1
|
Schmitz M, Bertrams MS, Sell AC, Glaser F, Kerzig C. Efficient Energy and Electron Transfer Photocatalysis with a Coulombic Dyad. J Am Chem Soc 2024; 146:25799-25812. [PMID: 39227057 DOI: 10.1021/jacs.4c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photocatalysis holds great promise for changing the way value-added molecules are currently prepared. However, many photocatalytic reactions suffer from quantum yields well below 10%, hampering the transition from lab-scale reactions to large-scale or even industrial applications. Molecular dyads can be designed such that the beneficial properties of inorganic and organic chromophores are combined, resulting in milder reaction conditions and improved reaction quantum yields of photocatalytic reactions. We have developed a novel approach for obtaining the advantages of molecular dyads without the time- and resource-consuming synthesis of these tailored photocatalysts. Simply by mixing a cationic ruthenium complex with an anionic pyrene derivative in water a salt bichromophore is produced owing to electrostatic interactions. The long-lived organic triplet state is obtained by static and quantitative energy transfer from the preorganized ruthenium complex. We exploited this so-called Coulombic dyad for energy transfer catalysis with similar reactivity and even higher photostability compared to a molecular dyad and reference photosensitizers in several photooxygenations. In addition, it was shown that this system can also be used to maximize the quantum yield of photoredox reactions. This is due to an intrinsically higher cage escape quantum yield after photoinduced electron transfer for purely organic compounds compared to heavy atom-containing molecules. The combination of laboratory-scale as well as mechanistic irradiation experiments with detailed spectroscopic investigations provided deep mechanistic insights into this easy-to-use photocatalyst class.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Arne C Sell
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
2
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
3
|
Xu K, Zheng L, Bao SS, Ma J, Xie X, Zheng LM. Lanthanide-Sensitized Upconversion Iridium Complex via Triplet Energy Transfer. SMALL METHODS 2024:e2400671. [PMID: 38803310 DOI: 10.1002/smtd.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Cyclometalated iridium (Ir) complexes demonstrate impressive capabilities across a range of fields, including biology and photocatalysis, due to their tunable optical characteristics and structure flexibility. However, generating upconversion luminescence of Ir complexes under near-infrared light excitation is challenging. Herein, by employing lanthanide-doped upconversion nanoparticles (UCNPs) as the sensitizer, a new strategy is demonstrated to gain upconversion luminescence of Ir complexes via triplet energy transfer. This design relies on a rationally designed hybrid of core-shell structured NaYbF4:Tb@NaTbF4 UCNPs and new Ir phosphonate complexes, in which UCNPs can migrate upconverted energy to the surface of nanoparticles through Tb3+-mediated energy migration and then sensitize the upconversion luminescence of Ir complexes upon 980 nm excitation. Both experimental and theoretical investigations highlight the significance of triplet energy transfer from excited Tb3+ ions to the triplet state of Ir complexes in the sensitization of upconversion luminescence of Ir complexes. These findings may open exciting avenues for fabricating hybrid Ir materials with new functions and driving the development of UCNP-based nanomaterials.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Lifeng Zheng
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Alkhaibari I, Zhang X, Zhao J, Stonelake TM, Knighton RC, Horton PN, Coles SJ, Buurma NJ, Richards E, Pope SJA. Tuning Excited State Character in Iridium(III) Photosensitizers and Its Influence on TTA-UC. Inorg Chem 2024; 63:9931-9940. [PMID: 38738860 PMCID: PMC11134496 DOI: 10.1021/acs.inorgchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 μs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.
Collapse
Affiliation(s)
- Ibrahim
S. Alkhaibari
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
- Department
of Chemistry, College of Science, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Xue Zhang
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Thomas M. Stonelake
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Richard C. Knighton
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Peter N. Horton
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Niklaas J. Buurma
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Emma Richards
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Simon J. A. Pope
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| |
Collapse
|
5
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
6
|
Fu X, Man Y, Yu C, Sun Y, Hao E, Wu Q, Hu A, Li G, Wang CC, Li J. Unsymmetrical Benzothieno-Fused BODIPYs as Efficient NIR Heavy-Atom-Free Photosensitizers. J Org Chem 2024; 89:4826-4839. [PMID: 38471124 DOI: 10.1021/acs.joc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Heavy-atom-free photosensitizers are potentially suitable for use in photodynamic therapy (PDT). In this contribution, a new family of unsymmetrical benzothieno-fused BODIPYs with reactive oxygen efficiency up to 50% in air-saturated toluene was reported. Their efficient intersystem crossing (ISC) resulted in the generation of both 1O2 and O2-• under irradiation. More importantly, the PDT efficacy of a respective 4-methoxystyryl-modified benzothieno-fused BODIPY in living cells exhibited an extremely high phototoxicity with an ultralow IC50 value of 2.78 nM. The results revealed that the incorporation of an electron-donating group at the α-position of the unsymmetrical benzothieno-fused BODIPY platform might be an effective approach for developing long-wavelength absorbing heavy-atom-free photosensitizers for precision cancer therapy.
Collapse
Affiliation(s)
- Xiaofan Fu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yingxiu Man
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yingzhu Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anzhi Hu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Guangyao Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chang-Cheng Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
7
|
Wang P, Guo S, Zhao QP, Xu SY, Lv H, Lu TB, Zhang ZM. Identification of Crucial Photosensitizing Factors to Promote CO 2 -to-CO Conversion. Angew Chem Int Ed Engl 2024; 63:e202312450. [PMID: 38135659 DOI: 10.1002/anie.202312450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
The sensitizing ability of a catalytic system is closely related to the visible-light absorption ability, excited-state lifetime, redox potential, and electron-transfer rate of photosensitizers (PSs), however it remains a great challenge to concurrently mediate these factors to boost CO2 photoreduction. Herein, a series of Ir(III)-based PSs (Ir-1-Ir-6) were prepared as molecular platforms to understand the interplay of these factors and identify the primary factors for efficient CO2 photoreduction. Among them, less efficient visible-light absorption capacity results in lower CO yields of Ir-1, Ir-2 or Ir-4. Ir-3 shows the most efficient photocatalytic activity among these mononuclear PSs due to some comprehensive parameters. Although the Kobs of Ir-3 is ≈10 times higher than that of Ir-5, the CO yield of Ir-3 is slightly higher than that of Ir-5 due to the compensation of Ir-5's strong visible-light-absorbing ability. Ir-6 exhibits excellent photocatalytic performance due to the strong visible-light absorption ability, comparable thermodynamic driving force, and electron transfer rate among these PSs. Remarkably, the CO2 photoreduction to CO with Ir-6 can achieve 91.5 μmol, over 54 times higher than Ir-1, and the optimized TONC-1 can reach up to 28160. Various photophysical properties of the PSs were concurrently adjusted by fine ligand modification to promote CO2 photoreduction.
Collapse
Affiliation(s)
- Ping Wang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qiu-Ping Zhao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shen-Yue Xu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
8
|
Glaser F, Schmitz M, Kerzig C. Coulomb interactions for mediator-enhanced sensitized triplet-triplet annihilation upconversion in solution. NANOSCALE 2023; 16:123-137. [PMID: 38054748 DOI: 10.1039/d3nr05265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion offers an attractive possibility to replace a high-energy photon by two photons with lower energy through the combination of a light-harvesting triplet sensitizer and an annihilator for the formation of a fluorescent singlet state. Typically, high annihilator concentrations are required to achieve an efficient initial energy transfer and as a direct consequence the most highly energetic emission is often not detectable due to intrinsic reabsorption by the annihilator itself. Herein, we demonstrate that the addition of a charge-adapted mediator drastically improves the energy transfer efficiency at low annihilator concentrations via an energy transfer cascade. Inspired by molecular dyads and recent developments in nanocrystal-sensitized upconversion, our system exploits a concept to minimize intrinsic filter effects, while boosting the upconversion quantum yield in solution. A sensitizer-annihilator combination consisting of a ruthenium-based complex and 9,10-diphenylanthracene (DPA) is explored as model system and a sulfonated pyrene serves as mediator. The impact of opposite charges between sensitizer and mediator - to induce coulombic attraction and subsequently result in accelerated energy transfer rate constants - is analyzed in detail by different spectroscopic methods. Ion pairing and the resulting static energy transfer in both directions is a minor process, resulting in an improved overall performance. Finally, the more intense upconverted emission in the presence of the mediator is used to drive two catalytic photoreactions in a two-chamber setup, illustrating the advantages of our approach, in particular for photoreactions requiring oxygen that would interfere with the upconversion system.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Bertrams MS, Hermainski K, Mörsdorf JM, Ballmann J, Kerzig C. Triplet quenching pathway control with molecular dyads enables the identification of a highly oxidizing annihilator class. Chem Sci 2023; 14:8583-8591. [PMID: 37592982 PMCID: PMC10430750 DOI: 10.1039/d3sc01725g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
Metal complex - arene dyads typically act as more potent triplet energy donors compared to their parent metal complexes, which is frequently exploited for increasing the efficiencies of energy transfer applications. Using unexplored dicationic phosphonium-bridged ladder stilbenes (P-X2+) as quenchers, we exclusively observed photoinduced electron transfer photochemistry with commercial organic photosensitizers and photoactive metal complexes. In contrast, the corresponding pyrene dyads of the tested ruthenium complexes with the very same metal complex units efficiently sensitize the P-X2+ triplets. The long-lived and comparatively redox-inert pyrene donor triplet in the dyads thus provides an efficient access to acceptor triplet states that are otherwise very tricky to obtain. This dyad-enabled control over the quenching pathway allowed us to explore the P-X2+ photochemistry in detail using laser flash photolysis. The P-X2+ triplet undergoes annihilation producing the corresponding excited singlet, which is an extremely strong oxidant (+2.3 V vs. NHE) as demonstrated by halide quenching experiments. This behavior was observed for three P2+ derivatives allowing us to add a novel basic structure to the very limited number of annihilators for sensitized triplet-triplet annihilation in neat water.
Collapse
Affiliation(s)
- Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Katharina Hermainski
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
10
|
Liu S, Wang M, Hou T, Shen X. Unprecedented hetero-coordinated Ir(C^N) 2tmd complexes containing both five- and six-membered Ir-(C^N) rings based on phenanthrylpyridine ligands: syntheses, crystal structures and photophysical properties. Dalton Trans 2023; 52:11120-11129. [PMID: 37494113 DOI: 10.1039/d3dt01809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
By using 2-(9-phenanthryl)pyridine (phpyr) and its derivatives as cyclometalated ligands, we synthesized a set of isomeric red-emitting complexes Ir(phpyr-R)2tmd (R = -H, -CF3, -F and -CH3, tmd = 2,2,6,6-tetramethylheptane-3,5-dione) with different coordinated modes, including bis-five-membered and five- + six-membered Ir-(C^N) ring chelating modes. The latter are the first examples of hetero-coordinated Ir(C^N)2(L^X)-type complexes containing both five- and six-membered Ir-(C^N) metallocycles. Their coordination geometries were distinctly determined using X-ray crystallographic analysis. Compared to typical bis-five-membered ring-chelated complexes, these novel hetero-coordinated isomers show bathochromic emission and lower quantum yields. On careful analysis of their electrochemical behavior and DFT calculations, it has been found that the regulatory effects of the solitary six-membered metallocycles in Ir(phpyr-R)2tmd could not only stabilize the LUMO but also destabilize the HOMO, leading to a narrower energy gap. More importantly, DFT calculations of the relative energies of these isomeric complexes demonstrated that bis-five-membered and five- + six-membered chelating modes are more stable compared to bis-six-membered rings, consistent with experiments. This work provides guidance for the structural design of Ir(C^N)2(L^X)-type complexes.
Collapse
Affiliation(s)
- Sen Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- Zhangjiagang Institute of Nanjing Tech University, Suzhou 215600, P. R. China
| | - Mengyun Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Tianjiao Hou
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- Jiangsu Academy of Chemical Inherent Safety, Nanjing210009, P. R. China
| | - Xuan Shen
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- Zhangjiagang Institute of Nanjing Tech University, Suzhou 215600, P. R. China
| |
Collapse
|
11
|
Li H, Wang C, Glaser F, Sinha N, Wenger OS. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. J Am Chem Soc 2023; 145:11402-11414. [PMID: 37186558 PMCID: PMC10214436 DOI: 10.1021/jacs.3c02609] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion is a promising strategy to use visible light for chemical reactions requiring the energy input of UV photons. This strategy avoids unsafe ultraviolet light sources and can mitigate photo-damage and provide access to reactions, for which filter effects hamper direct UV excitation. Here, we report a new approach to make blue-to-UV upconversion more amenable to photochemical applications. The tethering of a naphthalene unit to a cyclometalated iridium(III) complex yields a bichromophore with a high triplet energy (2.68 eV) and a naphthalene-based triplet reservoir featuring a lifetime of 72.1 μs, roughly a factor of 20 longer than the photoactive excited state of the parent iridium(III) complex. In combination with three different annihilators, consistently lower thresholds for the blue-to-UV upconversion to crossover from a quadratic into a linear excitation power dependence regime were observed with the bichromophore compared to the parent iridium(III) complex. The upconversion system composed of the bichromophore and the 2,5-diphenyloxazole annihilator is sufficiently robust under long-term blue irradiation to continuously provide a high-energy singlet-excited state that can drive chemical reactions normally requiring UV light. Both photoredox and energy transfer catalyses were feasible using this concept, including the reductive N-O bond cleavage of Weinreb amides, a C-C coupling reaction based on reductive aryl debromination, and two Paternò-Büchi [2 + 2] cycloaddition reactions. Our work seems relevant in the context of developing new strategies for driving energetically demanding photochemistry with low-energy input light.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cui Wang
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Felix Glaser
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
12
|
Wei S, Liang H, Dao A, Xie Y, Cao F, Ren Q, Yadav AK, Kushwaha R, Mandal AA, Banerjee S, Zhang P, Ji S, Huang H. Perturbing tumor cell metabolism with a Ru(II) photo-redox catalyst to reverse the multidrug resistance of lung cancer. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Fitzgerald SA, Xiao X, Zhao J, Horton PN, Coles SJ, Knighton RC, Ward BD, Pope SJA. Organometallic Platinum(II) Photosensitisers that Demonstrate Ligand-Modulated Triplet-Triplet Annihilation Energy Upconversion Efficiencies. Chemistry 2023; 29:e202203241. [PMID: 36394514 PMCID: PMC10107691 DOI: 10.1002/chem.202203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/18/2022]
Abstract
A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2) Å. The highly coloured complexes display efficient visible absorption at 400-500 nm (ϵ ≈5000 M-1 cm-1 ) and orange red photoluminescent characteristics (λem =603-620 nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.
Collapse
Affiliation(s)
| | - Xiao Xiao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Peter N. Horton
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Simon J. Coles
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | | | - Benjamin D. Ward
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Simon J. A. Pope
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| |
Collapse
|
14
|
Hallen L, Horan AM, Twamley B, McGarrigle EM, Draper SM. Accessing unsymmetrical Ru(II) bipyridine complexes: a versatile synthetic mechanism for fine tuning photophysical properties. Chem Commun (Camb) 2023; 59:330-333. [PMID: 36511718 DOI: 10.1039/d2cc04910d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three novel unsymmetrical Ru(II) bipyridine complexes were generated via a convenient, modular, convergent synthetic route. An investigation of their photophysical properties revealed solvent-dependent excited state behaviour including altered absorption and emission wavelengths, emission lifetimes and quantum yields of phosphorescence.
Collapse
Affiliation(s)
- Lukas Hallen
- School of Chemistry, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
| | - Alexandra M Horan
- SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
| | - Eoghan M McGarrigle
- SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland. .,AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
Liang Z, Yan X, Cui H, Xie H, Li H, Yan D, Ye C, Wang X, Tao X. Triplet‐Triplet Annihilation Upconversion from Ru(II) Phenanthroline Complexes and 2‐Substituted Anthracene Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zuo‐Qin Liang
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Xu Yan
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Hao Cui
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Huan‐Ran Xie
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Hui Li
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Dong Yan
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Chang‐Qing Ye
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Xiao‐Mei Wang
- Suzhou Key Laboratory of Flexible & Printing Optoelectronic Materials School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Xu‐Tang Tao
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
| |
Collapse
|
16
|
Nasrallah H, Lyu P, Maurin G, El-Roz M. Highly efficient CO2 reduction under visible-light on non-covalent Ru⋯Re assembled photocatalyst: Evidence on the electron transfer mechanism. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Gong Q, Wu Q, Guo X, Li W, Wang L, Hao E, Jiao L. Strategic Construction of Sulfur-Bridged BODIPY Dimers and Oligomers as Heavy-Atom-Free Photosensitizers. Org Lett 2021; 23:7220-7225. [PMID: 34463517 DOI: 10.1021/acs.orglett.1c02622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient strategy for building sulfur-bridged oligo-BODIPYs based on the SNAr reaction is described. These oligo-BODIPYs showed broadband and strong visible-near-infrared (NIR) light absorption, strong intramolecular exciton coupling, and efficient intersystem crossing (ISC). Generation of 1O2 as well as O2•- under irradiation was found to give high reactive oxygen species generation efficiencies for those oligomers.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
18
|
Conway-Kenny R, Ferrer-Ugalde A, Careta O, Cui X, Zhao J, Nogués C, Núñez R, Cabrera-González J, Draper SM. Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater Sci 2021; 9:5691-5702. [PMID: 34264257 DOI: 10.1039/d1bm00730k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(ii)- or Ir(iii)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4%). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the highest singlet oxygen quantum yields (ΦΔ) were obtained for the mono-carborane-phenanthroline complexes (RuCB: 52% and IrCB: 25%). None of the complexes produce dark toxicity in SKBR-3 cells after incubation under photodynamic therapy (PDT) conditions. Remarkably, mono-carboranes RuCB and IrCB were the best internalised by the SKBR-3 cells, demonstrating the first examples of tris-bidentate transition metal-carborane complexes acting as triplet photosensitisers for PDT with a high photoactivity; RuCB or IrCB killed ∼50% of SKBR-3 cells at 10 μM after irradiation. Therefore, the high-boron content and the photoactive properties of these photosensitisers make them potential candidates as dual anti-cancer agents for PDT and Boron Neutron Capture Therapy (BNCT).
Collapse
Affiliation(s)
- Robert Conway-Kenny
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Albert Ferrer-Ugalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | - Oriol Careta
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Xiaoneng Cui
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. and State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | | | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
19
|
Han J, Zhang J, Shi Y, Duan P. Switching Photon Upconversion by Using Photofluorochromic Annihilator with Low-Lying Triplet. J Phys Chem Lett 2021; 12:3135-3141. [PMID: 33755490 DOI: 10.1021/acs.jpclett.1c00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photon upconversion based on triplet-triplet annihilation (TTA-UC) has attracted great attention due to its remarkable features including the high upconversion quantum yield, low threshold, and flexible combination of sensitizer and annihilator. Endowing TTA-UC with responsiveness will offer additional application dimensions; however, it is a challenge to develop annihilators with responsive features in the excited triplet state. Here we demonstrate the synthesis and photophysical behaviors of photofluorochromic annihilators derived from fluorescent diarylethenes. A series of turn-on mode fluorescent diarylethenes based on 1,2-bis(2-ethyl-1-benzothiophen-1,1-dioxide-3-yl)perfuorocyclopentene were synthesized, and their photochromism and photofluorochromism behaviors were thoroughly investigated. When sensitized by near-infrared ruthenium phthalocyanine, TTA-UC could be observed under excitation of 730 nm, accompanied by upconverted emission ranging from 500 to 700 nm. Because of the photoresponsive properties of the annihilators, TTA-UC can be switched between "on" and "off" by alternating irradiation of ultraviolet and visible light.
Collapse
Affiliation(s)
- Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yonghong Shi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China
| | - Pengfei Duan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Doettinger F, Yang Y, Schmid MA, Frey W, Karnahl M, Tschierlei S. Cross-Coupled Phenyl- and Alkynyl-Based Phenanthrolines and Their Effect on the Photophysical and Electrochemical Properties of Heteroleptic Cu(I) Photosensitizers. Inorg Chem 2021; 60:5391-5401. [PMID: 33764043 DOI: 10.1021/acs.inorgchem.1c00416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aims of increasing the antenna system and improving the photophysical properties of Cu(I)-based photosensitizers, the backbone of 2,9-dimethyl-1,10-phenanthroline was selectively extended in the 5,6-position. Applying specifically tailored Suzuki-Miyaura and "chemistry-on-the-complex" Sonogashira cross-coupling reactions enabled the development of two sets of structurally related diimine ligands with a broad variety of different phenyl- and alkynyl-based substituents. The resulting 11 novel heteroleptic Cu(I) complexes, including five solid-state structures, were studied with respect to their structure-property relationships. Both sets of substituents are able to red-shift the absorption maxima and to increase the absorptivity. For the alkynyl-based complexes, this is accompanied by a significant anodic shift of the reduction potentials. The phenyl-based substituents strongly influence the emission wavelength and quantum yield of the resulting Cu(I) complexes and lead to an increase in the emission lifetime of up to 504 ns, which clearly indicates competition with the benchmark system [(xantphos)Cu(bathocuproine)]PF6.
Collapse
Affiliation(s)
- Florian Doettinger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Brauschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Bevernaegie R, Wehlin SAM, Elias B, Troian‐Gautier L. A Roadmap Towards Visible Light Mediated Electron Transfer Chemistry with Iridium(III) Complexes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000255] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robin Bevernaegie
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
- Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 box L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Sara A. M. Wehlin
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 box L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
| |
Collapse
|
22
|
Wang Z, Toffoletti A, Hou Y, Zhao J, Barbon A, Dick B. Insight into the drastically different triplet lifetimes of BODIPY obtained by optical/magnetic spectroscopy and theoretical computations. Chem Sci 2020; 12:2829-2840. [PMID: 34164047 PMCID: PMC8179375 DOI: 10.1039/d0sc05494a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
The triplet state lifetimes of organic chromophores are crucial for fundamental photochemistry studies as well as applications as photosensitizers in photocatalysis, photovoltaics, photodynamic therapy and photon upconversion. It is noteworthy that the triplet state lifetime of a chromophore can vary significantly for its analogues, while the exact reason was rarely studied. Herein with a few exemplars of typical BODIPY derivatives, which show triplet lifetimes varying up to 110-fold (1.4-160 μs), we found that for these derivatives with short triplet state lifetimes (ca. 1-3 μs), the electron spin polarization (ESP) pattern of the time-resolved electron paramagnetic resonance (TREPR) spectra of the triplet state is inverted at a longer delay time after laser pulse excitation, as a consequence of a strong anisotropy in the decay rates of the zero-field state sublevel of the triplet state. For the derivatives showing longer triplet state lifetimes (>50 μs), no such ESP inversion was observed. The observed fast decay of one sublevel is responsible for the short triplet state lifetime; theoretical computations indicate that it is due to a strong coupling between the T z sublevel and the ground state mediated by the spin-orbit interaction. Another finding is that the heavy atom effect on the shortening of the triplet state lifetime is more significant for the T1 states with lower energy. To the best of our knowledge, this is the first systematic study to rationalize the short triplet state lifetime of visible-light-harvesting organic chromophores. Our results are useful for fundamental photochemistry and the design of photosensitizers showing long-lived triplet states.
Collapse
Affiliation(s)
- Zhijia Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology E-208 West Campus, 2 Ling Gong Rd. Dalian 116024 China
| | - Antonio Toffoletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology E-208 West Campus, 2 Ling Gong Rd. Dalian 116024 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology E-208 West Campus, 2 Ling Gong Rd. Dalian 116024 China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstr. 31 D-93053 Regensburg Germany
| |
Collapse
|
23
|
Huang L, Wu W, Li Y, Huang K, Zeng L, Lin W, Han G. Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis. J Am Chem Soc 2020; 142:18460-18470. [DOI: 10.1021/jacs.0c06976] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing School of Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Yang Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Le Zeng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
24
|
Seth SK, Purkayastha P. Unusually Large Singlet Oxygen (
1
O
2
) Production by Very Weakly Emissive Pyrene‐Functionalized Iridium(III) Complex: Interplay between Excited
3
ILCT/
3
IL and
3
MLCT States. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sourav Kanti Seth
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Mohanpur WB India
| | - Pradipta Purkayastha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Mohanpur WB India
| |
Collapse
|
25
|
Liu B, Jabed MA, Kilina S, Sun W. Synthesis, Photophysics, and Reverse Saturable Absorption of trans-Bis-cyclometalated Iridium(III) Complexes (C^N^C)Ir(R-tpy) + (tpy = 2,2':6',2″-Terpyridine) with Broadband Excited-State Absorption. Inorg Chem 2020; 59:8532-8542. [PMID: 32497429 DOI: 10.1021/acs.inorgchem.0c00961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extending the bandwidth of triplet excited-state absorption in transition-metal complexes is appealing for developing broadband reverse saturable absorbers. Targeting this goal, five bis-terdentate iridium(III) complexes (Ir1-Ir5) bearing trans-bis-cyclometalating (C^N^C) and 4'-R-2,2':6',2″-terpyridine (4'-R-tpy) ligands were synthesized. The effects of the structural variation in cyclometalating ligands and substituents at the tpy ligand on the photophysics of these complexes have been systematically explored using spectroscopic methods (i.e., UV-vis absorption, emission, and transient absorption spectroscopy) and time-dependent density functional theory (TDDFT) calculations. All complexes exhibited intensely structured 1π,π* absorption bands at <400 nm and broad charge transfer (1CT)/1π,π* transitions at 400-600 nm. Ligand structural variations exerted a very small effect on the energies of the 1CT/1π,π* transitions; however, they had a significant effect on the molar extinction coefficients of these absorption bands. All complexes emitted featureless deep red phosphorescence in solutions at room temperature and gave broad-band and strong triplet excited-state absorption ranging from the visible to the near-infrared (NIR) spectral regions, with both originating from the 3π,π*/3CT states. Although alteration of the ligand structures influenced the emission energies slightly, these changes significantly affected the emission lifetimes and quantum yields, transient absorption spectral features, and the triplet excited-state quantum yields of the complexes. Except for Ir3, the other four complexes all manifested reverse saturable absorption (RSA) upon nanosecond laser pulse excitation at 532 nm, with the decreasing trend of RSA following Ir2 ≈ Ir4 > Ir1 > Ir5 > Ir3. The RSA trend corresponded well with the strength of the excited-state and ground-state absorption differences (ΔOD) at 532 nm for these complexes.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Mohammed A Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| |
Collapse
|
26
|
Wang P, Dong R, Guo S, Zhao J, Zhang ZM, Lu TB. Improving photosensitization for photochemical CO 2-to-CO conversion. Natl Sci Rev 2020; 7:1459-1467. [PMID: 34691542 PMCID: PMC8288749 DOI: 10.1093/nsr/nwaa112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Inspired by nature, improving photosensitization represents a vital direction for the development of artificial photosynthesis. The sensitization ability of photosensitizers (PSs) reflects in their electron-transfer ability, which highly depends on their excited-state lifetime and redox potential. Herein, for the first time, we put forward a facile strategy to improve sensitizing ability via finely tuning the excited state of Ru(II)-PSs (Ru-1–Ru-4) for efficient CO2 reduction. Remarkably, [Ru(Phen)2(3-pyrenylPhen)]2+ (Ru-3) exhibits the best sensitizing ability among Ru-1–Ru-4, over 17 times higher than that of typical Ru(Phen)32+. It can efficiently sensitize a dinuclear cobalt catalyst for CO2-to-CO conversion with a maximum turnover number of 66 480. Systematic investigations demonstrate that its long-lived excited state and suitable redox driving force greatly contributed to this superior sensitizing ability. This work provides a new insight into dramatically boosting photocatalytic CO2 reduction via improving photosensitization.
Collapse
Affiliation(s)
- Ping Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ru Dong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song Guo
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhi-Ming Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
27
|
Chen K, Guo S, Liu H, Li X, Zhang Z, Lu T. Strong Visible‐Light‐Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kai‐Kai Chen
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| | - Song Guo
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| | - Heyuan Liu
- School of Materials Science and Engineering, College of New Energy China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiyou Li
- School of Materials Science and Engineering, College of New Energy China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zhi‐Ming Zhang
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| | - Tong‐Bu Lu
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
28
|
Chen K, Guo S, Liu H, Li X, Zhang Z, Lu T. Strong Visible‐Light‐Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angew Chem Int Ed Engl 2020; 59:12951-12957. [DOI: 10.1002/anie.202003251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Kai‐Kai Chen
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| | - Song Guo
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| | - Heyuan Liu
- School of Materials Science and Engineering, College of New Energy China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiyou Li
- School of Materials Science and Engineering, College of New Energy China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zhi‐Ming Zhang
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| | - Tong‐Bu Lu
- MOE International Joint Laboratory of Materials Microstructure Institute for New Energy Materials and Low Carbon Technologies School of Materials Science & Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
29
|
Liu D, El-Zohry AM, Taddei M, Matt C, Bussotti L, Wang Z, Zhao J, Mohammed OF, Di Donato M, Weber S. Long-Lived Charge-Transfer State Induced by Spin-Orbit Charge Transfer Intersystem Crossing (SOCT-ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angew Chem Int Ed Engl 2020; 59:11591-11599. [PMID: 32270586 PMCID: PMC7496792 DOI: 10.1002/anie.202003560] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/13/2022]
Abstract
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long‐lived triplet charge‐transfer (3CT) state, based on the electron spin control using spin‐orbit charge transfer intersystem crossing (SOCT‐ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT‐ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long‐lived 3CT state (0.94 μs in deaerated n‐hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time‐resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron‐spin polarization pattern was observed for the naphthalimide‐localized triplet state. Our spiro compact dyad structure and the electron spin‐control approach is different to previous methods for which invoking transition‐metal coordination or chromophores with intrinsic ISC ability is mandatory.
Collapse
Affiliation(s)
- Dongyi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, China
| | - Ahmed M El-Zohry
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy
| | - Clemens Matt
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, China
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy.,ICCOM-CNR, via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| |
Collapse
|
30
|
Liu D, El‐Zohry AM, Taddei M, Matt C, Bussotti L, Wang Z, Zhao J, Mohammed OF, Di Donato M, Weber S. Long‐Lived Charge‐Transfer State Induced by Spin‐Orbit Charge Transfer Intersystem Crossing (SOCT‐ISC) in a Compact Spiro Electron Donor/Acceptor Dyad. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongyi Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Ahmed M. El‐Zohry
- Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Clemens Matt
- Institute of Physical Chemistry Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg Germany
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 China
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| | - Stefan Weber
- Institute of Physical Chemistry Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg Germany
| |
Collapse
|
31
|
Kazama A, Imai Y, Okayasu Y, Yamada Y, Yuasa J, Aoki S. Design and Synthesis of Cyclometalated Iridium(III) Complexes-Chromophore Hybrids that Exhibit Long-Emission Lifetimes Based on a Reversible Electronic Energy Transfer Mechanism. Inorg Chem 2020; 59:6905-6922. [PMID: 32352765 DOI: 10.1021/acs.inorgchem.0c00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the design and synthesis of triscyclometalated iridium (Ir) complexes that contain aryloxy groups at the end of diamino linkers, which exhibit an extraordinarily long-emission lifetime, and were prepared by regioselective substitution reactions of fac-tris-homoleptic cyclometalated Ir complexes, fac-Ir(tpy)3 (tpy = 2-(4'-tolyl)pyridine). It was found that the Ir(tpy)3 complex, equipped with approximately one to six 6-N,N-dimethylamino-2-naphthoic acid (DMANA) groups through the appropriate alkyl linkers, exhibited remarkably long-emission lifetimes of up to 216 μs in DMSO/H2O at room temperature through a reversible electronic energy transfer effect between the Ir complex core and the organic chromophore moieties; however, under the same conditions, the lifetime of fac-Ir(tpy)3 was 1.4 μs. Regarding the mechanistic aspects, the relationship between the emission lifetimes of the Ir complexes and the structures and numbers of the conjugated chromophores, linker lengths, solvents, positions of the chromophores on the Ir(tpy)3 core, and related items are discussed.
Collapse
Affiliation(s)
- Ayami Kazama
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Imai
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junpei Yuasa
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
32
|
Zou Z, Ping‐Ding, Wang X, Liang Z, Tao X. Sandwich‐Type Porphyrin Complexes as Efficient Sensitizers for Triplet‐Triplet Annihilation Upconversion. ChemistrySelect 2020. [DOI: 10.1002/slct.201904322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhi‐Yang Zou
- School of Chemistry, Biology and Material EngineeringSuzhou University of Science and Technology Suzhou 215009 PR China
| | - Ping‐Ding
- School of Chemistry, Biology and Material EngineeringSuzhou University of Science and Technology Suzhou 215009 PR China
| | - Xiao‐Mei Wang
- School of Chemistry, Biology and Material EngineeringSuzhou University of Science and Technology Suzhou 215009 PR China
| | - Zuo‐Qin Liang
- School of Chemistry, Biology and Material EngineeringSuzhou University of Science and Technology Suzhou 215009 PR China
| | - Xu‐Tang Tao
- State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 PR China
| |
Collapse
|
33
|
Wang L, Cui P, Lystrom L, Lu J, Kilina S, Sun W. Heteroleptic cationic iridium( iii) complexes bearing phenanthroline derivatives with extended π-conjugation as potential broadband reverse saturable absorbers. NEW J CHEM 2020. [DOI: 10.1039/c9nj03877a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fluorenyl substitution at the diimine ligand broadened the excited-state absorption to near-IR, and enhanced reverse saturable absorption at 532 nm for the cationic Ir(iii) complexes.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Peng Cui
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
- Materials and Nanotechnology Program
| | - Levi Lystrom
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Jiapeng Lu
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| |
Collapse
|
34
|
Zhao J, Sun S, Li X, Zhang W, Gou S. Enhancing Photodynamic Therapy Efficacy of Upconversion-Based Nanoparticles Conjugated with a Long-Lived Triplet Excited State Iridium(III)-Naphthalimide Complex: Toward Highly Enhanced Hypoxia-Inducible Factor-1. ACS APPLIED BIO MATERIALS 2019; 3:252-262. [DOI: 10.1021/acsabm.9b00774] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
35
|
Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Fan C, Wei L, Niu T, Rao M, Cheng G, Chruma JJ, Wu W, Yang C. Efficient Triplet–Triplet Annihilation Upconversion with an Anti-Stokes Shift of 1.08 eV Achieved by Chemically Tuning Sensitizers. J Am Chem Soc 2019; 141:15070-15077. [PMID: 31469266 DOI: 10.1021/jacs.9b05824] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Lingling Wei
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Tong Niu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Jason J. Chruma
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
37
|
Huang L, Kakadiaris E, Vaneckova T, Huang K, Vaculovicova M, Han G. Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials 2019; 201:77-86. [PMID: 30802685 PMCID: PMC6467534 DOI: 10.1016/j.biomaterials.2019.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 11/23/2022]
Abstract
Organic triplet-triplet annihilation upconversion (TTA-UC) nanoparticles have emerged as exciting therapeutic agents and imaging probes in recent years due to their unique chemical and optical properties such as outstanding biocompatibility and low power excitation density. In this review, we focus on the latest breakthroughs in such new version of upconversion nanoparticle, including their design, preparation, and applications. First, we will discuss the key principles and design concept of these organic-based photon upconversion in regard to the methods of selection of the related triplet TTA dye pairs (photosensitizer and emitter). Then, we will discuss the recent approaches s to construct TTA-UCNPs including silica TTA-UCNPs, lipid-coated TTA-UCNPs, polymer encapsulated TTA-UCNPs, nano-droplet TTA-UCNPs and metal-organic frameworks (MOFs) constructed TTA-UCNPs. In addition, the applications of TTA-UCNPs will be discussed. Finally, we will discuss the challenges posed by current TTA-UCNP development.
Collapse
Affiliation(s)
- Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Eugenia Kakadiaris
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Tereza Vaneckova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Chemistry and Biochemistry Mendel University in Brno, Brno, 61300, Czech Republic
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry Mendel University in Brno, Brno, 61300, Czech Republic
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
38
|
David Brown Award: S. Draper / Wiley–CST Green Chemistry Award: C. Wattanakit / Gottfried‐Wilhelm‐Leibniz‐Preis: W. Wernsdorfer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
David Brown Award: S. Draper / Wiley–CST Green Chemistry Award: C. Wattanakit / Gottfried Wilhelm Leibniz Prize: W. Wernsdorfer. Angew Chem Int Ed Engl 2019; 58:4776. [DOI: 10.1002/anie.201902269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Wintergerst P, Mengele AK, Nauroozi D, Tschierlei S, Rau S. Impact of Alkyne Functionalization on Photophysical and Electrochemical Properties of 1,10-Phenanthrolines and Their RuII
Complexes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pascal Wintergerst
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
41
|
Wang Z, Zhao J, Di Donato M, Mazzone G. Increasing the anti-Stokes shift in TTA upconversion with photosensitizers showing red-shifted spin-allowed charge transfer absorption but a non-compromised triplet state energy level. Chem Commun (Camb) 2019; 55:1510-1513. [PMID: 30648169 DOI: 10.1039/c8cc08159j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excitation into the spin-allowed S0 → 1CT absorption band of a spin-orbit charge transfer intersystem crossing (SOCT-ISC) triplet photosensitizer (PS) was used as a new strategy to increase the anti-Stokes shift in triplet-triplet annihilation (TTA) upconversion, with the advantages of red-shifted absorption but the non-compromised triplet state energy level of the triplet PS.
Collapse
Affiliation(s)
- Zhijia Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China.
| | | | | | | |
Collapse
|
42
|
P CAS, Shanmugapriya J, Singaravadivel S, Sivaraman G, Chellappa D. Anthracene-Based Highly Selective and Sensitive Fluorescent " Turn-on" Chemodosimeter for Hg 2. ACS OMEGA 2018; 3:12341-12348. [PMID: 30411003 PMCID: PMC6217515 DOI: 10.1021/acsomega.8b01142] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/18/2018] [Indexed: 05/28/2023]
Abstract
Three π-extended anthracene-bearing thioacetals (1-3) have been synthesized, and their fluorescence "turn-on" responses to Hg2+ ions are studied. The chemodosimetric fluorescence-sensing behavior and their resulting hydrolysis via a desulfurization reaction mechanism leads to the formation of highly fluorescent respective aldehyde substitutions. Furthermore, this mechanism was supported by increase in the quantum yields of their resulting aldehydes and is correlated to their molecular substitution. The chemosensors 1-3 have exhibited to be promising receptors toward Hg2+ ions in the presence of other competitive metal ions. Moreover, the detection limits of 1-3 have been found to be in the nanomolar range (94, 59, and 235, respectively). Fluorescence microscopic imaging studies show that 1-2 have been found to be effective for fluorescence imaging in live cells. Moreover, compounds 1-3 act as potential candidates for the detection of Hg2+ in environmental and biological systems as well as real samples.
Collapse
Affiliation(s)
| | | | | | - Gandhi Sivaraman
- School
of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | | |
Collapse
|
43
|
Das A, Maity M, Malcherek S, König B, Rehbein J. Synthesis of aryl sulfides via radical-radical cross coupling of electron-rich arenes using visible light photoredox catalysis. Beilstein J Org Chem 2018; 14:2520-2528. [PMID: 30344775 PMCID: PMC6176842 DOI: 10.3762/bjoc.14.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Electron-rich arenes react with aryl and alkyl disulfides in the presence of catalytic amounts of [Ir(dF(CF3)ppy)2(dtbpy)]PF6 and (NH4)2S2O8 under blue light irradiation to yield arylthiols. The reaction proceeds at room temperature and avoids the use of prefunctionalized arenes. Experimental evidence suggests a radical–radical cross coupling mechanism.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Mitasree Maity
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Simon Malcherek
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Burkhard König
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Rehbein
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
44
|
Kerzig C, Wenger OS. Sensitized triplet-triplet annihilation upconversion in water and its application to photochemical transformations. Chem Sci 2018; 9:6670-6678. [PMID: 30310600 PMCID: PMC6115628 DOI: 10.1039/c8sc01829d] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
Sensitized triplet-triplet annihilation (TTA) is a promising mechanism for solar energy conversion, but so far its application has been practically completely limited to organic solvents and self-assembled or solid state systems. Combining water-soluble ruthenium complex-pyrene dyads with particularly long excited-state lifetimes as sensitizers and highly fluorescent commercial anthracenes as acceptors/annihilators, we were able to achieve green-to-violet upconversion with unprecedented quantum yields in pure water. Compared to the only known system exploiting sensitized TTA in homogeneous aqueous solution, we improve the overall photon upconversion efficiency by a full order of magnitude and present the very first example for a chemical transformation on a laboratory scale via upconversion in water. Specifically, we found that a thermodynamically challenging carbon-chlorine bond activation can be driven by green photons from an inexpensive continuous wave light source in the presence of dissolved oxygen. Our study is thus potentially relevant in the context of cleaning water from halogenated (toxic) contaminants and for sustainable photochemistry in the most environmentally friendly solvent.
Collapse
Affiliation(s)
- Christoph Kerzig
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland . ;
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland . ;
| |
Collapse
|
45
|
Guo X, Chen Q, Tong Y, Li Y, Liu Y, Zhao D, Ma Y. Enhanced Triplet Sensitizing Ability of an Iridium Complex by Intramolecular Energy-Transfer Mechanism. J Phys Chem A 2018; 122:6963-6969. [DOI: 10.1021/acs.jpca.8b04807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xinyan Guo
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yujie Tong
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Chen Q, Liu Y, Guo X, Peng J, Garakyaraghi S, Papa CM, Castellano FN, Zhao D, Ma Y. Energy Transfer Dynamics in Triplet–Triplet Annihilation Upconversion Using a Bichromophoric Heavy-Atom-Free Sensitizer. J Phys Chem A 2018; 122:6673-6682. [DOI: 10.1021/acs.jpca.8b05901] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qi Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xinyan Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jiang Peng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Sofia Garakyaraghi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christopher M. Papa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N. Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Ligand-Tuneable, Red-Emitting Iridium(III) Complexes for Efficient Triplet-Triplet Annihilation Upconversion Performance. Chemistry 2018; 24:8577-8588. [DOI: 10.1002/chem.201801007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/07/2022]
|
48
|
Lu Y, Conway-Kenny R, Wang J, Cui X, Zhao J, Draper SM. Exploiting coumarin-6 as ancillary ligands in 1,10-phenanthroline Ir(iii) complexes: generating triplet photosensitisers with high upconversion capabilities. Dalton Trans 2018; 47:8585-8589. [PMID: 29431810 DOI: 10.1039/c8dt00231b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new Ir(iii) complexes incorporating 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (coumarin 6) and ethynylpyrene (EP) functionalised 1,10-phenanthroline (phen) were developed. [Ir(iii)(coumarin 6)2(3-EP-phen)](PF6) (Ir-3) proved to be the most promising material in triplet photosensitising applications. Highly absorbing at λ = 485 nm (ε = 1.31 × 105 M-1 cm-1), it exhibits high upconversion and singlet oxygen quantum yields (ΦUC = 27.5%, ΦΔ = 81.5%) and an exemplary upconversion capability (η = 3.60 × 106 M-1 cm-1).
Collapse
Affiliation(s)
- Y Lu
- Department of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
49
|
Zhang T, Wang P, Gao Z, An Y, He C, Duan C. Pyrene-based metal–organic framework NU-1000 photocatalysed atom-transfer radical addition for iodoperfluoroalkylation and (Z)-selective perfluoroalkylation of olefins by visible-light irradiation. RSC Adv 2018; 8:32610-32620. [PMID: 35547715 PMCID: PMC9086246 DOI: 10.1039/c8ra06181e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
Iodoperfluoroalkylation or (Z)-selective perfluoroalkylation of olefins is mediated through energy transfer processes by using pyrene-based MOF NU-1000 under visible-light irradiation.
Collapse
Affiliation(s)
- Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Pengfang Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Zirui Gao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang An
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Cheng He
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|
50
|
Sadiq F, Zhao J, Hussain M, Wang Z. Effect of thiophene substitution on the intersystem crossing of arene photosensitizers. Photochem Photobiol Sci 2018; 17:1794-1803. [DOI: 10.1039/c8pp00230d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thiophene substitution gives energy level-matched S1/T2 states and the ISC is enhanced, which was not observed with phenyl substitution.
Collapse
Affiliation(s)
- Farhan Sadiq
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Mushraf Hussain
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|