1
|
Fan M, Liu L, Li Y, Gu F, He X, Chen H. Highly dispersed Ir nanoparticles on Ti 3C 2T x MXene nanosheets for efficient oxygen evolution in acidic media. J Colloid Interface Sci 2025; 679:676-685. [PMID: 39388953 DOI: 10.1016/j.jcis.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti3C2Tx MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO2/TiOx heterointerface is formed in situ on the Ir@Ti3C2Tx MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO2/TiOx heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti3C2Tx exhibits a mass activity that is 7 times greater than that of the benchmark IrO2 catalyst for OER in acidic media. In addition, the /Ti3C2Tx MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti3C2Tx MXene is about 2.4 times higher than that of the IrO2 catalyst.
Collapse
Affiliation(s)
- Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China
| | - Lijia Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yue Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China
| | - Fengyun Gu
- Jilin Province Product Quality Supervision and Inspection Institute, 2699 Yiju Street, Changchun 130103, PR China
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China.
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012, PR China.
| |
Collapse
|
2
|
Speer S, Jovanovic S, Merlen A, Bartoli F, Kiran K, Wolf N, Karl A, Jodat E, Eichel RA. Laser induced oxidation Raman spectroscopy as an analysis tool for iridium-based oxygen evolution catalysts. Phys Chem Chem Phys 2025. [PMID: 39807029 DOI: 10.1039/d4cp03592e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state. This work demonstrates the high oxidation sensitivity of iridium and its utilization in analysis of catalyst materials. Laser induced oxidation Raman spectroscopy (LIORS) is established as a novel method for qualitative, chemical and structural analysis of iridium catalysts. Differences in particle sizes of iridium powders drastically change oxidation sensitivity. Oxidation of the iridium powders to IrO2 occurred at a laser power density of 0.47 ± 0.06 mW μm-2 for the 850 μm powder and at 0.12 ± 0.06 mW μm-2 and 0.019 ± 0.015 mW μm-2 for the 50 μm and 0.7-0.9 μm powders respectively. LIORS was utilized to assess possible deterioration of an iridium electrocatalyst due to operation under electrolysis. The operating electrocatalyst exhibited higher oxidation sensitivity, suggesting smaller iridium particle size due to catalyst dissolution. Peak shifts of the IrO2 signal were utilized to assess differences in transformation temperatures. The operated electrocatalyst transformed to IrO2 at lower temperature (8 cm-1 redshift) relative to the pristine catalyst (10 cm-1 redshift), demonstrating that pre-oxidation of the iridium to amorphous IrOx during electrolysis diminishes the energy barrier needed for IrO2 formation. Thus, LIORS can be utilized as a straightforward screening method for the analysis of iridium electrocatalysts in the industrial application of PEMEL.
Collapse
Affiliation(s)
- Sebastian Speer
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
- RWTH Aachen University, Institute of Physical Chemistry, Aachen, Germany
| | - Sven Jovanovic
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
| | | | - Francesco Bartoli
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
| | - Kiran Kiran
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
| | - Niklas Wolf
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
- RWTH Aachen University, Institute of Physical Chemistry, Aachen, Germany
| | - André Karl
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
| | - Eva Jodat
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
| | - Rüdiger-A Eichel
- Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
- RWTH Aachen University, Institute of Physical Chemistry, Aachen, Germany
- RWTH Aachen University, Faculty of Mechanical Engineering, Aachen, Germany
| |
Collapse
|
3
|
Ran X, Qin H, Liu X, Chu C, Li Q, Zhao H, Mao S. Oxygen Reduction Reaction Coupled Electro-Oxidation for Highly-Efficient and Sustainable Water Treatment. Angew Chem Int Ed Engl 2025; 64:e202414481. [PMID: 39227999 DOI: 10.1002/anie.202414481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Electro-oxidation (EO) technology demonstrates significant potential in wastewater treatment. However, the high energy consumption has become a pivotal constraint hindering its large-scale implementation. Herein, we design an EO and 4-electron oxygen reduction reaction coupled system (EO-4eORR) to replace the traditional EO and hydrogen evolution reaction (HER) coupled system (EO-HER). The theoretical cathodic potential of the electrolytic reactor is tuned from 0 V (vs. RHE) in HER to 1.23 V (vs. RHE) in 4eORR, which greatly decreases the required operation voltage of the reactor. Moreover, we demonstrate that convection can improve the mass transfer of oxygen and organic pollutants in the reaction system, leading to low cathodic polarization and high pollutant removal rate. Compared with traditional EO-HER system, the energy consumption of the EO-4eORR system under air aeration for 95 % total organic carbon (TOC) removal is greatly decreased to 2.61 kWh/kgTOC (only consider the electrolyzer energy consumption), which is superior to previously reported EO-based water treatment systems. The reported results in this study offer a new technical mode for development of highly efficient and sustainable EO-based treatment systems to remove organic pollutants in waste water.
Collapse
Affiliation(s)
- Xiaomeng Ran
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hehe Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiangyun Liu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chengcheng Chu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
4
|
Naya SI, Nagamitsu M, Sugime H, Soejima T, Tada H. Metal oxide plating for maximizing the performance of ruthenium(IV) oxide-catalyzed electrochemical oxygen evolution reaction. NANOSCALE 2025; 17:888-895. [PMID: 39601337 DOI: 10.1039/d4nr03678f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hydrogen production by proton exchange membrane water electrolysis requires an anode with low overpotential for oxygen evolution reaction (OER) and robustness in acidic solution. While exploring new electrode materials to improve the performance and durability, optimizing the morphology of typical materials using new methods is a big challenge in materials science. RuO2 is one of the most active and stable electrocatalysts, but further improvement in its performance and cost reduction must be achieved for practical use. Herein, we present a novel technology, named "metal oxide plating", which can provide maximum performances with minimum amount. A uniform single-crystal RuO2 film with thickness of ∼2.5 nm was synthesized by a solvothermal-post heating method at an amount (x) of only 18 μg cm-2 (ST-RuO2(18)//TiO2 NWA). OER stably proceeds on ST-RuO2(18)//TiO2 NWA with ∼100% efficiency to provide a mass-specific activity (MSA) of 341 A gcat-1 at 1.50 V (vs. RHE), exceeding the values for most of the state-of-the-art RuO2 electrodes.
Collapse
Affiliation(s)
- Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Mio Nagamitsu
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hisashi Sugime
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Oaka, Osaka 577-8502, Japan
| | - Tetsuro Soejima
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Oaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| |
Collapse
|
5
|
Wang L, Pan Q, Liang X, Zou X. Ensuring Stability of Anode Catalysts in PEMWE: From Material Design to Practical Application. CHEMSUSCHEM 2025; 18:e202401220. [PMID: 39037362 DOI: 10.1002/cssc.202401220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024]
Abstract
Proton Exchange Membrane Water Electrolysis (PEMWE) has emerged as a clean and effective approach for the conversion and storage of renewable electricity, particularly due to its compatibility with fluctuating photovoltaic and wind power. However, the high cost and limited performance of iridium oxide catalysts (i. e. IrO2) used as anode catalyst in industrial PEM electrolyzers remain significant obstacles to widespread application. Although numerous low-cost and efficient alternative catalysts have been developed in laboratory research, comprehensive stability studies critical for industrial use are often overlooked. This leads to the failure of performance transfer from catalysts tested in liquid half-cell systems to those employed in PEM electrolyzers. This concept presents a thorough overview for the stability issues of anode catalysts in PEMWE, and discuss their degradation mechanisms in both liquid half-cell systems and PEM electrolyzers. We summarize the comprehensive protocols for assessment and characterization, analyze the effective strategies for stability optimization, and explore the opportunities for designing viable anode catalysts for PEM electrolyzers.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingzhi Pan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Zheng WX, Cheng XX, Chen PP, Wang LL, Duan Y, Feng GJ, Wang XR, Li JJ, Zhang C, Yu ZY, Lu TB. Boosting the durability of RuO 2 via confinement effect for proton exchange membrane water electrolyzer. Nat Commun 2025; 16:337. [PMID: 39747082 PMCID: PMC11695614 DOI: 10.1038/s41467-024-55747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Ruthenium dioxide has attracted extensive attention as a promising catalyst for oxygen evolution reaction in acid. However, the over-oxidation of RuO2 into soluble H2RuO5 species results in a poor durability, which hinders the practical application of RuO2 in proton exchange membrane water electrolysis. Here, we report a confinement strategy by enriching a high local concentration of in-situ formed H2RuO5 species, which can effectively suppress the RuO2 degradation by shifting the redox equilibrium away from the RuO2 over-oxidation, greatly boosting its durability during acidic oxygen evolution. Therefore, the confined RuO2 catalyst can continuously operate at 10 mA cm-2 for over 400 h with negligible attenuation, and has a 14.8 times higher stability number than the unconfined RuO2 catalyst. An electrolyzer cell using the confined RuO2 catalyst as anode displays a notable durability of 300 h at 500 mA cm-2 and at 60 °C. This work demonstrates a promising design strategy for durable oxygen evolution reaction catalysts in acid via confinement engineering.
Collapse
Affiliation(s)
- Wen-Xing Zheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuan-Xuan Cheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Ping-Ping Chen
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Lin-Lin Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Ying Duan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Guo-Jin Feng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Xiao-Ran Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Jing-Jing Li
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Zi-You Yu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China.
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China.
| |
Collapse
|
7
|
Kong L, Hao L, Hu M, Su M, Meng Q, Zhang Y. A one-pot hydrothermal synthesis of morphologically controllable yolk-shell structured CoFe glycerate spheres for oxygen evolution reaction. J Colloid Interface Sci 2025; 677:40-48. [PMID: 39133997 DOI: 10.1016/j.jcis.2024.08.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 10/12/2024]
Abstract
CoFe-based catalysts are efficient electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Here, we present a simple one-pot hydrothermal method for synthesizing a series of CoFe glycerates with controllable surface morphologies and investigate their potential as highly efficient catalysts for the OER in alkaline media. These CoFe glycerates exhibit a unique yolk-shell microsphere structure assembled from ultrathin nanosheets. The adjustment of the surface nanosheet size is achieved by varying the CoFe ratio, ensuring a more efficient electrocatalytic system for the OER process. Due to the abundant active sites provided by the yolk-shell structure and interleaved ultrathin nanosheets, Co3Fe1 glycerate (Co3Fe1 gly) demonstrates a low overpotential (283 mV) and a small Tafel slope (44.61 mV dec-1) at 10 mA cm-2. Additionally, Co3Fe1 gly exhibits excellent durability in alkaline electrolytes. Moreover, a series of characterizations demonstrate that the active sites of Co3Fe1 gly are the high-valence Co species generated during the OER process. This study opens a promising avenue for utilizing efficient and low-cost electrocatalysts to enhance OER performance.
Collapse
Affiliation(s)
- Lingyu Kong
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, P R China
| | - Mingjie Hu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Ming Su
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China; College of Life Sciences, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Qinggang Meng
- Institute of Science and Technology Innovation, Hebei University, 071002 Baoding, PR China
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China; College of Life Sciences, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
8
|
Gao T, Jiao D, Wang L, Ge X, Wen X, Zhang L, Zheng L, Zou X, Zhang W, Zheng W, Fan J, Cui X. Switchable Acidic Oxygen Evolution Mechanisms on Atomic Skin of Ruthenium Metallene Oxides. J Am Chem Soc 2024. [PMID: 39722537 DOI: 10.1021/jacs.4c13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
RuO2 has been considered as a promising, low-cost, and highly efficient catalyst in the acidic oxygen evolution reaction (OER). However, it suffers from poor stability due to the inevitable involvement of the lattice oxygen mechanism (LOM). Here, we construct a unique metallene-based core-skin structure and unveil that the OER pathway of atomic RuO2 skin can be regulated from the LOM to an adsorbate evolution mechanism by altering the core species from metallene oxides to metallenes. This switch is achieved without sacrificing the number of active sites, enabling Pd@RuO2 metallenes to exhibit outstanding acidic OER activity with a low overpotential of 189 mV at 10 mA cm-2, which is 54 mV lower than that of the counterpart PdO@RuO2 metallenes. Additionally, they also exhibit robust stability with negligible activity decay over 100 h at 50 mA cm-2, outperforming most reported RuO2-based catalysts. Multiple spectroscopic analyses and theoretical calculations demonstrate that the Pd-metallene core, acting as an electron donor, increases the migration energy of subsurface oxygen atoms and optimizes the adsorption energy of intermediates on the active Ru sites, enabling a switch in the reaction mechanism. Such a unique metallene-based core-skin structure offers a novel way for tuning the catalytic behaviors of electrocatalysts.
Collapse
Affiliation(s)
- Tianyi Gao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Dongxu Jiao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xin Ge
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xin Wen
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Lei Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Zou X, Li Z, Liang Q, Liu F, Xu T, Song K, Jiang Z, Zhang W, Zheng W. Multitasking-Effect Ca Ions Triggered Symmetry-Breaking of RuO 2 Coordination for Acidic Oxygen Evolution Reaction. NANO LETTERS 2024; 24:16151-16158. [PMID: 39652069 DOI: 10.1021/acs.nanolett.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The development of highly active and stable electrocatalysts for the acid oxygen evolution reaction (OER) is both appealing and challenging. The generation of defects is an emerging strategy for improving the water oxidation efficiency. Herein, we introduced multitasking Ca ions to trigger oxygen vacancies in RuO2, resulting in vacancy-rich RuO2 (RuO2-Ov) nanoparticles with enhanced and sustainable OER activity. The oxygen vacancy in RuO2-Ov breaks the symmetry of the RuO6 octahedron, enhancing the d-band center of Ru and reducing the level of 4d-2p hybridization in Ru-O bonds. This effectively optimizes intermediate adsorption and inhibits Ru dissolution. The RuO2-OV catalyst achieves a current density of 10 mA/cm2 with an overpotential of only 198 mV, stabilizing for over 100 h (degradation rate: 0.2 mV/h). Its mass activity is 17.9 times higher than that of commercial RuO2. Our work highlights that multitasking atomic construction defect engineering effectively balances the seesaw relationship between catalytic activity and stability.
Collapse
Affiliation(s)
- Xu Zou
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Zhenyu Li
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Qing Liang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Fuxi Liu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Tiantian Xu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Kexin Song
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Zhou Jiang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Bornet A, Moreno-García P, Dutta A, Kong Y, Liechti M, Vesztergom S, Arenz M, Broekmann P. Disentangling the Pitfalls of Rotating Disk Electrode-Based OER Stability Assessment: Bubble Blockage or Substrate Passivation? ACS Catal 2024; 14:17331-17346. [PMID: 39664776 PMCID: PMC11629296 DOI: 10.1021/acscatal.4c05447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Oxygen evolution reaction (OER) catalyst stability metrics derived from aqueous model systems (AMSs) prove valuable only if they are transferable to technical membrane electrode assembly (MEA) settings. Currently, there is consensus that stability data derived from ubiquitous rotating disk electrode (RDE)-based investigations substantially overestimate material degradation mainly due to the nonideal inertness of catalyst-backing electrode materials as well as bubble shielding of the catalyst by evolved oxygen. Despite the independently developed understanding of these two processes, their interplay and relative impact on intrinsic and operational material stability have not yet been established. Herein, we employ an inverted RDE-based approach coupled with online gas chromatographic quantification that exploits buoyancy and anode hydrophilicity existing under operating acidic OER conditions and excludes the influence of bubble retention on the surface of the catalyst. This approach thus allows us to dissect the degradation process occurring during the RDE-based OER stability studies. We demonstrate that the stability discrepancy between galvanostatic nanoparticle (NP)-based RDE and MEA data does not originate from the accumulation of bubbles in the catalyst layer during water oxidation but from the utilization of corrosion-prone substrate materials in the AMS. Moreover, we provide mechanistic insights into the degradation process and devise experimental measures to mitigate or circumvent RDE-related limitations when the technique is to be applied to an OER catalyst stability assessment. These findings should facilitate the transferability between AMS and MEA approaches and promote further development of the latter.
Collapse
Affiliation(s)
- Aline Bornet
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Pavel Moreno-García
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Abhijit Dutta
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ying Kong
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Mike Liechti
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Soma Vesztergom
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- MTA-ELTE
Momentum Interfacial Electrochemistry Research Group, Eötvös Loránd University, Pázmány Péter
sétány 1/A, Budapest 1117, Hungary
| | - Matthias Arenz
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
11
|
Wu H, Chang J, Yu J, Wang S, Hu Z, Waterhouse GIN, Yong X, Tang Z, Chang J, Lu S. Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions. Nat Commun 2024; 15:10315. [PMID: 39609455 PMCID: PMC11605066 DOI: 10.1038/s41467-024-54798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
The development of efficient and stable electrocatalysts for water oxidation in acidic media is vital for the commercialization of the proton exchange membrane electrolyzers. In this work, we successfully construct Ru-O-Ir atomic interfaces for acidic oxygen evolution reaction (OER). The catalysts achieve overpotentials as low as 167, 300, and 390 mV at 10, 500, and 1500 mA cm-2 in 0.5 M H2SO4, respectively, with the electrocatalyst showing robust stability for >1000 h of operation at 10 mA cm-2 and negligible degradation after 200,000 cyclic voltammetry cycles. Operando spectroelectrochemical measurements together with theoretical investigations reveal that the OER pathway over the Ru-O-Ir active site is near-optimal, where the bridging oxygen site of Ir-OBRI serves as the proton acceptor to accelerate proton transfer on an adjacent Ru centre, breaking the typical adsorption-dissociation linear scaling relationship on a single Ru site and thus enhancing OER activity. Here, we show that rational design of multiple active sites can break the activity/stability trade-off commonly encountered for OER catalysts, offering good approaches towards high-performance acidic OER catalysts.
Collapse
Affiliation(s)
- Han Wu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiangwei Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China.
| | - Jingkun Yu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Siyang Wang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Zhiang Hu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | | | - Xue Yong
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Junbiao Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Siyu Lu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China.
| |
Collapse
|
12
|
Tran HP, Nong HN, Zlatar M, Yoon A, Hejral U, Rüscher M, Timoshenko J, Selve S, Berger D, Kroschel M, Klingenhof M, Paul B, Möhle S, Nagi Nasralla KN, Escalera-López D, Bergmann A, Cherevko S, Cuenya BR, Strasser P. Reactivity and Stability of Reduced Ir-Weight TiO 2-Supported Oxygen Evolution Catalysts for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes. J Am Chem Soc 2024; 146:31444-31455. [PMID: 39526338 PMCID: PMC11583366 DOI: 10.1021/jacs.4c07002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reducing the iridium demand in Proton Exchange Membrane Water Electrolyzers (PEM WE) is a critical priority for the green hydrogen industry. This study reports the discovery of a TiO2-supported Ir@IrO(OH)x core-shell nanoparticle catalyst with reduced Ir content, which exhibits superior catalytic performance for the electrochemical oxygen evolution reaction (OER) compared to a commercial reference. The TiO2-supported Ir@IrO(OH)x core-shell nanoparticle configuration significantly enhances the OER Ir mass activity from 8 to approximately 150 A gIr-1 at 1.53 VRHE while reducing the iridium packing density from 1.6 to below 0.77 gIr cm-3. These advancements allow for viable anode layer thicknesses with lower Ir loading, reducing iridium utilization at 70% LHV from 0.42 to 0.075 gIr kW-1 compared to commercial IrO2/TiO2. The identification of the Ir@IrO(OH)x/TiO2 OER catalyst resulted from extensive HAADF-EDX microscopic analysis, operando XAS, and online ICP-MS analysis of 30-80 wt % Ir/TiO2 materials. These analyses established correlations among Ir weight loading, electrode electrical conductivity, electrochemical stability, and Ir mass-based OER activity. The activated Ir@IrO(OH)x/TiO2 catalyst-support system demonstrated an exceptionally stable morphology of supported core-shell particles, suggesting strong catalyst-support interactions (CSIs) between nanoparticles and crystalline oxide facets. Operando XAS analysis revealed the reversible evolution of significantly contracted Ir-O bond motifs with enhanced covalent character, conducive to the formation of catalytically active electrophilic OI- ligand species. These findings indicate that atomic Ir surface dissolution generates Ir lattice vacancies, facilitating the emergence of electrophilic OI- species under OER conditions, while CSIs promote the reversible contraction of Ir-O distances, reforming electrophilic OI- and enhancing both catalytic activity and stability.
Collapse
Affiliation(s)
- Hoang Phi Tran
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Department of Chemical Engineering, Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem District, Hanoi 100000, Vietnam
| | - Hong Nhan Nong
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Matej Zlatar
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Sören Selve
- Center for Electron Microscopy (ZELMI), Technische Universität Berlin, D-10623 Berlin, Germany
| | - Dirk Berger
- Center for Electron Microscopy (ZELMI), Technische Universität Berlin, D-10623 Berlin, Germany
| | - Matthias Kroschel
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Malte Klingenhof
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Benjamin Paul
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Sebastian Möhle
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Kerolus Nasser Nagi Nasralla
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Daniel Escalera-López
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
13
|
Duan Y, Wang LL, Zheng WX, Zhang XL, Wang XR, Feng GJ, Yu ZY, Lu TB. Oxyanion Engineering on RuO 2 for Efficient Proton Exchange Membrane Water Electrolysis. Angew Chem Int Ed Engl 2024; 63:e202413653. [PMID: 39133139 DOI: 10.1002/anie.202413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
In acidic proton exchange membrane water electrolysis (PEMWE), the anode oxygen evolution reaction (OER) catalysts rely heavily on the expensive and scarce iridium-based materials. Ruthenium dioxide (RuO2) with lower price and higher OER activity, has been explored for the similar task, but has been restricted by the poor stability. Herein, we developed an anion modification strategy to improve the OER performance of RuO2 in acidic media. The designed multicomponent catalyst based on sulfate anchored on RuO2/MoO3 displays a low overpotential of 190 mV at 10 mA cm-2 and stably operates for 500 hours with a very low degradation rate of 20 μV h-1 in acidic electrolyte. When assembled in a PEMWE cell, this catalyst as an anode shows an excellent stability at 500 mA cm-2 for 150 h. Experimental and theoretical results revealed that MoO3 could stabilize sulfate anion on RuO2 surface to suppress its leaching during OER. Such MoO3-anchored sulfate not only reduces the formation energy of *OOH intermediate on RuO2, but also impedes both the surface Ru and lattice oxygen loss, thereby achieving the high OER activity and exceptional durability.
Collapse
Affiliation(s)
- Ying Duan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Lin-Lin Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Wen-Xing Zheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Xiao-Ran Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Guo-Jin Feng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Zi-You Yu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| |
Collapse
|
14
|
Li H, Lin Y, Duan J, Wen Q, Liu Y, Zhai T. Stability of electrocatalytic OER: from principle to application. Chem Soc Rev 2024; 53:10709-10740. [PMID: 39291819 DOI: 10.1039/d3cs00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrogen energy, derived from the electrolysis of water using renewable energy sources such as solar, wind, and hydroelectric power, is considered a promising form of energy to address the energy crisis. However, the anodic oxygen evolution reaction (OER) poses limitations due to sluggish kinetics. Apart from high catalytic activity, the long-term stability of electrocatalytic OER has garnered significant attention. To date, several research studies have been conducted to explore stable electrocatalysts for the OER. A comprehensive review is urgently warranted to provide a concise overview of the recent advancements in the electrocatalytic OER stability, encompassing both electrocatalyst and device developments. This review aims to succinctly summarize the primary factors influencing OER stability, including morphological/phase change and electrocatalyst dissolution, as well as mechanical detachment, alongside chemical, mechanical, and operational degradation observed in devices. Furthermore, an overview of contemporary approaches to enhance stability is provided, encompassing electrocatalyst design (structural regulation, protective layer coating, and stable substrate anchoring) and device optimization (bipolar plates, gas diffusion layers, and membranes). Hopefully, more attention will be paid to ensuring the stable operation of electrocatalytic OER and the future large-scale water electrolysis applications. This review presents design principles aimed at addressing challenges related to the stability of electrocatalytic OER.
Collapse
Affiliation(s)
- HuangJingWei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Yu Lin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205, P. R. China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
15
|
Liu Y, Huang Y, Wu D, Jang H, Wu J, Li H, Li W, Zhu F, Kim MG, Zhou D, Xi X, Lei Z, Zhang Y, Deng Y, Yan W, Gu MD, Jiang J, Jiao S, Cao R. Ultrathin and Conformal Depletion Layer of Core/Shell Heterojunction Enables Efficient and Stable Acidic Water Oxidation. J Am Chem Soc 2024; 146:26897-26908. [PMID: 39312479 DOI: 10.1021/jacs.4c07995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ru-based electrocatalysts hold great promise for developing affordable proton exchange membrane (PEM) electrolyzers. However, the harsh acidic oxidative environment of the acidic oxygen evolution reaction (OER) often causes undesirable overoxidation of Ru active sites and subsequent serious activity loss. Here, we present an ultrathin and conformal depletion layer attached to the Schottky heterojunction of core/shell RuCo/RuCoOx that not only maximizes the availability of active sites but also improves its durability and intrinsic activity for acidic OER. Operando synchrotron characterizations combined with theoretical calculations elucidate that the lattice strain and charge transfer induced by Schottky heterojunction substantially regulate the electronic structures of active sites, which modulates the OER pathway and suppresses the overoxidation of Ru species. Significantly, the closed core/shell architecture of the RuCo/RuCoOx ensures the structure integrity of the Schottky heterojunction under acidic OER conditions. As a result, the core/shell RuCo/RuCoOx Schottky heterojunction exhibits an unprecedented durability up to 250 0 h at 10 mA cm-2 with an ultralow overpotential of ∼170 mV at 10 mA cm-2 in 0.5 M H2SO4. The RuCo/RuCoOx catalyst also demonstrates superior durability in a proton exchange membrane (PEM) electrolyzer, showcasing the potential for practical applications.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 2300 26, China
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Duojie Wu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jianghua Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huirong Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Wanxia Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Feng Zhu
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen 518048, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 790-784, Republic of Korea
| | - Donglai Zhou
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Xiaoke Xi
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Zhanwu Lei
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Yuchen Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 2300 26, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 2300 29, China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Shuhong Jiao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 2300 26, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 2300 26, China
| |
Collapse
|
16
|
Liu C, Sheng B, Zhou Q, Xia Y, Zou Y, Chimtali PJ, Cao D, Chu Y, Zhao S, Long R, Chen S, Song L. Manipulating d-Band Center of Nickel by Single-Iodine-Atom Strategy for Boosted Alkaline Hydrogen Evolution Reaction. J Am Chem Soc 2024; 146:26844-26854. [PMID: 39299703 DOI: 10.1021/jacs.4c07607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Ni-based electrocatalysts have been predicted as highly potential candidates for hydrogen evolution reaction (HER); however, their applicability is hindered by an unfavorable d-band energy level (Ed). Moreover, precise d-band structural engineering of Ni-based materials is deterred by appropriative synthesis methods and experimental characterization. Herein, we meticulously synthesize a special single-iodine-atom structure (I-Ni@C) and characterize the Ed manipulation via resonant inelastic X-ray scattering (RIXS) spectroscopy to fill this gap. The complex catalytic mechanism has been elucidated via synchrotron radiation-based multitechniques (SRMS) including X-ray absorption fine structure (XAFS), in situ synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy, and near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). In particular, RIXS is innovatively applied to reveal the precise regulation of Ni Ed of I-Ni@C. Consequently, the role of such single-iodine-atom strategy is confirmed to not only facilitate the moderate Ed of the Ni site for balancing the adsorption/desorption capacities of key intermediates but also act as a bridge to enhance the electronic interaction between Ni and the carbon shell for forming a localized polarized electric field conducive to H2O dissociation. As a result, I-Ni@C exhibits an enhanced alkaline hydrogen evolution performance with an overpotential of 78 mV at 10 mA/cm2 and superior stability, surpassing the majority of the reported Ni-based catalysts. Overall, this study has managed to successfully tailor the d-band center of materials from the SRMS perspective, which has crucial implications for nanotechnology, chemistry, catalysis, and other fields.
Collapse
Affiliation(s)
- Chongjing Liu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Quan Zhou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yujian Xia
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Ying Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Peter Joseph Chimtali
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Dengfeng Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yongheng Chu
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Sirui Zhao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Ran Long
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
17
|
Li R, Liu J, Yin G, Sun Y, Liu F, Gan J, Gao S. Nest-Scheme RuIrLa Nanocrystals by NP-to-NP Oriented Assembly: Coherent Strain Fields-Driven Band Structure Splitting for Efficient Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403492. [PMID: 38923702 DOI: 10.1002/smll.202403492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Atomic substructure engineering provides new opportunities for the designing newly and efficient catalysts with diverse atom ensembles, trimmed electron bands, and way-out coordination environments, creating unique contributing to concertedly catalyze water oxidation, which is of great significance for proton exchange membrane water electrolysis (PEMWE). Herein, nest-scheme RuIrLa nanocrystals with dense coherent interfaces as built-in substructures are firstly fabricated by using commercial ZnO particles as acid-removable templates, through a La-stabilized coherent epitaxial growth of nanoparticles (NPs). The obtained nests exhibit a low overpotential of 198 mV at 10 mA cm-2, and the RuIrLa||Pt/C module equipped in PEMWE operates stably at a cell voltage potential of 1.69 V at 100 mA cm-2 in 0.5 M H2SO4 for 55 h, which is far beyond the current IrO2||Pt/C. Within the nests, the position at the interface shows high tensile/compressive strain, significantly reducing the OER activation energy. More importantly, the La termination-stabilized coherent interfaces within the nests creates a unique self-healing process for the outstanding long-term stability. This work provides a promising substructure engineering to develop efficient catalysts with abundant substructures, such as coherent interfaces, dislocations, or grain boundaries, thereby realizing concerted improvement of activity and durability toward water oxidation.
Collapse
Affiliation(s)
- Rongchao Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guanwang Yin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Lab, Kunming, 650100, China
| |
Collapse
|
18
|
Ni H, Xu S, Lin R, Ding Y, Qian J. Ligand-induced hollow binary metal-organic framework derived Fe-doped cobalt-carbon nanomaterials for oxygen evolution. J Colloid Interface Sci 2024; 671:100-109. [PMID: 38795531 DOI: 10.1016/j.jcis.2024.05.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
There is significant anticipation for high-efficiency and cost-effective non-precious metal-based catalysts to advance the industrial application of the anodic oxygen evolution reaction (OER) for hydrogen production. This study introduces an efficient strategy that utilizes ligand-induced metal-organic framework (MOF) building blocks for the synthesis of hollow binary zeolitic imidazolate frameworks 67 (ZIF-67) and Prussian blue analogues (PBAs) (ZIF-67@PBA) heterostructures through a hybrid MOF-on-MOF approach. Manipulating the Co2+/Zn2+ ratio in the precursor ZIF-67 allows for the convenient synthesis of the final product, denoted as CoxFe-ZP, after pyrolysis, where the inclusion of Zn effectively modulates the distribution of Co in the catalyst. The resulting CoxFe-ZP catalysts exhibit a positive synergistic effect between hollow graphitic carbon nanomaterials and Fe-doped Co nanoparticles. The optimal Co0.3Fe-ZP catalyst demonstrates satisfactory OER performance, achieving an overpotential of 302 mV at 10 mA cm-2 and a small Tafel slope of 60.0 mV dec-1. Further analysis of the activation energy confirms that the enhanced OER activity of Co0.3Fe-ZP can be reasonably attributed to the combined influence of its morphology and composition. This study demonstrates a ligand-induced method for examining the morphology and electrochemical properties of grown binary MOF-on-MOF heterostructures for OER applications.
Collapse
Affiliation(s)
- Huijie Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, PR China
| | - Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, PR China
| | - Rong Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, PR China
| | - Yi Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, PR China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, PR China.
| |
Collapse
|
19
|
Tang J, Liu X, Xiong X, Zeng Q, Ji Y, Liu C, Li J, Zeng H, Dai Y, Zhang X, Li C, Peng H, Jiang Q, Zheng T, Pao CW, Xia C. Ruthenium Single-Atom Modulated Protonated Iridium Oxide for Acidic Water Oxidation in Proton Exchange Membrane Electrolysers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407394. [PMID: 39148174 DOI: 10.1002/adma.202407394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Proton exchange membrane water electrolysers promise to usher in a new era of clean energy, but they remain a formidable obstacle in designing active and durable electrocatalysts for the acidic oxygen evolution reaction (OER). In this study, a protonated iridium oxide embedded with single-atom dispersed ruthenium atoms (H3.8Ir1- xRuxO4) that demonstrates exceptional activity and stability in acidic water oxidation is introduced. The single Ru dopants favorably induce localized oxygen vacancies in the Ir─O lattice, synergistically strengthening the adsorption of OOH* intermediates and enhancing the intrinsic OER activity. In addition, the preferential oxidation of Ru and the electronegativity of the oxygen vacancies significantly stabilize the Ir─O active sites, improving the OER stability. Consequently, the H3.8Ir1─ xRuxO4 catalyst shows an overpotential of 255 mV at 10 mA cm-2 and displays exceptional catalytic endurance in acidic electrolytes, surpassing 1100 h, representing a remarkable one-order-of-magnitude increase in stability compared to that of pristine H3.8IrO4. A proton exchange membrane electrolyser utilizing the H3.8Ir1- xRuxO4 catalyst as an anode exhibits stable performance for more than 1280 h under a high current density of 2 A cm-2.
Collapse
Affiliation(s)
- Jialin Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Xinyan Liu
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Xiaoxia Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Qisheng Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, P. R. China
| | - Hongliang Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Yizhou Dai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, P. R. China
| | - Xinyan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Hongjie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Science-Based Industrial Park, Hsinchu, 30076, Taiwan
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, P. R. China
| |
Collapse
|
20
|
Yang Z, Liu L, Zheng Y, Liu Z, Wang L, Yang RC, Liu Z, Wang Y, Chen Z. Enhanced catalytic performance through a single-atom preparation approach: a review on ruthenium-based catalysts. NANOSCALE 2024; 16:16744-16768. [PMID: 39175465 DOI: 10.1039/d4nr02289k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The outstanding catalytic properties of single-atom catalysts (SACs) stem from the maximum atom utilization and unique quantum size effects, leading to ever-increasing research interest in SACs in recent years. Ru-based SACs, which have shown excellent catalytic activity and selectivity, have been brought to the frontier of the research field due to their lower cost compared with other noble catalysts. The synthetic approaches for preparing Ru SACs are rather diverse in the open literature, covering a wide range of applications. In this review paper, we attempt to disclose the synthetic approaches for Ru-based SACs developed in the most recent years, such as defect engineering, coordination design, ion exchange, the dipping method, and electrochemical deposition etc., and discuss their representative applications in both electrochemical and organic reaction fields, with typical application examples given of: Li-CO2 batteries, N2 reduction, water splitting and oxidation of benzyl alcohols. The mechanisms behind their enhanced catalytic performance are discussed and their structure-property relationships are revealed in this review. Finally, future prospects and remaining unsolved issues with Ru SACs are also discussed so that a roadmap for the further development of Ru SACs is established.
Collapse
Affiliation(s)
- Ziyi Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Li Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Yayun Zheng
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Zixuan Liu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Lin Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| | - Richard Chunhui Yang
- Centre for Advanced Manufacturing Technology (CfAMT), School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zongjian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Yichao Wang
- Centre for Advanced Manufacturing Technology (CfAMT), School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China.
| |
Collapse
|
21
|
Wang Y, Zhao Z, Liang X, Zhao X, Wang X, Jana S, Wu YA, Zou Y, Li L, Chen H, Zou X. Supported IrO 2 Nanocatalyst with Multilayered Structure for Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407717. [PMID: 39113326 DOI: 10.1002/adma.202407717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Indexed: 09/28/2024]
Abstract
The design of a low-iridium-loading anode catalyst layer with high activity and durability is a key challenge for a proton exchange membrane water electrolyzer (PEMWE). Here, the synthesis of a novel supported IrO2 nanocatalyst with a tri-layered structure, dubbed IrO2@TaOx@TaB that is composed of ultrasmall IrO2 nanoparticles anchored on amorphous TaOx overlayer of TaB nanorods is reported. The composite electrocatalyst shows great activity and stability toward the oxygen evolution reaction (OER) in acid, thanks to its dual-interface structural feature. The electronic interaction in IrO2/TaOx interface can regulate the coverage of surface hydroxyl groups, the Ir3+/ Ir4+ ratio, and the redox peak potential of IrO2 for enhancing OER activity, while the dense TaOx overlayer can prevent further oxidation of TaB substrate and stabilize the IrO2 catalytic layers for improving structural stability during OER. The IrO2@TaOx@TaB can be used to fabricate an anode catalyst layer of PEMWE with an iridium-loading as low as 0.26 mg cm-2. The low-iridium-loading PEMWE delivers high current densities at low cell voltages (e.g., 3.9 A cm-2@2.0 V), and gives excellent activity retention for more than 1500 h at 2.0 A cm-2 current density.
Collapse
Affiliation(s)
- Yuannan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zicheng Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Subhajit Jana
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
22
|
Park CH, Lee H, Choi JS, Yun TG, Lim Y, Bae HB, Chung SY. Atomic-Level Observation of Potential-Dependent Variations at the Surface of an Oxide Catalyst during Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403392. [PMID: 39011793 DOI: 10.1002/adma.202403392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Understanding the intricate details of the surface atomic structure and composition of catalysts during the oxygen evolution reaction (OER) is crucial for developing catalysts with high stability in water electrolyzers. While many notable studies highlight surface amorphization and reconstruction, systematic analytical tracing of the catalyst surface as a function of overpotential remains elusive. Heteroepitaxial (001) films of chemically stable and lattice-oxygen-inactive LaCoO3 are thus utilized as a model catalyst to demonstrate a series of atomic-resolution observations of the film surface at different anodic potentials. The first key finding is that atoms at the surface are fairly dynamic even at lower overpotentials. Angstrom-scale atomic displacements within the perovskite framework are identified below a certain potential level. Another noteworthy feature is that amorphization (or paracrystallization) with no long-range order is finally induced at higher overpotentials. In particular, surface analyses consistently support that the oxidation of lattice oxygen is coupled with amorphous phase formation at the high potentials. Theoretical calculations also reveal an upward shift of oxygen 2p states toward the Fermi level, indicating enhanced lattice oxygen activation when atom displacement occurs more extensively. This study emphasizes that the degradation behavior of OER catalysts can distinctively vary depending on the overpotential level.
Collapse
Affiliation(s)
- Chang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyungdoh Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jin-Seok Choi
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Younghwan Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
23
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
24
|
Liu R, Huang J, Li J, Placidi E, Chen F, Zhu X, Liao Q. Capillary-Driven Separate Gas-Liquid Transport: Alleviating Mass Transport Losses for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33336-33346. [PMID: 38907693 DOI: 10.1021/acsami.4c02524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Developing earth-abundant transition metal electrodes with high activity and durability is crucial for efficient and cost-effective hydrogen production. However, numerous studies in the hydrogen evolution reaction (HER) primarily focus on improving the inherent activity of catalysts, and the critical influence of gas-liquid countercurrent transport behavior is often overlooked. In this study, we introduce the concept of separate-path gas-liquid transport to alleviate mass transport losses for the HER by developing a novel hierarchical porous Ni-doped cobalt phosphide electrode (CoNix-P@Ni). The CoNix-P@Ni electrodes with abundant microvalleys and crack structures facilitate the gas-liquid cotransport by separating the bubble release and water supply paths. Visualization and numerical simulation results demonstrate that cracks primarily serve as water supply paths, with capillary pressure facilitating the transport of water from the cracks to the microvalleys. This process ensures the continuous wetting of electrolytes in the electrode, reduces hydrogen supersaturation near the active site, and increases hydrogen transport flux to the microvalleys for accelerating bubble growth. Additionally, the microvalleys act as preferential sites for bubble evolution, preventing bubble coverage on other active sites. By regulating the amount of nickel, the CoNi1-P@Ni electrode exhibited the smallest and densest microvalleys and cracks, achieving superior HER performance with an overpotential of 51 mV at 10 mA cm-2. The results offer a promising direction for constructing high-performance HER electrodes.
Collapse
Affiliation(s)
- Run Liu
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jian Huang
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, Rome 00185, Italy
| | - Fang Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xun Zhu
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiang Liao
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
25
|
Zhang R, Sun T. Ink-based additive manufacturing for electrochemical applications. Heliyon 2024; 10:e33023. [PMID: 38994065 PMCID: PMC11238056 DOI: 10.1016/j.heliyon.2024.e33023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has drawn substantial attention in recent decades due to its efficiency and precise control in part fabrication. The limitations of conventional fabrication processes, especially regarding geometry complexity, supply chain, and environmental impact, have prompted the exploration of diverse AM technologies in electrochemistry. Especially, three ink-based AM techniques, binder jet printing (BJP), direct ink writing (DIW), and Inkjet Printing (IJP), have been extensively applied by numerous research teams to produce electrodes, catalyst scaffolds, supercapacitors, batteries, etc. BJP's versatility in utilizing a wide range of materials as powder feedstock promotes its potential for various electrode and battery applications. DIW and IJP stand out for their ability to handle multi-material manufacturing tasks and deliver high printing resolution. To capture recent advancements in this field, we present a comprehensive review of the applications of BJP, DIW, and IJP techniques in fabricating electrochemical devices and components. This review intends to provide an overview of the process-structure-property relationship in electrochemical materials and components across diverse applications manufactured using AM techniques. We delve into how the significantly improved design freedom over the structure offered by these ink-based AM techniques highlights the performance of electrochemical products. Moreover, we highlight their advantages in terms of material compatibility, geometry control, and cost-effectiveness. In specific cases, we also compare the performance of electrochemical components fabricated using AM and conventional manufacturing methods. Finally, we conclude this review article by offering some insights into the future development in this research field.
Collapse
Affiliation(s)
- Runzhi Zhang
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tao Sun
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
26
|
Zhang S, Liao M, Huang Z, Gao M, Liu X, Yin H, Isimjan TT, Cai D, Yang X. Self-etching assembly of designed NiFeMOF nanosheet arrays as high-efficient oxygen evolution electrocatalyst for water splitting. CHEMSUSCHEM 2024; 17:e202301607. [PMID: 38329414 DOI: 10.1002/cssc.202301607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
2D metal-organic frameworks (MOFs) have emerged as potential candidates for electrocatalytic oxygen evolution reactions (OER) due to their inherent properties like abundant coordination unsaturated active sites and efficient charge transfer. Herein, a versatile and massively synthesizable self-etching assembly strategy wherein nickel-iron foam (NFF) acts as a substrate and a metal ion source. Specifically, by etching the nickel-iron foam (NFF) surface using ligands and solvents, Ni/Fe metal ions are activated and subsequently reacted under hydrothermal conditions, resulting in the formation of self-supporting nanosheet arrays, eliminating the need for external metal salts. The obtained 33 % NiFeMOF/NFF exhibits remarkable OER performance with ultra-low overpotentials of 188/231 mV at 10/100 mA cm-2, respectively, outperforming most recently reported catalysts. Besides, the built 33 % NiFeMOF/NFF(+)||Pt/C(-) electrolyzer presents low cell voltages of 1.55/1.83 V at 10/100 mA cm-2, superior to the benchmark RuO2 (+)||Pt/C(-), implying good industrialization prospects. The excellent catalytic activity stems from the modulation of the electronic spin state of the Ni active site by the introduction of Fe, which facilitates the adsorption process of oxygen-containing intermediates and thus enhances the OER activity. This innovative approach offers a promising pathway for commercial-scale sustainable energy solutions.
Collapse
Affiliation(s)
- Shifan Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Miao Liao
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mingcheng Gao
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xinqiang Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Haoran Yin
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dandan Cai
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
27
|
Ram R, Xia L, Benzidi H, Guha A, Golovanova V, Garzón Manjón A, Llorens Rauret D, Sanz Berman P, Dimitropoulos M, Mundet B, Pastor E, Celorrio V, Mesa CA, Das AM, Pinilla-Sánchez A, Giménez S, Arbiol J, López N, García de Arquer FP. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 2024; 384:1373-1380. [PMID: 38900890 DOI: 10.1126/science.adk9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80°C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.
Collapse
Affiliation(s)
- Ranit Ram
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lu Xia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Hind Benzidi
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Anku Guha
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Viktoria Golovanova
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Alba Garzón Manjón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - David Llorens Rauret
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Pol Sanz Berman
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Marinos Dimitropoulos
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Bernat Mundet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Ernest Pastor
- CNRS, Université de Rennes, IPR (Institut de Physique de Rennes) - UMR 6251, Rennes, France
- CNRS, Université de Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Veronica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Aparna M Das
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Adrián Pinilla-Sánchez
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
28
|
Qin R, Chen G, Feng X, Weng J, Han Y. Ru/Ir-Based Electrocatalysts for Oxygen Evolution Reaction in Acidic Conditions: From Mechanisms, Optimizations to Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309364. [PMID: 38501896 DOI: 10.1002/advs.202309364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Indexed: 03/20/2024]
Abstract
The generation of green hydrogen by water splitting is identified as a key strategic energy technology, and proton exchange membrane water electrolysis (PEMWE) is one of the desirable technologies for converting renewable energy sources into hydrogen. However, the harsh anode environment of PEMWE and the oxygen evolution reaction (OER) involving four-electron transfer result in a large overpotential, which limits the overall efficiency of hydrogen production, and thus efficient electrocatalysts are needed to overcome the high overpotential and slow kinetic process. In recent years, noble metal-based electrocatalysts (e.g., Ru/Ir-based metal/oxide electrocatalysts) have received much attention due to their unique catalytic properties, and have already become the dominant electrocatalysts for the acidic OER process and are applied in commercial PEMWE devices. However, these noble metal-based electrocatalysts still face the thorny problem of conflicting performance and cost. In this review, first, noble metal Ru/Ir-based OER electrocatalysts are briefly classified according to their forms of existence, and the OER catalytic mechanisms are outlined. Then, the focus is on summarizing the improvement strategies of Ru/Ir-based OER electrocatalysts with respect to their activity and stability over recent years. Finally, the challenges and development prospects of noble metal-based OER electrocatalysts are discussed.
Collapse
Affiliation(s)
- Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Jiena Weng
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
29
|
Chen D, Yu R, Yu K, Lu R, Zhao H, Jiao J, Yao Y, Zhu J, Wu J, Mu S. Bicontinuous RuO 2 nanoreactors for acidic water oxidation. Nat Commun 2024; 15:3928. [PMID: 38724489 PMCID: PMC11082236 DOI: 10.1038/s41467-024-48372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Improving activity and stability of Ruthenium (Ru)-based catalysts in acidic environments is eager to replace more expensive Iridium (Ir)-based materials as practical anode catalyst for proton-exchange membrane water electrolyzers (PEMWEs). Here, a bicontinuous nanoreactor composed of multiscale defective RuO2 nanomonomers (MD-RuO2-BN) is conceived and confirmed by three-dimensional tomograph reconstruction technology. The unique bicontinuous nanoreactor structure provides abundant active sites and rapid mass transfer capability through a cavity confinement effect. Besides, existing vacancies and grain boundaries endow MD-RuO2-BN with generous low-coordination Ru atoms and weakened Ru-O interaction, inhibiting the oxidation of lattice oxygen and dissolution of high-valence Ru. Consequently, in acidic media, the electron- and micro-structure synchronously optimized MD-RuO2-BN achieves hyper water oxidation activity (196 mV @ 10 mA cm-2) and an ultralow degradation rate of 1.2 mV h-1. A homemade PEMWE using MD-RuO2-BN as anode also conveys high water splitting performance (1.64 V @ 1 A cm-2). Theoretical calculations and in-situ Raman spectra further unveil the electronic structure of MD-RuO2-BN and the mechanism of water oxidation processes, rationalizing the enhanced performance by the synergistic effect of multiscale defects and protected active Ru sites.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- The Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruihu Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
30
|
Zhang X, Wu F, Zhang Q, Lu Z, Zheng Y, Zhu Y, Lin Y. Self-Supported WO 3@RuO 2 Nanowires for Electrocatalytic Acidic Water Oxidation. Inorg Chem 2024; 63:8418-8425. [PMID: 38644568 DOI: 10.1021/acs.inorgchem.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Developing catalysts with high catalytic activity and stability in acidic media is crucial for advancing hydrogen production in proton exchange membrane water electrolyzers (PEMWEs). To this end, a self-supported WO3@RuO2 nanowire structure was grown in situ on a titanium mesh using hydrothermal and ion-exchange methods. Despite a Ru loading of only 0.098 wt %, it achieves an overpotential of 246 mV for the oxygen evolution reaction (OER) at a current density of 10 mA·cm-2 in acidic 0.5 M H2SO4 while maintaining excellent stability over 50 h, much better than that of the commercial RuO2. After the establishment of the WO3@RuO2 heterostructure, a reduced overpotential of the rate-determining step from M-O* to M-OOH* is confirmed by the DFT calculation. Meanwhile, its enhanced OER kinetics are also greatly improved by this self-supported system in the absence of the organic binder, leading to a reduced interface resistance between active sites and electrolytes. This work presents a promising approach to minimize the use of noble metals for large-scale PEMWE applications.
Collapse
Affiliation(s)
- Xiaozan Zhang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Fei Wu
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueqing Zheng
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yin'an Zhu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Singh C, Meyerstein D, Shamish Z, Shamir D, Burg A. Unique activity of a Keggin POM for efficient heterogeneous electrocatalytic OER. iScience 2024; 27:109551. [PMID: 38595799 PMCID: PMC11001645 DOI: 10.1016/j.isci.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Polyoxometalates (POMs) have been well studied and explored in electro/photochemical water oxidation catalysis for over a decade. The high solubility of POMs in water has limited its use in homogeneous conditions. Over the last decade, different approaches have been used for the heterogenization of POMs to exploit their catalytic properties. This study focused on a Keggin POM, K6[CoW12O40], which was entrapped in a sol-gel matrix for heterogeneous electrochemical water oxidation. Its entrapment in the sol-gel matrix enables it to catalyze the oxygen evolution reaction at acidic pH, pH 2.0. Heterogenization of POMs using the sol-gel method aids in POM's recyclability and structural stability under electrochemical conditions. The prepared sol-gel electrode is robust and stable. It achieved electrochemical water oxidation at a current density of 2 mA/cm2 at a low overpotential of 300 mV with a high turnover frequency (TOF) of 1.76 [mol O2 (mol Co)-1s-1]. A plausible mechanism of the electrocatalytic process is presented.
Collapse
Affiliation(s)
- Chandani Singh
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Chemical Sciences Department, Ariel University, Ariel, Israel
| | - Zorik Shamish
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Dror Shamir
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| |
Collapse
|
32
|
Ospina-Acevedo F, Albiter LA, Bailey KO, Godínez-Salomón JF, Rhodes CP, Balbuena PB. Catalytic Activity and Electrochemical Stability of Ru 1-xM xO 2 (M = Zr, Nb, Ta): Computational and Experimental Study of the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16373-16398. [PMID: 38502743 PMCID: PMC10995909 DOI: 10.1021/acsami.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
We use computations and experiments to determine the effect of substituting zirconium, niobium, and tantalum within rutile RuO2 on the structure, oxygen evolution reaction (OER) mechanism and activity, and electrochemical stability. Calculated electronic structures altered by Zr, Nb, and Ta show surface regions of electron density depletion and accumulation, along with anisotropic lattice parameter shifts dependent on the substitution site, substituent, and concentration. Consistent with theory, X-ray photoelectron spectroscopy experiments show shifts in binding energies of O-2s, O-2p, and Ru-4d peaks due to the substituents. Experimentally, the substituted materials showed the presence of two phases with a majority phase that contains the metal substituent within the rutile phase and a second, smaller-percentage RuO2 phase. Our experimental analysis of OER activity shows Zr, Nb, and Ta substituents at 12.5 atom % induce lower activity relative to RuO2, which agrees with computing the average of all sites; however, Zr and Ta substitution at specific sites yields higher theoretical OER activity than RuO2, with Zr substitution suggesting an alternative OER mechanism. Metal dissolution predictions show the involvement of cooperative interactions among multiple surface sites and the electrolyte. Zr substitution at specific sites increases activation barriers for Ru dissolution, however, with Zr surface dissolution rates comparable to those of Ru. Experimental OER stability analysis shows lower Ru dissolution from synthesized RuO2 and Zr-substituted RuO2 compared to commercial RuO2 and comparable amounts of Zr and Ru dissolved from Zr-substituted RuO2, aligned with our calculations.
Collapse
Affiliation(s)
- Francisco Ospina-Acevedo
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Luis A. Albiter
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Kathleen O. Bailey
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | | | - Christopher P. Rhodes
- Materials
Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos, Texas 78666, United States
| | - Perla B. Balbuena
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
33
|
Wang H, Chen ZN, Wang Y, Wu D, Cao M, Sun F, Cao R. Sub-10-nm-sized Au@Au xIr 1-x metal-core/alloy-shell nanoparticles as highly durable catalysts for acidic water splitting. Natl Sci Rev 2024; 11:nwae056. [PMID: 38444985 PMCID: PMC10914371 DOI: 10.1093/nsr/nwae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/15/2023] [Accepted: 01/12/2024] [Indexed: 03/07/2024] Open
Abstract
The absence of efficient and durable catalysts for oxygen evolution reaction (OER) is the main obstacle to hydrogen production through water splitting in an acidic electrolyte. Here, we report a controllable synthesis method of surface IrOx with changing Au/Ir compositions by constructing a range of sub-10-nm-sized core-shell nanocatalysts composed of an Au core and AuxIr1-x alloy shell. In particular, Au@Au0.43Ir0.57 exhibits 4.5 times higher intrinsic OER activity than that of the commercial Ir/C. Synchrotron X-ray-based spectroscopies, electron microscopy and density functional theory calculations revealed a balanced binding of reaction intermediates with enhanced activity. The water-splitting cell using a load of 0.02 mgIr/cm2 of Au@Au0.43Ir0.57 as both anode and cathode can reach 10 mA/cm2 at 1.52 V and maintain activity for at least 194 h, which is better than the cell using the commercial couple Ir/C‖Pt/C (1.63 V, 0.2 h).
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe-ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuanyuan Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Minna Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
34
|
Liu GQ, Yang Y, Zhang XL, Li HH, Yu PC, Gao MR, Yu SH. Porous Tellurium-Doped Ruthenium Dioxide Nanotubes for Enhanced Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306914. [PMID: 38041488 DOI: 10.1002/smll.202306914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Electrocatalysts with high activity and durability for acidic oxygen evolution reaction (OER) play a crucial role in achieving cost-effective hydrogen production via proton exchange membrane water electrolysis. A novel electrocatalyst, Te-doped RuO2 (Te-RuO2) nanotubes, synthesized using a template-directed process, which significantly enhances the OER performance in acidic media is reported. The Te-RuO2 nanotubes exhibit remarkable OER activity in acidic media, requiring an overpotential of only 171 mV to achieve an anodic current density of 10 mA cm-2. Furthermore, they maintain stable chronopotentiometric performance under 10 mA cm-2 in acidic media for up to 50 h. Based on the experimental results and density functional calculations, this significant improvement in OER performance to the synergistic effect of large specific surface area and modulated electronic structure resulting from the doping of Te cations is attributed.
Collapse
Affiliation(s)
- Guo-Qiang Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Long Zhang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hui-Hui Li
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Peng-Cheng Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Min-Rui Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, New Cornerstone Science Laboratory, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
35
|
Ding H, Su C, Wu J, Lv H, Tan Y, Tai X, Wang W, Zhou T, Lin Y, Chu W, Wu X, Xie Y, Wu C. Highly Crystalline Iridium-Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. J Am Chem Soc 2024; 146:7858-7867. [PMID: 38457662 DOI: 10.1021/jacs.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing efficient bifunctional materials is highly desirable for overall proton membrane water splitting. However, the design of iridium materials with high overall acidic water splitting activity and durability, as well as an in-depth understanding of the catalytic mechanism, is challenging. Herein, we successfully developed subnanoporous Ir3Ni ultrathin nanocages with high crystallinity as bifunctional materials for acidic water splitting. The subnanoporous shell enables Ir3Ni NCs optimized exposure of active sites. Importantly, the nickel incorporation contributes to the favorable thermodynamics of the electrocatalysis of the OER after surface reconstruction and optimized hydrogen adsorption free energy in HER electrocatalysis, which induce enhanced intrinsic activity of the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Together, the Ir3Ni nanocages achieve 3.72 A/mgIr(η=350 mV) and 4.47 A/mgIr(η=40 mV) OER and HER mass activity, which are 18.8 times and 3.3 times higher than that of commercial IrO2 and Pt, respectively. In addition, their highly crystalline identity ensures a robust nanostructure, enabling good catalytic durability during the oxygen evolution reaction after surface oxidation. This work provides a new revenue toward the structural design and insightful understanding of metal alloy catalytic mechanisms for the bifunctional acidic water splitting electrocatalysis.
Collapse
Affiliation(s)
- Hui Ding
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Caijie Su
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Jiabao Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yi Tan
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Xiaolin Tai
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Wenjie Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China
| | - Tianpei Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yue Lin
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230031, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230031, P. R. China
| |
Collapse
|
36
|
Ping X, Liu Y, Zheng L, Song Y, Guo L, Chen S, Wei Z. Locking the lattice oxygen in RuO 2 to stabilize highly active Ru sites in acidic water oxidation. Nat Commun 2024; 15:2501. [PMID: 38509091 PMCID: PMC10954744 DOI: 10.1038/s41467-024-46815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Ruthenium dioxide is presently the most active catalyst for the oxygen evolution reaction (OER) in acidic media but suffers from severe Ru dissolution resulting from the high covalency of Ru-O bonds triggering lattice oxygen oxidation. Here, we report an interstitial silicon-doping strategy to stabilize the highly active Ru sites of RuO2 while suppressing lattice oxygen oxidation. The representative Si-RuO2-0.1 catalyst exhibits high activity and stability in acid with a negligible degradation rate of ~52 μV h-1 in an 800 h test and an overpotential of 226 mV at 10 mA cm-2. Differential electrochemical mass spectrometry (DEMS) results demonstrate that the lattice oxygen oxidation pathway of the Si-RuO2-0.1 was suppressed by ∼95% compared to that of commercial RuO2, which is highly responsible for the extraordinary stability. This work supplied a unique mentality to guide future developments on Ru-based oxide catalysts' stability in an acidic environment.
Collapse
Affiliation(s)
- Xinyu Ping
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Yongduo Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Lixia Zheng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Yang Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| | - Lin Guo
- State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, China
| | - Siguo Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China.
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing University, Chongqing, China
| |
Collapse
|
37
|
Arbab AA, Cho S, Jung E, Han HS, Park S, Lee H. Ultralow-Overpotential Acidic Oxygen Evolution Reaction Over Bismuth Telluride-Carbon Nanotube Heterostructure with Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307059. [PMID: 37946687 DOI: 10.1002/smll.202307059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The state-of-the-art iridium and ruthenium oxides-based materials are best known for high efficiency and stability in acidic oxygen evolution reaction (OER). However, the development of economically feasible catalysts for water-splitting technologies is challenging by the requirements of low overpotential, high stability, and resistance of catalysts to dissolution during the acidic oxygen evolution reaction . Herein, an organometallic core-shell heterostructure composed of a carbon nanotube core (CNT) and bismuth telluride (Bi2Te3) shell (denoted as nC-Bi2Te3) is designed and use it as a catalyst for the acidic OER. The proposed catalyst achieves an ultralow overpotential of 160 mV at 10 mA cm-2 (geometrical), thereby outperforming most of the state-of-the-art precious-metal-based catalysts. The low Tafel slope of 30 mV dec-1 and charge transfer resistance (RCT) of 1.5 Ω demonstrate its excellent electrocatalytic activity. The morphological and chemical compositions of nC-Bi2Te3 enable the generation of ─OH functional group in the Bi─Te sections formed via a ligand support, which enhances the absorption capacity of H+ ions and increases the intrinsic catalytic activity. The presented insights regarding the material composition-structure relationship can help expand the application scope of high-performance catalysts.
Collapse
Affiliation(s)
- Alvira Ayoub Arbab
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Sehyeon Cho
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, South Korea
| | - Euibeen Jung
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyun Soo Han
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sangwook Park
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, South Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, South Korea
| | - Hyoungsoon Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
38
|
Xu Y, Mao Z, Zhang J, Ji J, Zou Y, Dong M, Fu B, Hu M, Zhang K, Chen Z, Chen S, Yin H, Liu P, Zhao H. Strain-modulated Ru-O Covalency in Ru-Sn Oxide Enabling Efficient and Stable Water Oxidation in Acidic Solution. Angew Chem Int Ed Engl 2024; 63:e202316029. [PMID: 38168107 DOI: 10.1002/anie.202316029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
RuO2 is one of the benchmark electrocatalysts used as the anode material in proton exchange membrane water electrolyser. However, its long-term stability is compromised due to the participation of lattice oxygen and metal dissolution during oxygen evolution reaction (OER). In this work, weakened covalency of Ru-O bond was tailored by introducing tensile strain to RuO6 octahedrons in a binary Ru-Sn oxide matrix, prohibiting the participation of lattice oxygen and the dissolution of Ru, thereby significantly improving the long-term stability. Moreover, the tensile strain also optimized the adsorption energy of intermediates and boosted the OER activity. Remarkably, the RuSnOx electrocatalyst exhibited excellent OER activity in 0.1 M HClO4 and required merely 184 mV overpotential at a current density of 10 mA cm-2 . Moreover, it delivered a current density of 10 mA cm-2 for at least 150 h with negligible potential increase. This work exemplifies an effective strategy for engineering Ru-based catalysts with extraordinary performance toward water splitting.
Collapse
Affiliation(s)
- Yiming Xu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Zhixian Mao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiapeng Ji
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yu Zou
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Mengyang Dong
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Bo Fu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Mengqing Hu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Kaidi Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Ziyao Chen
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Shan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China
| | - Huajie Yin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Porun Liu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| |
Collapse
|
39
|
Wu J, Qiu Z, Zhang J, Song H, Cui Z, Du L. Stabilizing Highly Active Ru Sites by Electron Reservoir in Acidic Oxygen Evolution. Molecules 2024; 29:785. [PMID: 38398537 PMCID: PMC10892467 DOI: 10.3390/molecules29040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Proton exchange membrane water electrolysis is hindered by the sluggish kinetics of the anodic oxygen evolution reaction. RuO2 is regarded as a promising alternative to IrO2 for the anode catalyst of proton exchange membrane water electrolyzers due to its superior activity and relatively lower cost compared to IrO2. However, the dissolution of Ru induced by its overoxidation under acidic oxygen evolution reaction (OER) conditions greatly hinders its durability. Herein, we developed a strategy for stabilizing RuO2 in acidic OER by the incorporation of high-valence metals with suitable ionic electronegativity. A molten salt method was employed to synthesize a series of high-valence metal-substituted RuO2 with large specific surface areas. The experimental results revealed that a high content of surface Ru4+ species promoted the OER intrinsic activity of high-valence doped RuO2. It was found that there was a linear relationship between the ratio of surface Ru4+/Ru3+ species and the ionic electronegativity of the dopant metals. By regulating the ratio of surface Ru4+/Ru3+ species, incorporating Re, with the highest ionic electronegativity, endowed Re0.1Ru0.9O2 with exceptional OER activity, exhibiting a low overpotential of 199 mV to reach 10 mA cm-2. More importantly, Re0.1Ru0.9O2 demonstrated outstanding stability at both 10 mA cm-2 (over 300 h) and 100 mA cm-2 (over 25 h). The characterization of post-stability Re0.1Ru0.9O2 revealed that Re promoted electron transfer to Ru, serving as an electron reservoir to mitigate excessive oxidation of Ru sites during the OER process and thus enhancing OER stability. We conclude that Re, with the highest ionic electronegativity, attracted a mass of electrons from Ru in the pre-catalyst and replenished electrons to Ru under the operating potential. This work spotlights an effective strategy for stabilizing cost-effective Ru-based catalysts for acidic OER.
Collapse
Affiliation(s)
| | | | - Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (Z.Q.); (H.S.); (Z.C.)
| | | | | | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (Z.Q.); (H.S.); (Z.C.)
| |
Collapse
|
40
|
Magnier L, Cossard G, Martin V, Pascal C, Roche V, Sibert E, Shchedrina I, Bousquet R, Parry V, Chatenet M. Fe-Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. NATURE MATERIALS 2024; 23:252-261. [PMID: 38216724 DOI: 10.1038/s41563-023-01744-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
NiFe-based oxo-hydroxides are highly active for the oxygen evolution reaction but require complex synthesis and are poorly durable when deposited on foreign supports. Herein we demonstrate that easily processable, Earth-abundant and cheap Fe-Ni alloys spontaneously develop a highly active NiFe oxo-hydroxide surface, exsolved upon electrochemical activation. While the manufacturing process and the initial surface state of the alloys do not impact the oxygen evolution reaction performance, the growth/composition of the NiFe oxo-hydroxide surface layer depends on the alloying elements and initial atomic Fe/Ni ratio, hence driving oxygen evolution reaction activity. Whatever the initial Fe/Ni ratio of the Fe-Ni alloy (varying between 0.004 and 7.4), the best oxygen evolution reaction performance (beyond that of commercial IrO2) and durability was obtained for a surface Fe/Ni ratio between 0.2 and 0.4 and includes numerous active sites (high NiIII/NiII capacitive response) and high efficiency (high Fe/Ni ratio). This knowledge paves the way to active and durable Fe-Ni alloy oxygen-evolving electrodes for alkaline water electrolysers.
Collapse
Affiliation(s)
- Lucile Magnier
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Garance Cossard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Céline Pascal
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
| | - Virginie Roche
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Eric Sibert
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Irina Shchedrina
- Pierre Chevenard Research Center, APERAM Alloys Imphy, Imphy, France
| | | | - Valérie Parry
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
| | - Marian Chatenet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France.
| |
Collapse
|
41
|
Wu Q, Gao Q, Wang X, Qi Y, Shen L, Tai X, Yang F, He X, Wang Y, Yao Y, Ren Y, Luo Y, Sun S, Zheng D, Liu Q, Alfaifi S, Sun X, Tang B. Boosting electrocatalytic performance via electronic structure regulation for acidic oxygen evolution. iScience 2024; 27:108738. [PMID: 38260173 PMCID: PMC10801216 DOI: 10.1016/j.isci.2023.108738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
High-purity hydrogen produced by water electrolysis has become a sustainable energy carrier. Due to the corrosive environments and strong oxidizing working conditions, the main challenge faced by acidic water oxidation is the decrease in the activity and stability of anodic electrocatalysts. To address this issue, efficient strategies have been developed to design electrocatalysts toward acidic OER with excellent intrinsic performance. Electronic structure modification achieved through defect engineering, doping, alloying, atomic arrangement, surface reconstruction, and constructing metal-support interactions provides an effective means to boost OER. Based on introducing OER mechanism commonly present in acidic environments, this review comprehensively summarizes the effective strategies for regulating the electronic structure to boost the activity and stability of catalytic materials. Finally, several promising research directions are discussed to inspire the design and synthesis of high-performance acidic OER electrocatalysts.
Collapse
Affiliation(s)
- Qian Wu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Qingping Gao
- Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China
| | - Xingpeng Wang
- Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China
| | - Yuping Qi
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Li Shen
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Xishi Tai
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Fan Yang
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, Shandong, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610068, Sichuan, China
| | - Sulaiman Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Laoshan Laboratory, Qingdao 266237, Shandong, China
| |
Collapse
|
42
|
Kakati N, Anderson L, Li G, Sua-An DM, Karmakar A, Ocon JD, Chuang PYA. Indispensable Nafion Ionomer for High-Efficiency and Stable Oxygen Evolution Reaction in Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55559-55569. [PMID: 38058109 DOI: 10.1021/acsami.3c08377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Addressing the challenge of sluggish kinetics and limited stability in alkaline oxygen evolution reactions, recent exploration of novel electrochemical catalysts offers improved prospects. To expedite the assessment of these catalysts, a half-cell rotating disk electrode is often favored for its simplicity. However, the actual catalyst performance strongly depends on the fabricated catalyst layers, which encounter mass transport overpotentials. We systematically investigate the role and sequence of electrode drop-casting methods onto a glassy carbon electrode regarding the efficiency of the oxygen evolution reaction. The catalyst layer without Nafion experiences nearly 50% activity loss post stability test, while those with Nafion exhibit less than 5% activity loss. Additionally, the sequence of application of the catalyst and Nafion also shows a significant effect on catalyst stability. The catalyst activity increases by roughly 20% after the stability test when the catalyst layer is coated first with an ionomer layer, followed by drop-casting the catalysts. Based on the half-cell results, the Nafion ionomer not only acts as a binder in the catalyst layer but also enhances the interfacial interaction between the catalyst and electrolyte, promoting performance and stability. This study provides new insights into the efficient and accurate evaluation of electrocatalyst performance and stability as well as the role of Nafion ionomer in the catalyst layer.
Collapse
Affiliation(s)
- Nitul Kakati
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Lawrence Anderson
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Guangfu Li
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Desiree Mae Sua-An
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
- Laboratory of Electrochemical Engineering, Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Ayon Karmakar
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Joey D Ocon
- Laboratory of Electrochemical Engineering, Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Po-Ya Abel Chuang
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
43
|
Haghverdi Khamene S, van Helvoirt C, Tsampas MN, Creatore M. Electrochemical Activation of Atomic-Layer-Deposited Nickel Oxide for Water Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:22570-22582. [PMID: 38037639 PMCID: PMC10683065 DOI: 10.1021/acs.jpcc.3c05002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
NiO-based electrocatalysts, known for their high activity, stability, and low cost in alkaline media, are recognized as promising candidates for the oxygen evolution reaction (OER). In parallel, atomic layer deposition (ALD) is actively researched for its ability to provide precise control over the synthesis of ultrathin electrocatalytic films, including film thickness, conformality, and chemical composition. This study examines how NiO bulk and surface properties affect the electrocatalytic performance for the OER while focusing on the prolonged electrochemical activation process. Two ALD methods, namely, plasma-assisted and thermal ALD, are employed as tools to deposit NiO films. Cyclic voltammetry analysis of ∼10 nm films in 1.0 M KOH solution reveals a multistep electrochemical activation process accompanied by phase transformation and delamination of activated nanostructures. The plasma-assisted ALD NiO film exhibits three times higher current density at 1.8 V vs RHE than its thermal ALD counterpart due to enhanced β-NiOOH formation during activation, thereby improving the OER activity. Additionally, the rougher surface formed during activation enhanced the overall catalytic activity of the films. The goal is to unravel the relationship between material properties and the performance of the resulting OER, specifically focusing on how the design of the material by ALD can lead to the enhancement of its electrocatalytic performance.
Collapse
Affiliation(s)
- Sina Haghverdi Khamene
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- DIFFER—Dutch
Institute For Fundamental Energy Research, Eindhoven 5612 AJ, The Netherlands
| | - Cristian van Helvoirt
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Mihalis N. Tsampas
- DIFFER—Dutch
Institute For Fundamental Energy Research, Eindhoven 5612 AJ, The Netherlands
| | - Mariadriana Creatore
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems (EIRES), Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
44
|
Liang X, Yan W, Yu Y, Zhang K, An W, Chen H, Zou Y, Zhao X, Zou X. Electrocatalytic Water Oxidation Activity-Stability Maps for Perovskite Oxides Containing 3d, 4d and 5d Transition Metals. Angew Chem Int Ed Engl 2023; 62:e202311606. [PMID: 37754555 DOI: 10.1002/anie.202311606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Improving catalytic activity without loss of catalytic stability is one of the core goals in search of low-iridium-content oxygen evolution electrocatalysts under acidic conditions. Here, we synthesize a family of 66 SrBO3 perovskite oxides (B=Ti, Ru, Ir) with different Ti : Ru : Ir atomic ratios and construct catalytic activity-stability maps over composition variation. The maps classify the multicomponent perovskites into chemical groups with distinct catalytic activity and stability for acidic oxygen evolution reaction, and highlights a chemical region where high catalytic activity and stability are achieved simultaneously at a relatively low iridium level. By quantifying the extent of hybridization of mixed transition metal 3d-4d-5d and oxygen 2p orbitals for multicomponent perovskites, we demonstrate this complex interplay between 3d-4d-5d metals and oxygen atoms in governing the trends in both activity and stability as well as in determining the catalytic mechanism involving lattice oxygen or not.
Collapse
Affiliation(s)
- Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, China
| | - Yinglong Yu
- Petrochemical Research Institute, PetroChina, 102206, Beijing, China
| | - Kexin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Wei An
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Xiao Zhao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| |
Collapse
|
45
|
Choi S, Choi WI, Lee JS, Lee CH, Balamurugan M, Schwarz AD, Choi ZS, Randriamahazaka H, Nam KT. A Reflection on Sustainable Anode Materials for Electrochemical Chloride Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300429. [PMID: 36897816 DOI: 10.1002/adma.202300429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Chloride oxidation is a key industrial electrochemical process in chlorine-based chemical production and water treatment. Over the past few decades, dimensionally stable anodes (DSAs) consisting of RuO2 - and IrO2 -based mixed-metal oxides have been successfully commercialized in the electrochemical chloride oxidation industry. For a sustainable supply of anode materials, considerable efforts both from the scientific and industrial aspects for developing earth-abundant-metal-based electrocatalysts have been made. This review first describes the history of commercial DSA fabrication and strategies to improve their efficiency and stability. Important features related to the electrocatalytic performance for chloride oxidation and reaction mechanism are then summarized. From the perspective of sustainability, recent progress in the design and fabrication of noble-metal-free anode materials, as well as methods for evaluating the industrialization of novel electrocatalysts, are highlighted. Finally, future directions for developing highly efficient and stable electrocatalysts for industrial chloride oxidation are proposed.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| | - Won Il Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Seo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Andrew D Schwarz
- Milton Hill Business and Technology Centre, Infineum, Abingdon, OX13 6BB, UK
| | - Zung Sun Choi
- Infineum Singapore LLP, Singapore, 098632, Singapore
| | | | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
46
|
Liu S, Tan H, Huang YC, Zhang Q, Lin H, Li L, Hu Z, Huang WH, Pao CW, Lee JF, Kong Q, Shao Q, Xu Y, Huang X. Structurally-Distorted RuIr-Based Nanoframes for Long-Duration Oxygen Evolution Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305659. [PMID: 37620729 DOI: 10.1002/adma.202305659] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Oxygen evolution reaction (OER) plays a key role in proton exchange membrane water electrolysis (PEMWE), yet the electrocatalysts still suffer from the disadvantages of low activity and poor stability in acidic conditions. Here, a new class of CdRu2 IrOx nanoframes with distorted structure for acidic OER is successfully fabricated. Impressively, CdRu2 IrOx displays an ultralow overpotential of 189 mV and an ultralong stability of 1500 h at 10 mA cm⁻2 toward OER in 0.5 M H2 SO4 . Moreover, a PEMWE using the distorted CdRu2 IrOx can be steadily operated at 0.1 A cm⁻2 for 90 h. Microstructural analyses and X-ray absorption spectroscopy (XAS) demonstrate that the synergy between Ru and Ir in CdRu2 IrOx induces the distortion of Ru-O, Ir-O, and Ru-M (M = Ru, Ir) bonds. In situ XAS indicates that the applied potential leads to the deformation octahedral structure of RuOx /IrOx and the formation of stable Ru5+ species for OER. Theoretical calculations also reveal that the distorted structures can reduce the energy barrier of rate-limiting step during OER. This work provides an efficient strategy for constructing structural distortion to achieve significant enhancement on the activity and stability of OER catalysts.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huang Tan
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, Gif-sur-Yvette Cedex, 91192, France
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
47
|
Tang Y, Li J, Lu Z, Wang Y, Tao K, Lin Y. MOF-Derived CoSe 2@NiFeOOH Arrays for Efficient Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2621. [PMID: 37836262 PMCID: PMC10574313 DOI: 10.3390/nano13192621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Water electrolysis is a compelling method for the production of environmentally friendly hydrogen, minimizing carbon emissions. The electrolysis of water heavily relies on an effective and steady oxygen evolution reaction (OER) taking place at the anode. Herein, we introduce a highly promising catalyst for OER called CoSe2@NiFeOOH arrays, which are supported on nickel foam. This catalyst, referred to as CoSe2@NiFeOOH/NF, is fabricated through a two-step process involving the selenidation of a Co-based porous metal organic framework and subsequent electrochemical deposition on nickel foam. The CoSe2@NiFeOOH/NF catalyst demonstrates outstanding activity for the OER in an alkaline electrolyte. It exhibits a low overpotential (η) of 254 mV at 100 mA cm-2, a small Tafel slope of 73 mV dec-1, and excellent high stability. The good performance of CoSe2@NiFeOOH/NF can be attributed to the combination of the high conductivity of the inner layer and the synergistic effect between CoSe2 and NiFeOOH. This study offers an effective method for the fabrication of highly efficient catalysts for an OER.
Collapse
Grants
- (No. 2022C01029), (No. 52271232), (2022C01158), (No. LY21E020008), (No. 2020300),(2022Z205), (202301A09). R&D Program of Zhejiang, National Natural Science Foundation of China, Bellwethers Project of Zhejiang Research and Development Plan, Natural Science Foundation of Zhejiang Province, Youth Innovation Promotion As-sociation, CAS, Ningbo S&T Innovation 2025
Collapse
Affiliation(s)
- Yulong Tang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (Y.T.); (J.L.)
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Jiangning Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (Y.T.); (J.L.)
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China; (Y.T.); (J.L.)
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Chen H, Liu W, Li J, Chen L, Li G, Zhao W, Tao K, Han L. A quaternary heterojunction nanoflower for significantly enhanced electrochemical water splitting. Dalton Trans 2023; 52:12668-12676. [PMID: 37646195 DOI: 10.1039/d3dt01739g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Designing highly-efficient, cost-effective, and stable electrocatalysts for water splitting is essential to producing green hydrogen. In this work, a nanoflower quaternary heterostructured Ni(NO3)2(OH)4/Ni(OH)2/Ni3S2/NiFe-LDH electrocatalyst is successfully synthesized by two-step hydrothermal reactions. The sulfur in the electrocatalyst induces higher valence state metal atoms as active sites to accelerate the formation of O2. As expected, benefiting from the unique structural features and solid electronic interactions, Ni(NO3)2(OH)4/Ni(OH)2/Ni3S2/NiFe-LDH exhibits remarkable oxygen evolution reaction performance with a low overpotential of 223 mV at a current density of 100 mA cm-2, a slight Tafel slope of 65.4 mV dec-1, and outstanding stability in alkaline media. Attractively, using Ni(NO3)2(OH)4/Ni(OH)2/Ni3S2/NiFe-LDH as both a cathode and an anode, the alkaline electrolyzer delivers a current density of 10 mA cm-2 only at a cell voltage of 1.67 V, accompanied by superior durability. This work provides a facile method for the rational design of high-performance quaternary electrocatalysts.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wanqiu Liu
- School of Letters and Science, UC Davis, Davis, California, 95616, USA
| | - Jiangning Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Linli Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Guochang Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wenna Zhao
- School of Biological and Chemical Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China.
| | - Kai Tao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Lei Han
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
49
|
Lee GR, Kim J, Hong D, Kim YJ, Jang H, Han HJ, Hwang CK, Kim D, Kim JY, Jung YS. Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts. Nat Commun 2023; 14:5402. [PMID: 37669945 PMCID: PMC10480199 DOI: 10.1038/s41467-023-41102-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Suppressing the oxidation of active-Ir(III) in IrOx catalysts is highly desirable to realize an efficient and durable oxygen evolution reaction in water electrolysis. Although charge replenishment from supports can be effective in preventing the oxidation of IrOx catalysts, most supports have inherently limited charge transfer capability. Here, we demonstrate that an excess electron reservoir, which is a charged oxygen species, incorporated in antimony-doped tin oxide supports can effectively control the Ir oxidation states by boosting the charge donations to IrOx catalysts. Both computational and experimental analyses reveal that the promoted charge transfer driven by excess electron reservoir is the key parameter for stabilizing the active-Ir(III) in IrOx catalysts. When used in a polymer electrolyte membrane water electrolyzer, Ir catalyst on excess electron reservoir incorporated support exhibited 75 times higher mass activity than commercial nanoparticle-based catalysts and outstanding long-term stability for 250 h with a marginal degradation under a water-splitting current of 1 A cm-2. Moreover, Ir-specific power (74.8 kW g-1) indicates its remarkable potential for realizing gigawatt-scale H2 production for the first time.
Collapse
Affiliation(s)
- Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Doosun Hong
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ye Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeuk Jin Han
- Department of Environment and Energy Engineering, Sungshin Women's University, 55, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Chang-Kyu Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Donghun Kim
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jin Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
50
|
Zhu W, Song X, Liao F, Huang H, Shao Q, Feng K, Zhou Y, Ma M, Wu J, Yang H, Yang H, Wang M, Shi J, Zhong J, Cheng T, Shao M, Liu Y, Kang Z. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nat Commun 2023; 14:5365. [PMID: 37666815 PMCID: PMC10477217 DOI: 10.1038/s41467-023-41036-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
The oxygen evolution reactions in acid play an important role in multiple energy storage devices. The practical promising Ru-Ir based catalysts need both the stable high oxidation state of the Ru centers and the high stability of these Ru species. Here, we report stable and oxidative charged Ru in two-dimensional ruthenium-iridium oxide enhances the activity. The Ru0.5Ir0.5O2 catalyst shows high activity in acid with a low overpotential of 151 mV at 10 mA cm-2, a high turnover frequency of 6.84 s-1 at 1.44 V versus reversible hydrogen electrode and good stability (618.3 h operation). Ru0.5Ir0.5O2 catalysts can form more Ru active sites with high oxidation states at lower applied voltages after Ir incorporation, which is confirmed by the pulse voltage induced current method. Also, The X-ray absorption spectroscopy data shows that the Ru-O-Ir local structure in two-dimensional Ru0.5Ir0.5O2 solid solution improved the stability of these Ru centers.
Collapse
Affiliation(s)
- Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiangcong Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Haiwei Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jie Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|