimulus. The present dual input strategy provides a complement to more traditional orthogonal stimulus-based approaches to molecular switching and allows for the creation of nonbinary stimulus-responsive functional materials.
Collapse
|
17
|
Shi Q, Wang X, Liu B, Qiao P, Li J, Wang L. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun (Camb) 2021; 57:12379-12405. [PMID: 34726202 DOI: 10.1039/d1cc04400a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocyclic host molecules play the central role in host-guest chemistry and supramolecular chemistry. The highly structural symmetry of macrocyclic host molecules can meet people's pursuit of aesthetics in molecular design, and generally means a balance of design, synthesis, properties and applications. For macrocyclic host molecules with highly symmetrical structures, building blocks, which could be described as repeat units as well, are the most fundamental elements for molecular design. The structural features and recognition ability of macrocyclic host molecules are determined by the building blocks and their connection patterns. Using different building blocks, different macrocyclic host molecules could be designed and synthesized. With decades of developments of host-guest chemistry and supramolecular chemistry, diverse macrocyclic host molecules with different building blocks have been designed and synthesized. Aromatic building blocks are a big family among the various building blocks used in constructing macrocyclic host molecules. In this feature article, the recent developments of macrocyclic host molecules with aromatic building blocks were summarized and discussed.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panyu Qiao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual-Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2021; 61:e202113914. [PMID: 34796586 DOI: 10.1002/anie.202113914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/08/2022]
Abstract
New C3 -symmetric imidazole ligands were designed with phosphine and phosphine oxide linkers (LP and LPO , respectively) to demonstrate a dual-triggered dynamic closed coordination cage. Both LP and LPO form discrete Zn4 L4 -closed cages (1P and 1PO , respectively) with excellent selectively for BPh4 - , whereas 1P and 1PO encapsulate neither a slightly larger size anion [B(C6 H4 CH3 )4 - ] nor smaller size anions (BF4 - , PF6 - , SbF6 - , and OSO2 CF3 - ). 1PO exhibits more negative enthalpy and entropy changes upon anion encapsulation, thus releasing almost all of the encapsulated anions at high temperature (343 K) (trigger 1: BPh4 - ⊂1PO ← → 1PO +BPh4 - ). In contrast 1P has less negative enthalpy and entropy changes, thus preserving the captured anion over a wide range of temperatures (298 K to 343 K). The 1P cage can be quantitatively oxidized to the 1PO cage by a mild oxidant (Ox.=H2 O2 ), and therefore the captured anion can be released by a redox triggering event (trigger 2: BPh4 - ⊂1P +Ox.→1PO +BPh4 - ).
Collapse
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
19
|
Mao L, Zhou M, Shi X, Yang HB. Triphenylamine (TPA) radical cations and related macrocycles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo‐responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
21
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021; 60:16129-16138. [PMID: 33955650 PMCID: PMC8361693 DOI: 10.1002/anie.202104285] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Crespi
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
22
|
Liu Y, Wang H, Liu P, Zhu H, Shi B, Hong X, Huang F. Azobenzene-Based Macrocyclic Arenes: Synthesis, Crystal Structures, and Light-Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2021; 60:5766-5770. [PMID: 33295014 DOI: 10.1002/anie.202015597] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Azobenzene (azo)-based macrocycles are highly fascinating in supramolecular chemistry because of their light-responsiveness. In this work, a series of azo-based macrocyclic arenes 1, 2, 3, and 4, distinguished by the substituted positions of azo groups, is rationally designed and synthesized via a fragment-cyclization method. From the crystal and computed structures of 1, 2, and 3, we observe that the cavity size of these azo-macrocycles decreases gradually upon E→Z photoisomerization. Moreover, light-controlled host-guest complexations between azo-macrocycle 1 and guest molecules (7,7,8,8-tetracyanoquinodimethane, terephthalonitrile) are successfully achieved. This work provides a simple and effective method to prepare azo-macrocycles, and the light-responsive molecular-encapsulation systems in this work may further advance the design and applications of novel photo-responsive host-guest systems.
Collapse
Affiliation(s)
- Yuezhou Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongliang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Peiren Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bingbing Shi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
23
|
Liu Y, Wang H, Shangguan L, Liu P, Shi B, Hong X, Huang F. Selective Separation of Phenanthrene from Aromatic Isomer Mixtures by a Water-Soluble Azobenzene-Based Macrocycle. J Am Chem Soc 2021; 143:3081-3085. [DOI: 10.1021/jacs.1c01204] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yuezhou Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongliang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Peiren Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bingbing Shi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou,730070, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
24
|
Liu Y, Wang H, Liu P, Zhu H, Shi B, Hong X, Huang F. Azobenzene‐Based Macrocyclic Arenes: Synthesis, Crystal Structures, and Light‐Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuezhou Liu
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hongliang Wang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Peiren Liu
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Bingbing Shi
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- State Key Laboratory of Clean Energy Utilization Zhejiang University Zheda Road 38 Hangzhou 310027 China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
25
|
Villarón D, Siegler MA, Wezenberg SJ. A photoswitchable strapped calix[4]pyrrole receptor: highly effective chloride binding and release. Chem Sci 2021; 12:3188-3193. [PMID: 34164086 PMCID: PMC8179391 DOI: 10.1039/d0sc06686a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
A stiff-stilbene strapped calix[4]pyrrole receptor can be reversibly switched by light between a strong chloride-binding Z-isomer and a very weakly binding E-isomer. The light-induced switching process is monitored by UV-Vis and 1H NMR spectroscopy and chloride binding is studied in detail using both 1H NMR and ITC titrations in DMSO and MeCN. In DMSO, at millimolar concentrations, switching from a fully bound to an almost fully unbound state can be triggered. Quantification of the binding constants in MeCN reveals an extraordinary 8000-fold affinity difference between the Z- and E-isomer. Single crystal X-ray crystallographic analysis gives insight into the structure of the photogenerated E-isomer and the geometry of the chloride-bound receptors is optimized by DFT calculations. The highly effective control of binding affinity demonstrated in this work opens up new prospects for on demand binding and release in extractions and photocontrol of membrane transport processes, among other applications.
Collapse
Affiliation(s)
- David Villarón
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
26
|
Ouyang G, Bialas D, Würthner F. Reversible fluorescence modulation through the photoisomerization of an azobenzene-bridged perylene bisimide cyclophane. Org Chem Front 2021. [DOI: 10.1039/d0qo01635g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An azobenzene-bridged perylene bisimide cyclophane was designed and synthesized, which showed reversible fluorescence intensity switching under light-irradiation due to cooperative adjustments of PBI–PBI and PBI–Azo interactions.
Collapse
Affiliation(s)
- Guanghui Ouyang
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- 97074 Würzburg
- Germany
- CAS Key Laboratory of Colloid
| | - David Bialas
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- 97074 Würzburg
- Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|
27
|
Yu J, Qi D, Li J. Design, synthesis and applications of responsive macrocycles. Commun Chem 2020; 3:189. [PMID: 36703444 PMCID: PMC9814784 DOI: 10.1038/s42004-020-00438-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Inspired by the lock and key principle, the development of supramolecular macrocyclic chemistry has promoted the prosperous growth of host-guest chemistry. The updated induced-fit and conformation selection model spurred the emerging research on responsive macrocycles (RMs). This review introduces RMs, covering their design, synthesis and applications. It gives readers insight into the dynamic control of macrocyclic molecules and the exploration of materials with desired functions.
Collapse
Affiliation(s)
- Jingjing Yu
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Dawei Qi
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Jianwei Li
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland ,grid.428986.90000 0001 0373 6302Hainan Provincial Key Lab of Fine Chem, Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou, 570228 China
| |
Collapse
|
28
|
Affiliation(s)
- Zhiyao Yang
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| | - Zejiang Liu
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| | - Lihua Yuan
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
29
|
Mao L, Hu Y, Tu Q, Jiang WL, Zhao XL, Wang W, Yuan D, Wen J, Shi X. Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties. Nat Commun 2020; 11:5806. [PMID: 33199747 PMCID: PMC7669899 DOI: 10.1038/s41467-020-19677-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023] Open
Abstract
It has been a challenging topic and perpetual task to design and synthesize covalent macrocycles with characteristic self-assembling behaviors and excellent host-guest properties in supramolecular chemistry. Herein, we present a family of macrocyclic diphenylamine[n]arenes (DPA[n]s, n = 3-7) consisting of methyldiphenylamine units through a facile one-pot synthesis strategy. Unlike many other reported macrocyclic arenes, the resultant non-planar DPA[n]s feature intrinsic π-π stacking interactions, interesting self-assembling behaviors and ethene/ethyne capture properties. Specifically, strong multiple intermolecular edge-to-face aromatic interactions in DPA[3] have been systematically investigated both in solid and solution states. The intriguing findings on the intermolecular edge-to-face stacking interaction mode in the macrocycle would further highlight the importance of noncovalent π-π interaction in supramolecular self-assembly. This study will also shed light on the macrocyclic and supramolecular chemistry and, we expect, will provide a direction for design and synthesis of covalent macrocycles in this area.
Collapse
Affiliation(s)
- Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Yang Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Qian Tu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fujian, Fuzhou, People's Republic of China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fujian, Fuzhou, People's Republic of China
| | - Jin Wen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610, Prague 6, Czech Republic
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China.
| |
Collapse
|
30
|
Oshchepkov AS, Namashivaya SSR, Khrustalev VN, Hampel F, Laikov DN, Kataev EA. Control of Photoisomerization of an Azoazacryptand by Anion Binding and Cucurbit[8]uril Encapsulation in an Aqueous Solution. J Org Chem 2020; 85:9255-9263. [PMID: 32584036 DOI: 10.1021/acs.joc.0c01260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Control of isomerization of a receptor bearing multiple light-switchable subunits in a confined space is critical for the design of synthetic molecular machines. Toward this goal, a new azacryptand containing three azobenzene subunits has been developed, and its photoisomerization in an aqueous solution has been studied depending on anion coordination and recognition by a larger host-cucurbit[8]uril (CB[8]). The cryptand in its hexaprotonated form shows considerable affinity for fluoride and perchlorate, which in turn affects the isomer distribution of the receptor under UV-light irradiation, stabilizing the isomers of the cryptand with Z-configurations. CB[8] was found to be able to encapsulate the isomers of the cryptand by forming a Matryoshka-type complex. The irradiation of a 10:1 CB[8]-cryptand mixture has led to a selective conversion of the cryptand to the E,E,Z isomer inside CB[8]. It has been demonstrated that the addition of fluoride to the resulted complex induces the release of the cryptand as a major E,E,E isomer, while other studied anions were ineffective in this reaction. To our knowledge, this work presents a first example of a host-controlled photoisomerization of an anion receptor bearing multiple switching azobenzenes that model the function of naturally occurring chaperones.
Collapse
Affiliation(s)
| | - Siva S R Namashivaya
- Faculty of Natural Sciences, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Frank Hampel
- Department of Chemistry and Pharmacy, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Dimitri N Laikov
- Chemistry Department, Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russia
| | - Evgeny A Kataev
- Department of Chemistry and Pharmacy, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
31
|
Hua K, An Y, Wang Y, Han Y. Supramolecular Construction of a [16]‐Imidazolium Cage via a Quadruple [2+2] Photocycloaddition and Its Selective Fluorescent Recognition of Pyranine (HPTS). Chemistry 2020; 26:7190-7193. [DOI: 10.1002/chem.202001138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Hua
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
32
|
A tetrachloroazobenzene based macrocycle featuring with red-light regulated encapsulation for aryl dianionic guests. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Blanco-Gómez A, Cortón P, Barravecchia L, Neira I, Pazos E, Peinador C, García MD. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem Soc Rev 2020; 49:3834-3862. [DOI: 10.1039/d0cs00109k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic supramolecular chemistry pursues not only the construction of new matter, but also control over its inherently dynamic behaviour.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Pablo Cortón
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Liliana Barravecchia
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Iago Neira
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Elena Pazos
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Peinador
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Marcos D. García
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| |
Collapse
|
34
|
Li Z, Chen H, Li B, Xie Y, Gong X, Liu X, Li H, Zhao Y. Photoresponsive Luminescent Polymeric Hydrogels for Reversible Information Encryption and Decryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901529. [PMID: 31728289 PMCID: PMC6839628 DOI: 10.1002/advs.201901529] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/21/2019] [Indexed: 05/04/2023]
Abstract
Conventional luminescent information is usually visible under either ambient or UV light, hampering their potential application in smart confidential information protection. In order to address this challenge, herein, light-triggered luminescence ON-OFF switchable hybrid hydrogels are successfully constructed through in situ copolymerization of acrylamide, lanthanide complex, and diarylethene photochromic unit. The open-close behavior of the diarylethene ring in the polymer could be controlled by UV and visible light irradiation, where the close form of the ring features fluorescence resonance energy transfer with the lanthanide complex. The hydrogel-based blocks with tunable emission colors are then employed to construct 3D information codes, which can be read out under a 254 nm UV lamp. The exposure to 300 nm UV light leads to the luminescence quenching of the hydrogels, thus erasing the encoded information. Under visible light (>450 nm) irradiation, the luminescence is recovered to make the confidential information readable again. Thus, by simply alternating the exposure to UV and visible lights, the luminescence signals could become invisible and visible reversibly, allowing for reversible multiple information encryption and decryption.
Collapse
Affiliation(s)
- Zhiqiang Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Hongzhong Chen
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Bin Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Yanmiao Xie
- College of ComputerNankai UniversityNo. 38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiaoli Gong
- College of ComputerNankai UniversityNo. 38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiao Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Huanrong Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
35
|
Wang K, Dou HX, Wang MM, Wu Y, Zhang ZH, Xing SY, Zhu BL, Feng YX. Photolysis of a calixpyridinium-based supramolecular amphiphilic assembly and its selective turn-on fluorescence recognition of lysine in water. Chem Commun (Camb) 2019; 55:12235-12238. [PMID: 31552940 DOI: 10.1039/c9cc07020f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new calixpyridinium-based light-responsive host-guest recognition motif was found in this work. This host-guest recognition motif was further discovered to be applied as a selective turn-on fluorescent sensor for lysine over other natural amino acids.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Hong-Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Meng-Meng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yue Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Ze-Hao Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bo-Lin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yu-Xin Feng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
36
|
Ye Z, Yang Z, Wang L, Chen L, Cai Y, Deng P, Feng W, Li X, Yuan L. A Dynamic Hydrogen‐Bonded Azo‐Macrocycle for Precisely Photo‐Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zecong Ye
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Zhiyao Yang
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Lei Wang
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Lixi Chen
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Yimin Cai
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Pengchi Deng
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Wen Feng
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Lihua Yuan
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| |
Collapse
|
37
|
Ye Z, Yang Z, Wang L, Chen L, Cai Y, Deng P, Feng W, Li X, Yuan L. A Dynamic Hydrogen-Bonded Azo-Macrocycle for Precisely Photo-Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2019; 58:12519-12523. [PMID: 31269315 DOI: 10.1002/anie.201906912] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 02/06/2023]
Abstract
A light-responsive system constructed from hydrogen-bonded azo-macrocycles demonstrates precisely controlled propensity in molecular encapsulation and release process. A significant decrease in the size of the cavity is observed in the course of the E→Z photoisomerization based on the results from DFT calculations and traveling wave ion mobility mass spectrometry. These macrocyclic hosts exhibit a rare 2:1 host-guest stoichiometry and guest-dependent slow or fast exchange on the NMR timescale. With the slow host-guest exchange and switchable shape change of the cavity, quantitative release and capture of bipyridinium guests is achieved with the maximum release of 68 %. This work underscores the importance of slow host-guest exchange on realizing accurate release of organic cations in a stepwise manner under light irradiation. The light-responsive system established here could advance further design of novel photoresponsive molecular switches and mechanically interlocked molecules.
Collapse
Affiliation(s)
- Zecong Ye
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Zhiyao Yang
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lixi Chen
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yimin Cai
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Pengchi Deng
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lihua Yuan
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
38
|
Alqarni Y, Bell TDM, Tabor RF, Saito K. Topologically Controlled Synthesis of Reversible Macrocyclic Compounds in Microemulsions. J Org Chem 2019; 84:8596-8601. [PMID: 31180219 DOI: 10.1021/acs.joc.9b00913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel and simple approach was used to synthesize a reversible macrocyclic compound. This approach is based on capturing molecules with a photodynamic covalent bond inside microemulsions as nanoreactors and exposing them to UV radiation to facilitate a stereoselective reaction to form cyclic compounds quantitatively and selectively. The size of the microemulsion droplets used played a crucial role in synthesizing the reversible macrocyclic compounds. The formed macrocyclic compound was able to revert to monomers under UV irradiation of a shorter wavelength.
Collapse
Affiliation(s)
- Yanallah Alqarni
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Toby D M Bell
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Rico F Tabor
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Kei Saito
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
39
|
Li R, Han M, Tessarolo J, Holstein JJ, Lübben J, Dittrich B, Volkmann C, Finze M, Jenne C, Clever GH. Successive Photoswitching and Derivatization Effects in Photochromic Dithienylethene‐Based Coordination Cages. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ru‐Jin Li
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund (Germany
| | - Muxin Han
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund (Germany
| | - Jacopo Tessarolo
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund (Germany
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund (Germany
| | - Jens Lübben
- Institut für Anorganische ChemieGeorg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Birger Dittrich
- Institut für Anorganische Chemie und Strukturchemie, Material- und Strukturforschung, Gebäude: 26.42Heinrich-Heine Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Christian Volkmann
- Institut für Anorganische ChemieGeorg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Maik Finze
- Institut für Anorganische Chemie Institut für nachhaltige Chemie and Katalyse mit Bor (ICB)Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Carsten Jenne
- Fakultät für Mathematik und Naturwissenschaften, Anorganische ChemieBergische Universität Wuppertal Gaußstraße 20 42119 Wuppertal Germany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund (Germany
| |
Collapse
|
40
|
Chi X, Cen W, Queenan JA, Long L, Lynch VM, Khashab NM, Sessler JL. Azobenzene-Bridged Expanded "Texas-sized" Box: A Dual-Responsive Receptor for Aryl Dianion Encapsulation. J Am Chem Soc 2019; 141:6468-6472. [PMID: 30957995 DOI: 10.1021/jacs.9b01241] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report an expanded "Texas-sized" molecular box (AzoTxSB) that incorporates photoresponsive azobenzene bridging subunits and anion recognition motifs. The shape of this box can be switched through light induced E ↔ Z photoisomerization of the constituent azobenzenes. This allows various anionic substrates to be bound and released by using different forms of the box. Control can also be achieved using other environmental stimuli, such as pH and anion competition.
Collapse
Affiliation(s)
- Xiaodong Chi
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Wanglai Cen
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States.,Institute of New Energy and Low Carbon Technology, Sichuan University , Chengdu 610207 , People's Republic of China
| | - Jack A Queenan
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Lingliang Long
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , People's Republic of China
| | - Vincent M Lynch
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology , Thuwal 23955 , Saudi Arabia
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States.,Center for Supramolecular Chemistry and Catalysis, Shanghai University , Shanghai 200444 , People's Republic of China
| |
Collapse
|
41
|
Remón P, González D, Li S, Basílio N, Andréasson J, Pischel U. Light-driven control of the composition of a supramolecular network. Chem Commun (Camb) 2019; 55:4335-4338. [PMID: 30907910 DOI: 10.1039/c9cc00922a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composition of a supramolecular network, constituted by several cucurbituril receptors and guests, can be controlled by the reversible and all-photonic switching of a dithienylethene guest.
Collapse
Affiliation(s)
- Patricia Remón
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Wu H, Chen Y, Zhang L, Anamimoghadam O, Shen D, Liu Z, Cai K, Pezzato C, Stern CL, Liu Y, Stoddart JF. A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. J Am Chem Soc 2018; 141:1280-1289. [DOI: 10.1021/jacs.8b10526] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huang Wu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ommid Anamimoghadam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
43
|
Slavov C, Yang C, Heindl AH, Stauch T, Wegner HA, Dreuw A, Wachtveitl J. Twist and Return-Induced Ring Strain Triggers Quick Relaxation of a ( Z)-Stabilized Cyclobisazobenzene. J Phys Chem Lett 2018; 9:4776-4781. [PMID: 30063355 DOI: 10.1021/acs.jpclett.8b02159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Continuous irradiation of the thermodynamically stable ( Z, Z)-cyclobisazobenzene does not lead to accumulation of a ( Z, E) or ( E, E) isomer as one might expect. Our combined experimental and computational investigation reveals that Z → E photoisomerization still takes place on an ultrafast time scale but induces large ring strain in the macrocycle, which leads to a very fast thermal back-isomerization, preventing photostationary accumulation of ( E)-isomers.
Collapse
Affiliation(s)
- Chavdar Slavov
- Institute of Physical and Theoretical Chemistry , Goethe University , Frankfurt 60323 , Germany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing (IWR) , University of Heidelberg , Heidelberg 69117 , Germany
| | - Andreas H Heindl
- Institute of Organic Chemistry , Justus Liebig University , Giessen 35390 , Germany
| | - Tim Stauch
- Interdisciplinary Center for Scientific Computing (IWR) , University of Heidelberg , Heidelberg 69117 , Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry , Justus Liebig University , Giessen 35390 , Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR) , University of Heidelberg , Heidelberg 69117 , Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry , Goethe University , Frankfurt 60323 , Germany
| |
Collapse
|
44
|
Zhiquan L, Xie H, Border SE, Gallucci J, Pavlović RZ, Badjić JD. A Stimuli-Responsive Molecular Capsule with Switchable Dynamics, Chirality, and Encapsulation Characteristics. J Am Chem Soc 2018; 140:11091-11100. [PMID: 30099876 DOI: 10.1021/jacs.8b06190] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Zhiquan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Han Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sarah E. Border
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Judith Gallucci
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
45
|
Geng WC, Sun H, Guo DS. Macrocycles containing azo groups: recognition, assembly and application. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0819-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Kosiorek S, Butkiewicz H, Danylyuk O, Sashuk V. Pillar[6]pyridinium: a hexagonally shaped molecular box that selectively recognizes multicharged anionic species. Chem Commun (Camb) 2018; 54:6316-6319. [PMID: 29856451 DOI: 10.1039/c8cc03353f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A sextuply charged cyclic cationic receptor with an extraordinary structure and unprecedented binding properties is presented. The macrocycle consists of six pyridinium ions connected by methylene linkers with an electron-deficient cavity inside. In the solid state, the cavity is padded with an organized water network that gives the macrocycle a hexagonal shape. In water, the cavity is more flexible and selectively accommodates anionic species. Of the ions of similar size the macrocycle binds most strongly those with the largest negative charge. When the net charge is the same, the most preferred are anions with delocalized charge rather that those with localized charge; remarkably, the former form inclusion complexes, while the latter are complexed externally.
Collapse
Affiliation(s)
- Sandra Kosiorek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|
47
|
Neva T, Carmona T, Benito JM, Przybylski C, Ortiz Mellet C, Mendicuti F, García Fernández JM. Xylylene Clips for the Topology-Guided Control of the Inclusion and Self-Assembling Properties of Cyclodextrins. J Org Chem 2018; 83:5588-5597. [PMID: 29683327 DOI: 10.1021/acs.joc.8b00602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The topology of β-cyclodextrin can be molded, from toroidal to ovoid basket-shaped, by the installation of an o- or m-xylylene moiety connecting two consecutive d-glucopyranosyl units through the secondary O-2(I) and O-3(II) positions. This strategy can be exploited advantageously to precast the cavity for preferential inclusion of globular or planar guests as well as to privilege dimeric or monomeric species in water solution.
Collapse
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ) , CSIC-University of Sevilla , Avda. Americo Vespucio 49 , 41092 Sevilla , Spain
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, Edificio de Farmacia , Campus Universitario Ctra. Madrid-Barcelona , Km 33.600 , 28871 Alcalá de Henares, Madrid , Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ) , CSIC-University of Sevilla , Avda. Americo Vespucio 49 , 41092 Sevilla , Spain
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS UMR 8232 , Sorbonne Université , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/Profesor García González 1 , 41012 Sevilla , Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, Edificio de Farmacia , Campus Universitario Ctra. Madrid-Barcelona , Km 33.600 , 28871 Alcalá de Henares, Madrid , Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ) , CSIC-University of Sevilla , Avda. Americo Vespucio 49 , 41092 Sevilla , Spain
| |
Collapse
|
48
|
Zhu R, Qian A, Yan J, Li W, Liu K, Masuda T, Zhang A. OEGylated Cyclodextrins Responsive to Temperature, Redox, and Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13258-13263. [PMID: 29624048 DOI: 10.1021/acsami.8b01514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present work provides a versatile access for "smart" cyclodextrins (CDs) that are responsive to temperature, redox, and metal ions. These CDs are modified with oligoethylene glycols through thiol-ene click chemistry, which are inherently thermoresponsive in aqueous solutions. At the same time, their thermoresponsiveness is tunable through oxidation or metal ion chelation of thioether moieties. Significantly, these stimuli-responsive CDs retained strong inclusion abilities to guest dyes, and the inclusion complexation can be tuned by thermally induced phase transitions, oxidation, as well as metal chelation. The stimuli-responsive complexation with dyes allows to fabricate colorimetric/fluorescent sensors for temperature or for soft metal ions, such as Ag+ and Hg2+. With multiple responsiveness integrated in one material, these monodisperse CDs have formed a new class of stimuli-responsive macrocycles, which can reversibly encapsulate and release guest species through multiple switches.
Collapse
Affiliation(s)
- Runlang Zhu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Materials Building Room 447, Nanchen Street 333 , Shanghai 200444 , China
| | - Apan Qian
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Materials Building Room 447, Nanchen Street 333 , Shanghai 200444 , China
| | - Jiatao Yan
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Materials Building Room 447, Nanchen Street 333 , Shanghai 200444 , China
| | - Wen Li
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Materials Building Room 447, Nanchen Street 333 , Shanghai 200444 , China
- School of Engineering and Applied Sciences , Harvard University , 29 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Kun Liu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Materials Building Room 447, Nanchen Street 333 , Shanghai 200444 , China
| | - Toshio Masuda
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Materials Building Room 447, Nanchen Street 333 , Shanghai 200444 , China
| | - Afang Zhang
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Materials Building Room 447, Nanchen Street 333 , Shanghai 200444 , China
| |
Collapse
|
49
|
Yang YD, Sessler JL, Gong HY. Flexible imidazolium macrocycles: building blocks for anion-induced self-assembly. Chem Commun (Camb) 2018; 53:9684-9696. [PMID: 28766599 DOI: 10.1039/c7cc04661h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This feature article summarises recent contributions of the authors in the area of anion-induced supramolecular self-assembly. It is based on the chemistry of a set of tetracationic imidazolium macrocycles, specifically the so-called 'Texas-sized' molecular box, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (14+), and its congeners, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,2-dimethylenebenzene) (24+), cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,3-dimethylenebenzene) (34+), and cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](2,6-dimethylenepyridine) (44+). These systems collectively have been demonstrated as being versatile building blocks that interact with organic carboxylate or sulfonate anions, as well as substrates (e.g., neutral molecules or metal cations). Most work to date has been carried out with 14+, a system that has been found to support the construction of a number of stimuli responsive self-assembled ensembles. This macrocycle and others of the 'Texas-sized' box family also show the potential to react as carbene precursors and to undergo post-synthetic modification (PSM) to produce new functional macrocycles, such as trans- and cis-cyclo[2]((Z)-N-(2-((6-(1H-imidazol-1-yl)pyridin-2-yl)amino)vinyl)formamide)[2](1,4-bismethylbenzene) (52+ and 62+, respectively). On the basis of the work reviewed in this Feature article, we propose that the imidazolium macrocycles 14+-44+ can be considered as useful tools for the construction of ensembles with environmentally responsive features, including control over self-assembly and an ability to undergo precursor-specific PSM.
Collapse
Affiliation(s)
- Yu-Dong Yang
- College of Chemistry, Beijing Normal University, Xinjiekouwaidajie 19, Beijing, 100875, P. R. China.
| | | | | |
Collapse
|
50
|
Kulathinte Meethal S, Sasmal R, Pahwa M, C S, Das Saha N, Agasti SS. Cucurbit[7]uril-Directed Assembly of Colloidal Membrane and Stimuli-Responsive Microcapsules at the liquid-liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:693-699. [PMID: 29262683 DOI: 10.1021/acs.langmuir.7b03554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal microcapsules based on supramolecular architectures feature attractive properties and offer new opportunities in diverse areas such as delivery, sensing, and catalysis. Herein, we report a new strategy to fabricate the colloidal membrane and stimuli-responsive microcapsules by utilizing cucurbit[7]uril-mediated interfacial host-guest molecular recognition. In contrast to the traditionally used cross-linking approach, this method exploits the engineered interaction between a nanoparticle ligand and cucurbit[7]uril to tune the interfacial energy and stabilize the colloidal assembly at the interface. These capsules provide a versatile platform for simultaneous encapsulation of dual cargos. Additionally, the dynamic nature of the supramolecular interactions allows triggered release of the encapsulated cargos through the orthogonal presentation of a high affinity guest molecule.
Collapse
Affiliation(s)
- Shafeekh Kulathinte Meethal
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Meenakshi Pahwa
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Soumya C
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Nilanjana Das Saha
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| |
Collapse
|