1
|
Marotta C, Ciccone L, Orlandini E, Rossello A, Nencetti S. A Snapshot of the Most Recent Transthyretin Stabilizers. Int J Mol Sci 2024; 25:9969. [PMID: 39337457 PMCID: PMC11432176 DOI: 10.3390/ijms25189969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, several strategies have been developed for the treatment of transthyretin-related amyloidosis, whose complex clinical manifestations involve cardiomyopathy and polyneuropathy. In view of this, transthyretin stabilizers represent a major cornerstone in treatment thanks to the introduction of tafamidis into therapy and the entry of acoramidis into clinical trials. However, the clinical treatment of transthyretin-related amyloidosis still presents several challenges, urging the development of new and improved therapeutics. Bearing this in mind, in this paper, the most promising among the recently published transthyretin stabilizers were reviewed. Their activity was described to provide some insights into their clinical potential, and crystallographic data were provided to explain their modes of action. Finally, structure-activity relationship studies were performed to give some guidance to future researchers aiming to synthesize new transthyretin stabilizers. Interestingly, some new details emerged with respect to the previously known general rules that guided the design of new compounds.
Collapse
Affiliation(s)
- Carlo Marotta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53-55, 56100 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
2
|
Costa-Rodrigues D, Leite JP, Saraiva MJ, Almeida MR, Gales L. Transthyretin monomers: a new plasma biomarker for pre-symptomatic transthyretin-related amyloidosis. Amyloid 2024; 31:202-208. [PMID: 38946492 DOI: 10.1080/13506129.2024.2368860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Genotyping and amyloid fibril detection in tissues are generally considered the diagnostic gold standard in transthyretin-related amyloidosis. Patients carry less stable TTR homotetramers prone to dissociation into non-native monomers, which rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Thus, the initial event of the amyloid cascade produces the smallest transthyretin species: the monomers. This creates engineering opportunities for diagnosis that remain unexplored. METHODS We hypothesise that molecular sieving represents a promising method for isolating and concentrating trace TTR monomers from the tetramers present in plasma samples. Subsequently, immunodetection can be utilised to distinguish monomeric TTR from other low molecular weight proteins within the adsorbed fraction. A two-step assay was devised (ImmunoSieve assay), combining molecular sieving and immunodetection for sensing monomeric transthyretin. This assay was employed to analyse plasma microsamples from 10 individuals, including 5 pre-symptomatic carriers of TTR-V30M, the most prevalent amyloidosis-associated TTR variant worldwide, and 5 healthy controls. RESULTS The ImmunoSieve assay enable sensitive detection of monomeric transthyretin in plasma microsamples. Moreover, the circulating monomeric TTR levels were significantly higher in carriers of amyloidogenic TTR mutation. CONCLUSIONS Monomeric TTR can function as a biomarker for evaluating disease progression and assessing responses to therapies targeted at stabilising native TTR.
Collapse
Affiliation(s)
- Diogo Costa-Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - José P Leite
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Maria João Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Maria Rosário Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Luís Gales
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
3
|
Leach BI, Ferguson JA, Morgan G, Sun X, Kroon G, Oyen D, Dyson HJ, Wright PE. Conformational Dynamics of an Amyloidogenic Intermediate of Transthyretin: Implications for Structural Remodeling and Amyloid Formation. J Mol Biol 2024; 436:168673. [PMID: 38909653 PMCID: PMC11410348 DOI: 10.1016/j.jmb.2024.168673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The aggregation pathway of transthyretin (TTR) proceeds through rate-limiting dissociation of the tetramer (a dimer of dimers) and partial misfolding of the resulting monomer, which assembles into amyloid structures through a downhill polymerization mechanism. The structural features of the aggregation-prone monomeric intermediate are poorly understood. NMR relaxation dispersion offers a unique opportunity to characterize amyloidogenic intermediates when they exchange on favorable timescales with NMR-visible ground states. Here we use NMR to characterize the structure and conformational dynamics of the monomeric F87E mutant of human TTR. Chemical shifts derived from analysis of multinuclear relaxation dispersion data provide insights into the structure of a low-lying excited state that exchanges with the ground state of the F87E monomer at a rate of 3800 s-1. Disruption of the subunit interfaces of the TTR tetramer leads to destabilization of edge strands in both β-sheets of the F87E monomer. Conformational fluctuations are propagated through the entire hydrogen bonding network of the DAGH β-sheet, from the inner β-strand H, which forms the strong dimer-dimer interface in the TTR tetramer, to outer strand D which is unfolded in TTR fibrils. Fluctuations are also propagated from the AB loop in the weak dimer-dimer interface to the EF helix, which undergoes structural remodeling in fibrils. The conformational fluctuations in both regions are enhanced at acidic pH where amyloid formation is most favorable. The relaxation dispersion data provide insights into the conformational dynamics of the amyloidogenic state of monomeric TTR that predispose it for structural remodeling and progression to amyloid fibrils.
Collapse
Affiliation(s)
- Benjamin I Leach
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gareth Morgan
- Departments of Chemistry and Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xun Sun
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Kim B, Ko YH, Si J, Na J, Ortore G, Chiellini G, Kim JH. Thyroxine metabolite-derived 3-iodothyronamine (T1AM) and synthetic analogs as efficient suppressors of transthyretin amyloidosis. Comput Struct Biotechnol J 2023; 21:4717-4728. [PMID: 37822560 PMCID: PMC10562617 DOI: 10.1016/j.csbj.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Aggregation and fibrillization of transthyretin (TTR) is a fatal pathogenic process that can cause cardiomyopathic and polyneuropathic diseases in humans. Although several therapeutic strategies have been designed to prevent and treat related pathological events, there is still an urgent need to develop better strategies to improve potency and wider applicability. Here, we present our study demonstrating that 3-iodothyronamine (T1AM) and selected thyronamine-like compounds can effectively prevent TTR aggregation. T1AM is one of the thyroid hormone (TH) metabolites, and T1AM and its analogs, such as SG2, SG6, and SG12, are notable molecules for their beneficial activities against metabolic disorders and neurodegeneration. Using nuclear magnetic resonance (NMR) spectroscopy and biochemical analysis, we confirmed that T1AM analogs could bind to and suppress acid-induced aggregation of TTR. In addition, we employed computational approaches to further understand the detailed mechanisms of the interaction between T1AM analogs and TTR. This study demonstrates that T1AM analogs, whose beneficial effects against several pathological processes have already been proven, may have additional benefits against TTR aggregation and fibrillization. Moreover, we believe that our work provides invaluable insights to enhance the pleiotropic activity of T1AM and structurally related analogs, relevant for their therapeutic potential, with particular reference to the ability to prevent TTR aggregation.
Collapse
Affiliation(s)
- Bokyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Young Ho Ko
- Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Jinbeom Si
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jongbum Na
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | | | | | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
5
|
Tsoi MR, Lin JH, Patel AR. Emerging Therapies for Transthyretin Amyloidosis. Curr Oncol Rep 2023; 25:549-558. [PMID: 36943555 DOI: 10.1007/s11912-023-01397-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of the available therapies for treating neuropathic and/or cardiac manifestations of transthyretin amyloidosis (ATTR), as well as investigational therapeutic agents in ongoing clinical trials. We discuss additional emergent approaches towards thwarting this life-threatening disease that until recently was considered virtually untreatable. RECENT FINDINGS Advances in noninvasive diagnostic methods for detecting ATTR have facilitated easier diagnosis and detection at an earlier stage of disease when therapeutic interventions are likely to be more effective. There are now several ATTR-directed treatments that are clinically available, as well as investigational agents that are being studied in clinical trials. Therapeutic strategies include tetramer stabilization, gene silencing, and fibril disruption. ATTR has been historically underdiagnosed. With advances in diagnostic methods and the advent of disease-modifying treatments, early diagnosis and initiation of treatment is revolutionizing management of this disease.
Collapse
Affiliation(s)
- Melissa R Tsoi
- Department of Medicine, Tufts Medical Center, MA, 02111, Boston, USA
| | - Jeffrey H Lin
- Department of Medicine, Tufts Medical Center, MA, 02111, Boston, USA
| | - Ayan R Patel
- Cardiac Amyloidosis Program, Tufts Medical Center, 800 Washington St., MA, 02111, Boston, USA.
| |
Collapse
|
6
|
Pinheiro F, Pallarès I, Peccati F, Sánchez-Morales A, Varejão N, Bezerra F, Ortega-Alarcon D, Gonzalez D, Osorio M, Navarro S, Velázquez-Campoy A, Almeida MR, Reverter D, Busqué F, Alibés R, Sodupe M, Ventura S. Development of a Highly Potent Transthyretin Amyloidogenesis Inhibitor: Design, Synthesis, and Evaluation. J Med Chem 2022; 65:14673-14691. [PMID: 36306808 PMCID: PMC9661476 DOI: 10.1021/acs.jmedchem.2c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Transthyretin amyloidosis
(ATTR) is a group of fatal diseases described
by the misfolding and amyloid deposition of transthyretin (TTR). Discovering
small molecules that bind and stabilize the TTR tetramer, preventing
its dissociation and subsequent aggregation, is a therapeutic strategy
for these pathologies. Departing from the crystal structure of TTR
in complex with tolcapone, a potent binder in clinical trials for
ATTR, we combined rational design and molecular dynamics (MD) simulations
to generate a series of novel halogenated kinetic stabilizers. Among
them, M-23 displays one of the highest affinities for
TTR described so far. The TTR/M-23 crystal structure
confirmed the formation of unprecedented protein–ligand contacts,
as predicted by MD simulations, leading to an enhanced tetramer stability
both in vitro and in whole serum. We demonstrate
that MD-assisted design of TTR ligands constitutes a new avenue for
discovering molecules that, like M-23, hold the potential
to become highly potent drugs to treat ATTR.
Collapse
Affiliation(s)
- Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francesca Peccati
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrià Sánchez-Morales
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Filipa Bezerra
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Ortega-Alarcon
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Danilo Gonzalez
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marcelo Osorio
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Reverter
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- ICREA, Passeig Lluis Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
7
|
Yang W, Kim BS, Muniyappan S, Lee YH, Kim JH, Yu W. Aggregation-Prone Structural Ensembles of Transthyretin Collected With Regression Analysis for NMR Chemical Shift. Front Mol Biosci 2021; 8:766830. [PMID: 34746240 PMCID: PMC8568061 DOI: 10.3389/fmolb.2021.766830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Monomer dissociation and subsequent misfolding of the transthyretin (TTR) is one of the most critical causative factors of TTR amyloidosis. TTR amyloidosis causes several human diseases, such as senile systemic amyloidosis and familial amyloid cardiomyopathy/polyneuropathy; therefore, it is important to understand the molecular details of the structural deformation and aggregation mechanisms of TTR. However, such molecular characteristics are still elusive because of the complicated structural heterogeneity of TTR and its highly sensitive nature to various environmental factors. Several nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) studies of TTR variants have recently reported evidence of transient aggregation-prone structural states of TTR. According to these studies, the stability of the DAGH β-sheet, one of the two main β-sheets in TTR, is a crucial determinant of the TTR amyloidosis mechanism. In addition, its conformational perturbation and possible involvement of nearby structural motifs facilitates TTR aggregation. This study proposes aggregation-prone structural ensembles of TTR obtained by MD simulation with enhanced sampling and a multiple linear regression approach. This method provides plausible structural models that are composed of ensemble structures consistent with NMR chemical shift data. This study validated the ensemble models with experimental data obtained from circular dichroism (CD) spectroscopy and NMR order parameter analysis. In addition, our results suggest that the structural deformation of the DAGH β-sheet and the AB loop regions may correlate with the manifestation of the aggregation-prone conformational states of TTR. In summary, our method employing MD techniques to extend the structural ensembles from NMR experimental data analysis may provide new opportunities to investigate various transient yet important structural states of amyloidogenic proteins.
Collapse
Affiliation(s)
- Wonjin Yang
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Beom Soo Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | | | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, South Korea.,Department of Bio-analytical Science, University of Science and Technology, Daejeon, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Research Headquarters, Korea Brain Research Institute, Daegu, South Korea
| | - Jin Hae Kim
- Department of New Biology, DGIST, Daegu, South Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea.,Core Protein Resources Center, DGIST, Daegu, South Korea
| |
Collapse
|
8
|
Abstract
Often considered a rare disease, cardiac amyloidosis is increasingly recognized by practicing clinicians. The increased rate of diagnosis is in part due the aging of the population and increasing incidence and prevalence of cardiac amyloidosis with advancing age, as well as the advent of noninvasive methods using nuclear scintigraphy to diagnose transthyretin cardiac amyloidosis due to either variant or wild type transthyretin without a biopsy. Perhaps the most important driver of the increased awareness is the elucidation of the biologic mechanisms underlying the pathogenesis of cardiac amyloidosis which have led to the development of several effective therapies with differing mechanisms of actions. In this review, the mechanisms underlying the pathogenesis of cardiac amyloidosis due to light chain (AL) or transthyretin (ATTR) amyloidosis are delineated as well as the rapidly evolving therapeutic landscape that has emerged from a better pathophysiologic understanding of disease development.
Collapse
Affiliation(s)
- Jan M. Griffin
- Division of Cardiology, Cardiovascular Research Laboratory
for the Elderly, Columbia University Irving Medical Center, New York, NY
| | - Hannah Rosenblum
- Division of Cardiology, Cardiovascular Research Laboratory
for the Elderly, Columbia University Irving Medical Center, New York, NY
| | - Mathew S. Maurer
- Division of Cardiology, Cardiovascular Research Laboratory
for the Elderly, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
9
|
Methods to study the structure of misfolded protein states in systemic amyloidosis. Biochem Soc Trans 2021; 49:977-985. [PMID: 33929491 DOI: 10.1042/bst20201022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Systemic amyloidosis is defined as a protein misfolding disease in which the amyloid is not necessarily deposited within the same organ that produces the fibril precursor protein. There are different types of systemic amyloidosis, depending on the protein constructing the fibrils. This review will focus on recent advances made in the understanding of the structural basis of three major forms of systemic amyloidosis: systemic AA, AL and ATTR amyloidosis. The three diseases arise from the misfolding of serum amyloid A protein, immunoglobulin light chains or transthyretin. The presented advances in understanding were enabled by recent progress in the methodology available to study amyloid structures and protein misfolding, in particular concerning cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. An important observation made with these techniques is that the structures of previously described in vitro formed amyloid fibrils did not correlate with the structures of amyloid fibrils extracted from diseased tissue, and that in vitro fibrils were typically more protease sensitive. It is thus possible that ex vivo fibrils were selected in vivo by their proteolytic stability.
Collapse
|
10
|
Transthyretin Misfolding, A Fatal Structural Pathogenesis Mechanism. Int J Mol Sci 2021; 22:ijms22094429. [PMID: 33922648 PMCID: PMC8122960 DOI: 10.3390/ijms22094429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Transthyretin (TTR) is an essential transporter of a thyroid hormone and a holo-retinol binding protein, found abundantly in human plasma and cerebrospinal fluid. In addition, this protein is infamous for its amyloidogenic propensity, causing various amyloidoses in humans, such as senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. It has been known for over two decades that decreased stability of the native tetrameric conformation of TTR is the main cause of these diseases. Yet, mechanistic details on the amyloidogenic transformation of TTR were not clear until recent multidisciplinary investigations on various structural states of TTR. In this review, we discuss recent advancements in the structural understanding of TTR misfolding and amyloidosis processes. Special emphasis has been laid on the observations of novel structural features in various amyloidogenic species of TTR. In addition, proteolysis-induced fragmentation of TTR, a recently proposed mechanism facilitating TTR amyloidosis, has been discussed in light of its structural consequences and relevance to acknowledge the amyloidogenicity of TTR.
Collapse
|
11
|
Diphenyl-Methane Based Thyromimetic Inhibitors for Transthyretin Amyloidosis. Int J Mol Sci 2021; 22:ijms22073488. [PMID: 33800546 PMCID: PMC8038088 DOI: 10.3390/ijms22073488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Thyromimetics, whose physicochemical characteristics are analog to thyroid hormones (THs) and their derivatives, are promising candidates as novel therapeutics for neurodegenerative and metabolic pathologies. In particular, sobetirome (GC-1), one of the initial halogen-free thyromimetics, and newly synthesized IS25 and TG68, with optimized ADME-Tox profile, have recently attracted attention owing to their superior therapeutic benefits, selectivity, and enhanced permeability. Here, we further explored the functional capabilities of these thyromimetics to inhibit transthyretin (TTR) amyloidosis. TTR is a homotetrameric transporter protein for THs, yet it is also responsible for severe amyloid fibril formation, which is facilitated by tetramer dissociation into non-native monomers. By combining nuclear magnetic resonance (NMR) spectroscopy, computational simulation, and biochemical assays, we found that GC-1 and newly designed diphenyl-methane-based thyromimetics, namely IS25 and TG68, are TTR stabilizers and efficient suppressors of TTR aggregation. Based on these observations, we propose the novel potential of thyromimetics as a multi-functional therapeutic molecule for TTR-related pathologies, including neurodegenerative diseases.
Collapse
|
12
|
Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity. Molecules 2020; 25:molecules25235698. [PMID: 33287192 PMCID: PMC7730986 DOI: 10.3390/molecules25235698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.
Collapse
|
13
|
Hervás R, Oroz J. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. Int J Mol Sci 2020; 21:ijms21239186. [PMID: 33276458 PMCID: PMC7730194 DOI: 10.3390/ijms21239186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent alterations in the proteostasis network are crucial in the progress of prevalent neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, or amyotrophic lateral sclerosis, which are characterized by the presence of insoluble protein deposits in degenerating neurons. Because molecular chaperones deter misfolded protein aggregation, regulate functional phase separation, and even dissolve noxious aggregates, they are considered major sentinels impeding the molecular processes that lead to cell damage in the course of these diseases. Indeed, members of the chaperome, such as molecular chaperones and co-chaperones, are increasingly recognized as therapeutic targets for the development of treatments against degenerative proteinopathies. Chaperones must recognize diverse toxic clients of different orders (soluble proteins, biomolecular condensates, organized protein aggregates). It is therefore critical to understand the basis of the selective chaperone recognition to discern the mechanisms of action of chaperones in protein conformational diseases. This review aimed to define the selective interplay between chaperones and toxic client proteins and the basis for the protective role of these interactions. The presence and availability of chaperone recognition motifs in soluble proteins and in insoluble aggregates, both functional and pathogenic, are discussed. Finally, the formation of aberrant (pro-toxic) chaperone complexes will also be disclosed.
Collapse
Affiliation(s)
- Rubén Hervás
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA;
| | - Javier Oroz
- Rocasolano Institute for Physical Chemistry, Spanish National Research Council (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
- Correspondence: ; Tel.: +34-915619400
| |
Collapse
|
14
|
Judge DP, Heitner SB, Falk RH, Maurer MS, Shah SJ, Witteles RM, Grogan M, Selby VN, Jacoby D, Hanna M, Nativi-Nicolau J, Patel J, Rao S, Sinha U, Turtle CW, Fox JC. Transthyretin Stabilization by AG10 in Symptomatic Transthyretin Amyloid Cardiomyopathy. J Am Coll Cardiol 2019; 74:285-295. [DOI: 10.1016/j.jacc.2019.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/26/2019] [Accepted: 03/09/2019] [Indexed: 01/09/2023]
|
15
|
Yee AW, Aldeghi M, Blakeley MP, Ostermann A, Mas PJ, Moulin M, de Sanctis D, Bowler MW, Mueller-Dieckmann C, Mitchell EP, Haertlein M, de Groot BL, Boeri Erba E, Forsyth VT. A molecular mechanism for transthyretin amyloidogenesis. Nat Commun 2019; 10:925. [PMID: 30804345 PMCID: PMC6390107 DOI: 10.1038/s41467-019-08609-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/14/2019] [Indexed: 01/12/2023] Open
Abstract
Human transthyretin (TTR) is implicated in several fatal forms of amyloidosis. Many mutations of TTR have been identified; most of these are pathogenic, but some offer protective effects. The molecular basis underlying the vastly different fibrillation behaviours of these TTR mutants is poorly understood. Here, on the basis of neutron crystallography, native mass spectrometry and modelling studies, we propose a mechanism whereby TTR can form amyloid fibrils via a parallel equilibrium of partially unfolded species that proceeds in favour of the amyloidogenic forms of TTR. It is suggested that unfolding events within the TTR monomer originate at the C-D loop of the protein, and that destabilising mutations in this region enhance the rate of TTR fibrillation. Furthermore, it is proposed that the binding of small molecule drugs to TTR stabilises non-amyloidogenic states of TTR in a manner similar to that occurring for the protective mutants of the protein.
Collapse
Affiliation(s)
- Ai Woon Yee
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France
| | - Matteo Aldeghi
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Matthew P Blakeley
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, 85748, Garching, Germany
| | - Philippe J Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000, Grenoble, France
| | - Martine Moulin
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France
| | - Daniele de Sanctis
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France
| | - Matthew W Bowler
- EMBL, Grenoble Outstation, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France
| | | | - Edward P Mitchell
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France
| | - Bert L de Groot
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | | | - V Trevor Forsyth
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK.
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9, Grenoble, France.
| |
Collapse
|
16
|
Miller M, Pal A, Albusairi W, Joo H, Pappas B, Haque Tuhin MT, Liang D, Jampala R, Liu F, Khan J, Faaij M, Park M, Chan W, Graef I, Zamboni R, Kumar N, Fox J, Sinha U, Alhamadsheh M. Enthalpy-Driven Stabilization of Transthyretin by AG10 Mimics a Naturally Occurring Genetic Variant That Protects from Transthyretin Amyloidosis. J Med Chem 2018; 61:7862-7876. [PMID: 30133284 DOI: 10.1021/acs.jmedchem.8b00817] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a fatal disease with no available disease-modifying therapies. While pathogenic TTR mutations (TTRm) destabilize TTR tetramers, the T119M variant stabilizes TTRm and prevents disease. A comparison of potency for leading TTR stabilizers in clinic and structural features important for effective TTR stabilization is lacking. Here, we found that molecular interactions reflected in better binding enthalpy may be critical for development of TTR stabilizers with improved potency and selectivity. Our studies provide mechanistic insights into the unique binding mode of the TTR stabilizer, AG10, which could be attributed to mimicking the stabilizing T119M variant. Because of the lack of animal models for ATTR-CM, we developed an in vivo system in dogs which proved appropriate for assessing the pharmacokinetics-pharmacodynamics profile of TTR stabilizers. In addition to stabilizing TTR, we hypothesize that optimizing the binding enthalpy could have implications for designing therapeutic agents for other amyloid diseases.
Collapse
Affiliation(s)
- Mark Miller
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Arindom Pal
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Wabel Albusairi
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Hyun Joo
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Beverly Pappas
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Md Tariqul Haque Tuhin
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Dengpan Liang
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Raghavendra Jampala
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Fang Liu
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Jared Khan
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Marjon Faaij
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Miki Park
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - William Chan
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| | - Isabella Graef
- Department of Pathology , Stanford University , Stanford , California 94305 , United States
| | - Robert Zamboni
- Eidos Therapeutics, Inc. , San Francisco , California 94101 , United States
| | - Neil Kumar
- Eidos Therapeutics, Inc. , San Francisco , California 94101 , United States
| | - Jonathan Fox
- Eidos Therapeutics, Inc. , San Francisco , California 94101 , United States
| | - Uma Sinha
- Eidos Therapeutics, Inc. , San Francisco , California 94101 , United States
| | - Mamoun Alhamadsheh
- Department of Pharmaceutics & Medicinal Chemistry , University of the Pacific , Stockton , California 95211 , United States
| |
Collapse
|