1
|
Shu D, Fayad E, Abu Ali OA, Qin HL. Discovery of A Synthetic Hub for Regio- and Stereoselective Construction of Triazolyl Vinyl Sulfonyl Fluorides. J Org Chem 2024; 89:16969-16974. [PMID: 39482943 DOI: 10.1021/acs.joc.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A new sulfonyl fluoride reagent 1-bromobut-3-ene-1,3-disulfonyl difluoride (BEDF) was developed. This unique reagent possesses two clickable functionalities to be used for both azide-alkyne cycloaddition click and SuFEx click reactions. This new reagent was applied for the regioselective construction of a class of novel triazolyl vinyl sulfonyl fluorides in which the C-4 position 1H-1,2,3-triazoles were functionalized with vinyl sulfonyl fluorides of exclusively E-configuration.
Collapse
Affiliation(s)
- Dengfeng Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Zheng SZ, Fayad E, Alshaye NA, Qin HL. Stereo- and Regioselective Installation of Vinyl Sulfonyl Fluoride onto Indoles without Transition-Metal Catalyst. J Org Chem 2024; 89:14564-14570. [PMID: 39315771 DOI: 10.1021/acs.joc.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Herein, we developed a practical method for synthesizing a class of novel and highly valuable indolyl vinyl sulfonyl fluorides. This protocol has carved out a path for constructing a broad range of vinyl sulfonyl fluorinated indoles with exclusive stereo- and regioselectivity through the Friedel-Crafts/elimination reaction without any transition-metal catalyst. This transformation features mild conditions, high efficiency, excellent selectivity, and rich substrate compatibility, highlighting its significant value in medicinal chemistry and many related disciplines.
Collapse
Affiliation(s)
- Shu-Zhen Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
3
|
Liu MJ, Fayad E, Abu Ali OA, Tao XF, Qin HL. Synthesis of α-Bromo Arylethyl Sulfonyl Fluorides and β-Arylethenesulfonyl Fluorides via Copper-Catalyzed Meerwein Arylation. J Org Chem 2024; 89:13709-13718. [PMID: 39151070 DOI: 10.1021/acs.joc.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A practical copper-catalyzed process for the synthesis of the β-arylethenesulfonyl fluorides is described. A series of α-bromo arylethyl sulfonyl fluorides was prepared via Meerwein reaction from arenediazonium tetrafluoroborates and ethenesulfonyl fluoride (ESF) under mild conditions. The following β-arylethenesulfonyl fluorides were further obtained through a β-elimination reaction. This protocol features excellent regio- and stereoselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Ming-Jian Liu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Xiang-Feng Tao
- School of Chemistry, Chemical Engineering and Life Sciences,Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
4
|
Huang W, Fayad E, Abu Ali OA, Qin HL. A portal to highly valuable indole-functionalized vinyl sulfonyl fluorides and allylic sulfonyl fluorides. Org Biomol Chem 2024; 22:7117-7120. [PMID: 39150283 DOI: 10.1039/d4ob01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A practical and efficient method for the C-3 site selective alkenylation of indoles was developed for constructing novel indole-functionalized vinyl sulfonyl fluorides and indolyl allylic sulfonyl fluorides. The reaction is accomplished with exclusive regio- and stereoselectivity without using transition metal catalysts, providing novel products of great potential value in medicinal chemistry, chemical biology, and drug discovery.
Collapse
Affiliation(s)
- Wenzhuo Huang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia.
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
5
|
Chen Z, Wang C, Pignatello JJ. Rapid and Convenient Potentiometric Method for Determining Fluorosulfate, a Byproduct of the Fumigant and Greenhouse Gas Sulfuryl Fluoride. ACS OMEGA 2024; 9:23013-23020. [PMID: 38826532 PMCID: PMC11137687 DOI: 10.1021/acsomega.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
A fluorosulfate ion (FSO3-) is a hydrolysis product of sulfuryl fluoride (SO2F2), which is widely used to fumigate buildings, soil, construction materials, and postharvest commodities, and is a potent greenhouse gas. It is a potential marker for biological exposure to SO2F2 and for monitoring the progress of reactions used to scrub SO2F2 from fumigation vent gases. Here, we report a simple and inexpensive potentiometric method for determining FSO3- using a commercial nitrate-selective electrode and discuss its application. The method is suitable for solutions between 0.0025 mM and 660 mM FSO3- at initial pH between 5 and 9. Halide interference depends on its molar ratio to FSO3- and follows the sequence, F- < Cl- < Br- ≪ I-. Halide interference can be eliminated by adding silver sulfate. Interference by bicarbonate can be eliminated by H2SO4 pretreatment, and interference by phosphate or pyrophosphate by MgSO4 addition. Sulfate does not interfere, as it does in ion chromatography. Satisfactory method detection limits for FSO3- in spiked aqueous extracts of 11 fruits were obtained. The method accurately quantified the yield of FSO3- relative to that of F- in base hydrolysis of SO2F2. This study demonstrates that the developed method is highly selective, convenient, and sensitive and thus can be of great value in practice.
Collapse
Affiliation(s)
- Zhihao Chen
- The
Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
- School
of Environmental Science and Engineering, East Campus of Sun Yat-sen University, 132 Outer Ring East Road, University Town, Panyu
District, Guangzhou 510330, China
| | - Chengjin Wang
- The
Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
- Department
of Civil Engineering, University of Manitoba, 15 Gillson St, Winnipeg, Manitoba R3T
5 V6, Canada
| | - Joseph J Pignatello
- The
Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Kim SB, Kim DH, Bae HY. "On-Water" accelerated dearomative cycloaddition via aquaphotocatalysis. Nat Commun 2024; 15:3876. [PMID: 38719834 PMCID: PMC11079013 DOI: 10.1038/s41467-024-47861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Sulfur(VI) fluoride exchange (SuFEx) has emerged as an innovative click chemistry to harness the pivotal connectivity of sulfonyl fluorides. Synthesizing such alkylated S(VI) molecules through a straightforward process is of paramount importance, and their water-compatibility opens the door to a plethora of applications in biorelevant and materials chemistry. Prior aquatic endeavors have primarily focused on delivering catalysts involving ionic mechanisms, studies regarding visible-light photocatalytic transformation are unprecedented. Herein we report an on-water accelerated dearomative aquaphotocatalysis for heterocyclic alkyl SuFEx hubs. Notably, water exerts a pronounced accelerating effect on the [2 + 2] cycloaddition between (hetero)arylated ethenesulfonyl fluorides and inert heteroaromatics. This phenomenon is likely due to the high-pressure-like reactivity amplification at the water-oil interface. Conventional solvents proved totally ineffective, leading to the isomerization of the starting material.
Collapse
Affiliation(s)
- Soo Bok Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dong Hyeon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Wang W, Li J, Xu L, Dong J. N-Fluorosulfonyl Guanidine: An Entry to N-Guanyl Sulfamides and Sulfamates. Org Lett 2024; 26:3202-3207. [PMID: 38578703 DOI: 10.1021/acs.orglett.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Here, we present the straightforward synthesis of N-fluorosulfonyl guanidine (1) from two industrial feedstocks, guanidine hydrochloride and sulfuryl fluoride (SO2F2), using SuFEx chemistry. Compound 1 exhibits excellent stability under ambient conditions and displays unique SuFEx reactivity toward amines and phenols to generate N-guanyl sulfamides and sulfamates that have rarely been accessed. Notably, water serves as an effective solvent in this process. Our protocol provides a reliable pathway for the synthesis and investigation of these novel guanidine-containing molecules.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jingyuan Li
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Xu
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Hong J, Li C, Zhao K, Wang X, Feng R, Chen X, Wei C, Gong X, Zheng F, Zheng C. Stereoselective Fluorosulfonylation of Vinylboronic Acids for ( E)-Vinyl Sulfonyl Fluorides with Copper Participation. Org Lett 2024; 26:2332-2337. [PMID: 38478713 DOI: 10.1021/acs.orglett.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A practical synthetic method for the synthesis of vinyl sulfonyl fluorides through copper-promoted direct fluorosulfonylation has been developed. The reaction of the vinylboronic acids with DABSO and then NFSI is performed under mild reaction conditions. This transformation efficiently affords aryl or alkyl vinyl sulfonyl fluorides with good reaction yields, exclusive E-configuration, broad substrate scope, excellent compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
9
|
Yin CL, Qin RZ, Qin HL. One-Pot Three-Component Synthesis of Indolyl-4 H-chromene-3-sulfonyl Fluoride: A Class of Important Pharmacophore. J Org Chem 2024; 89:3618-3628. [PMID: 38358945 DOI: 10.1021/acs.joc.3c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A one-pot, sequential three-component reaction between salicylaldehyde, indole, and 2-bromoprop-2-ene-1-sulfonyl fluoride (BPESF) has been demonstrated for the synthesis of sulfonyl fluoride substituted 4H-chromene derivatives in moderate to excellent yields (45%-94%). This one-pot sequential method features easily available starting materials, wide substrate scope, mild conditions, and great efficiency.
Collapse
Affiliation(s)
- Cheng-Lin Yin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Richard Zijian Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
10
|
Leng J, Xu J, Li Y, Wang SM, Qin HL. A mild protocol for efficient preparation of functional molecules containing triazole. RSC Adv 2024; 14:7601-7608. [PMID: 38440271 PMCID: PMC10911410 DOI: 10.1039/d4ra01271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
The construction of a class of novel triazole molecules containing sulfonyl fluoride functionalities was achieved through Cu-catalyzed click chemistry in good to excellent yields. The sulfonyl fluoride moieties were cleaved completely under base conditions to produce N-unsubstituted triazoles quantitatively, which provides a strategy to combine SuFEx click chemistry with Cu-catalyzed click chemistry ingeniously.
Collapse
Affiliation(s)
- Jing Leng
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Jie Xu
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Shi-Meng Wang
- Xiangyang Public Inspection and Testing Center No. 69, Taiziwan Road Xiangyang Hubei Province 441000 P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| |
Collapse
|
11
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
12
|
Feng Q, He T, Qian S, Xu P, Liao S, Huang S. Electroreductive hydroxy fluorosulfonylation of alkenes. Nat Commun 2023; 14:8278. [PMID: 38092768 PMCID: PMC10719349 DOI: 10.1038/s41467-023-44029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
An electroreductive strategy for radical hydroxyl fluorosulfonylation of alkenes with sulfuryl chlorofluoride and molecular oxygen from air is described. This mild protocol displays excellent functional group compatibility, broad scope, and good scalability, providing convenient access to diverse β-hydroxy sulfonyl fluorides. These β-hydroxy sulfonyl fluoride products can be further converted to valuable aliphatic sulfonyl fluorides, β-keto sulfonyl fluorides, and β-alkenyl sulfonyl fluorides. Further, some of these products showed excellent inhibitory activity against Botrytis cinerea or Bursaphelenchus xylophilus, which could be useful for potent agrochemical discovery. Preliminary mechanistic studies indicate that this transformation is achieved through rapid O2 interception by the alkyl radical and subsequent reduction of the peroxy radical, which outcompete other side reactions such as chlorine atom transfer, hydrogen atom transfer, and Russell fragmentation.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shencheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Peng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
13
|
Wang H, Li Z, Dai R, Jiao N, Song S. An efficient and mild oxidative approach from thiols to sulfonyl derivatives with DMSO/HBr. Chem Sci 2023; 14:13228-13234. [PMID: 38023524 PMCID: PMC10664549 DOI: 10.1039/d3sc04945k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
A mild and practical method for synthesizing sulfonyl derivatives, which have a wide range of applications in pharmaceuticals, materials, and organic synthesis, was described through the oxidative functionalization of thiols with DMSO/HBr. The simple conditions, low cost and ready availability of DMSO/HBr, as well as the versatility of the transformations, make this strategy very powerful in synthesizing a variety of sulfonyl derivatives including sulfonamides, sulfonyl fluorides, sulfonyl azides, and sulfonates. Mechanistic studies revealed that DMSO served as the terminal oxidant, and HBr acted as both a nucleophile and a redox mediator to transfer the oxygen atom.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Zhaoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| |
Collapse
|
14
|
Pasieka A, Diamanti E, Uliassi E, Laura Bolognesi M. Click Chemistry and Targeted Degradation: A Winning Combination for Medicinal Chemists? ChemMedChem 2023; 18:e202300422. [PMID: 37706617 DOI: 10.1002/cmdc.202300422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Click chemistry is universally recognized as a powerful strategy for the fast and precise assembly of diverse building blocks. Targeted Protein Degradation (TPD) is a new therapeutic modality based on heterobifunctional small-molecule degraders that provides new opportunities to medicinal chemists dealing with undruggable targets and incurable diseases. Here, we highlight how very recently the TPD field and that of click chemistry have merged, opening up the possibility for fine-tuning the properties of a degrader, chemically assembled through a "click" synthesis. By reviewing concrete examples, we want to provide the reader with the insight that the application of click and bioorthogonal chemistry in the TDP field may be a winning combination.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
15
|
Kopyt M, Tryniszewski M, Barbasiewicz M, Kwiatkowski P. Enantioselective Addition of Dialkyl Malonates to β-Arylethenesulfonyl Fluorides under High-Pressure Conditions. Org Lett 2023; 25:6818-6822. [PMID: 37655810 PMCID: PMC10521026 DOI: 10.1021/acs.orglett.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 09/02/2023]
Abstract
Application of high-pressure conditions enables enantioselective Michael-type addition of dialkyl malonates to β-arylethenesulfonyl fluorides. The reaction is efficiently catalyzed with 5 mol % of tertiary amino-thiourea at 9 kbar. Chiral alkanesulfonyl fluorides are formed in yields of up to 96% and enantioselectivities of up to 92%. Functionalization of the adducts via sulfur fluoride exchange (SuFEx) reaction and desulfonylative cyclization is demonstrated.
Collapse
Affiliation(s)
- Michał Kopyt
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| | - Michał Tryniszewski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Barbasiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Kwiatkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
16
|
Wang T, Xu L, Dong J. FSO 2N 3-Enabled Synthesis of Tetrazoles from Amidines and Guanidines. Org Lett 2023; 25:6222-6227. [PMID: 37581428 DOI: 10.1021/acs.orglett.3c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Herein we report the facile syntheses of tetrazoles enabled by FSO2N3 under mild conditions. FSO2N3 has been shown as the most powerful diazotizing reagent, which converts thousands of primary amines to azides fast and orthogonally. As the follow-up studies of the diazo transfer reaction using FSO2N3, we discover that amidines and guanidines are rapidly transformed into tetrazole derivatives when reacting with FSO2N3 under an aqueous environment, which is unprecedented for tetrazole synthesis.
Collapse
Affiliation(s)
- Tianyu Wang
- Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Long Xu
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
17
|
Li XQ, Liao QQ, Lai J, Liao YY. Visible-light-mediated sulfonylation of anilines with sulfonyl fluorides. Front Chem 2023; 11:1267223. [PMID: 37693172 PMCID: PMC10485258 DOI: 10.3389/fchem.2023.1267223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Sulfonylaniline motif plays an important role in pharmaceutical sciences. Developed methods towards this structure are typically lack of good modifiability and stability. In this study, visible-light-mediated sulfonylation of aniline using sulfonyl fluoride as a modifiable and stable sulfonylation reagent is described. A variety of substituted sulfonylanilines were synthesized under mild reaction conditions with moderate to good efficiency. The example of late-stage sulfonylation highlighted the advantage of using sulfonyl fluoride as a sulfonylation reagent. In addition, the crucial influence of counterions on the photocatalyst observed in this system would inspire further research on the photochemistry of sulfonyl fluoride.
Collapse
Affiliation(s)
- Xin-Qing Li
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Qian-Qian Liao
- Department of Pharmacy, People’s Hospital of Guilin, Guilin, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Yuan-Yue Liao
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| |
Collapse
|
18
|
Smedley CJ, Giel MC, Fallon T, Moses JE. Ethene-1,1-disulfonyl Difluoride (EDSF) for SuFEx Click Chemistry: Synthesis of SuFExable 1,1-Bissulfonylfluoride Substituted Cyclobutene Hubs. Angew Chem Int Ed Engl 2023; 62:e202303916. [PMID: 37224463 PMCID: PMC10958772 DOI: 10.1002/anie.202303916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
We present the synthesis of 1,1-bis(fluorosulfonyl)-2-(pyridin-1-ium-1-yl)ethan-1-ide, a bench-stable precursor to ethene-1,1-disulfonyl difluoride (EDSF). The novel SuFEx reagent, EDSF, is demonstrated in the preparation of 26 unique 1,1-bissulfonylfluoride substituted cyclobutenes via a cycloaddition reaction. The regioselective click cycloaddition reaction is rapid, straightforward, and highly efficient, enabling the generation of highly functionalized 4-membered ring (4MR) carbocycles. These carbocycles are valuable structural motifs found in numerous bioactive natural products and pharmaceutically relevant small molecules. Additionally, we showcase diversification of the novel cyclobutene cores through selective Cs2 CO3 -activated SuFEx click chemistry between a single S-F group and an aryl alcohol, yielding the corresponding sulfonate ester products with high efficiency. Finally, density functional theory calculations offer mechanistic insights about the reaction pathway.
Collapse
Affiliation(s)
- Christopher J. Smedley
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia
| | - Thomas Fallon
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 (USA)
| |
Collapse
|
19
|
Chen XL, Qin HL. Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO 2F 2). Beilstein J Org Chem 2023; 19:901-908. [PMID: 37377774 PMCID: PMC10291241 DOI: 10.3762/bjoc.19.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A SO2F2-mediated ring-opening cross-coupling of cyclobutanone oxime derivatives with alkenes was developed for the construction of a range of δ-olefin-containing aliphatic nitriles with (E)-configuration selectivity. This new method features wide substrate scope, mild conditions, and direct N-O activation.
Collapse
Affiliation(s)
- Xian-Lin Chen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
20
|
Zhao X, Chen D, Zhu S, Luo J, Liao S, Zheng B, Huang S. Fluorosulfonylvinylation of Unactivated C(sp 3)-H via Electron Donor-Acceptor Photoactivation. Org Lett 2023; 25:3109-3113. [PMID: 37083288 DOI: 10.1021/acs.orglett.3c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An electron donor-acceptor (EDA) complex photoactivation strategy for radical fluorosulfonylation is disclosed for the first time. Simply upon blue light irradiation, the FSO2 radical can be generated efficiently under catalyst-free, base-free, and additive-free conditions, which enables facile access to 6-keto alkenylsulfonyl fluorides from readily available propargyl alcohols and FSO2Cl. The 6-keto alkenylsulfonyl fluoride motif has been showcased as a versatile SuFEx hub with diverse follow-up derivatizations.
Collapse
Affiliation(s)
- Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengzhen Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan, Ningxia Hui Autonomous Region 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
21
|
Liu M, Tang W, Qin HL. Discovery of ( E)-2-Methoxyethene-1-sulfonyl Fluoride for the Construction of Enaminyl Sulfonyl Fluoride. J Org Chem 2023; 88:1909-1917. [PMID: 36649643 DOI: 10.1021/acs.joc.2c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new sulfonyl fluoride reagent (E)-2-methoxyethene-1-sulfonyl fluoride (MeO-ESF) was developed and successfully applied for the construction of enaminyl sulfonyl fluoride (N-ESF). This protocol provides highly atom-economical access to diverse N-ESF and produces CH3OH as the sole byproduct under mild and environmentally benign conditions.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
22
|
Zhang X, Qin HL. A General Procedure for the Construction of 2-Alkyl-Substituted Vinyl Sulfonyl Fluoride. Org Lett 2022; 24:9311-9315. [PMID: 36475782 DOI: 10.1021/acs.orglett.2c03936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of compact and multifunctional 2-alkyl-substituted vinyl sulfonyl fluorides were efficiently prepared from the corresponding alkyl iodides and 2-chloroprop-2-ene-1-sulfonyl fluoride (CESF). This Giese-type radical approach provided new and general access to alkenyl sulfonyl fluorides, including structures that would otherwise be challenging to synthesize with previously established methods. A correspondingly large collection of derivatization reactions was also demonstrated on the alkenyl sulfonyl fluorides.
Collapse
Affiliation(s)
- Xu Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Hua-Li Qin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
23
|
Li HH, Wu C, Zhang SL, Yang JG, Qin HL, Tang W. Fluorosulfate-containing pyrazole heterocycles as selective BuChE inhibitors: structure-activity relationship and biological evaluation for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:2099-2111. [PMID: 35899776 PMCID: PMC9448382 DOI: 10.1080/14756366.2022.2103553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Novel scaffolds are expected to treat Alzheimer’s disease, pyrazole-5-fluorosulfates were found as selective BuChE inhibitors. Compounds K1–K26 were assayed for ChE inhibitory activity, amongst them, compound K3 showed potent BuChE and hBuChE inhibition (IC50 = 0.79 μM and 6.59 μM). SAR analysis showed that 1-, 3-, 4-subtituent and 5-fluorosulfate of pyrazole ring affected BuChE inhibitory activity. Molecular docking showed that the fluorosulfate increased the binding affinity of hBuChE through π-sulphur interaction. Compound K3 was a reversible, mixed and non-competitive BuChE inhibitor (Ki = 0.77 μM) and showed remarkable neuroprotection, safe toxicological profile and BBB penetration. In vivo behavioural study showed that K3 treatment improved the Aβ1 − 42-induced cognitive impairment, and significantly prevented the effects of Aβ1 − 42 toxicity. Therefore, selective BuChE inhibitor K3 has potential to be further developed as AD therapeutics.
Collapse
Affiliation(s)
- Huan-Huan Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chengyao Wu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shi-Long Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jian-Guo Yang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Sandeep K, Kumar AS, Kumara Swamy KC. Rhodium‐Catalyzed Vinyl Sulfonylation of 3‐Carbonyl‐Substituted Indoles with Ethenesulfonyl Fluoride by Cross‐Dehydrogenative Coupling: An Application in (3+2) Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- K. Sandeep
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - A. Sanjeeva Kumar
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - K. C. Kumara Swamy
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| |
Collapse
|
25
|
Chemical and biology of Sulfur (VI) Fluoride Exchange (SuFEx) Click Chemistry for Drug Discovery. Bioorg Chem 2022; 130:106227. [DOI: 10.1016/j.bioorg.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022]
|
26
|
Zeng YZ, Wang JB, Qin HL. A reductive dehalogenative process for chemo- and stereoselective synthesis of 1,3-dienylsulfonyl fluorides. Org Biomol Chem 2022; 20:7776-7780. [PMID: 36168842 DOI: 10.1039/d2ob01434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the mild and efficient synthesis of 1,3-dienylsulfonyl fluorides was developed via dehalogenation of α-halo-1,3-dienylsulfonyl fluorides in the presence of zinc powder and acetic acid, achieving exclusive chemo- and stereoselectivities. This protocol was successfully applied to the synthesis of heterocyclic dienylsulfonyl fluorides and polyene sulfonyl fluoride.
Collapse
Affiliation(s)
- Yu-Zhen Zeng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Jian-Bai Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China. .,Changyi Tianyu Pharm. Co., Ltd., Weifang 261399, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
27
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022; 61:e202207684. [DOI: 10.1002/anie.202207684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Mingqi Zhao
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Shuangshuang Ji
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
28
|
Park JH, Lee SB, Koo BJ, Bae HY. β-Aminosulfonyl Fluorides via Water-Accelerated N-Heterocyclic Carbene Catalysis. CHEMSUSCHEM 2022; 15:e202201000. [PMID: 35799476 DOI: 10.1002/cssc.202201000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Herein, a water-accelerated, N-heterocyclic carbene (NHC)-catalyzed aza-Michael addition reaction was reported to access β-aminosulfonyl fluorides, which are key hubs of the sulfur(VI) fluoride exchange (SuFEx) reaction. As a crucial reaction medium, water considerably enhanced the reaction rate with excellent chemo- and site-selectivity (up to >99 : 1) compared to conventional solvents. In addition, the late-stage ligation of bioactive molecules with the aliphatic β-amino SuFEx hub was demonstrated. Mechanistic studies on experimental, analytical, and computational approaches support noncovalent activation over NHC catalysis "on-water".
Collapse
Affiliation(s)
- Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| | - Sun Bu Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| | - Byeong Jun Koo
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| |
Collapse
|
29
|
Wang TT, Zhao LM. Synthesis of 2-arylethenesulfonyl fluorides and isoindolinones: Ru-catalyzed C-H activation of nitrones with ethenesulfonyl fluoride. Chem Commun (Camb) 2022; 58:11099-11102. [PMID: 36098079 DOI: 10.1039/d2cc03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy for the synthesis of 2-arylethenesulfonyl fluorides from nitrones and ethenesulfonyl fluoride (ESF) by the activation of the C-H bond using an inexpensive and readily available Ru-catalyst has been developed. In this process, the directing group can be concomitantly converted to an amide group. Interestingly, changing the substituent of the nitrogen of nitrones from a tert-butyl to a methyl group resulted in the formation of cyclic isoindolinones. Detailed mechanistic studies are also presented.
Collapse
Affiliation(s)
- Tong-Tong Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
30
|
Wang P, Li SJ, Liao S, Zhang H, Yang N. Photo-organocatalytic Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Acetates. Synlett 2022. [DOI: 10.1055/s-0041-1738692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractA metal-free synthesis of useful β-keto sulfonyl fluorides has been established via radical fluorosulfonylation of ketone-derived vinyl acetates under photoredox organocatalysis by using 1-fluorosulfonyl benzoimidazolium (FABI) as the fluorosulfonyl radical source and oxygen-doped anthanthrene (ODA) as the photocatalyst. A series of aryl and alkyl β-keto sulfonyl fluorides as well as cyclic analogues can be readily obtained in moderate to high yields from widely available ketone starting materials.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Shao-Jie Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| |
Collapse
|
31
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur-Phenolate Exchange: SuFEx-Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022; 61:e202207456. [PMID: 35819248 PMCID: PMC9540147 DOI: 10.1002/anie.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/15/2022]
Abstract
The products of the SuFEx reaction between sulfonimidoyl fluorides and phenols, sulfonimidates, are shown to display dynamic covalent chemistry with other phenols. This reaction was shown to be enantiospecific, finished in minutes at room temperature in high yields, and useful for both asymmetric synthesis and sustainable polymer production. Its wide scope further extends the usefulness of SuFEx and related click chemistries.
Collapse
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Akash Krishna
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Sidharam P. Pujari
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | | | - Guanna Li
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Biobased Chemistry and TechnologyWageningen UniversityBornse Weilanden 96708WGWageningenThe Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University21589JeddahSaudi Arabia
| |
Collapse
|
32
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Mingqi Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Shuangshuang Ji
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Lu Lin
- Fuzhou University College of Chemistry CHINA
| | - Na Yang
- Fuzhou University College of Chemistry CHINA
| | | | - Jinshuai Song
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Saihu Liao
- Fuzhou University College of Chemistry 2 Xueyuan RoadUniversity Town 350108 Fuzhou CHINA
| |
Collapse
|
33
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur–Phenolate Exchange: SuFEx‐Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Akash Krishna
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sidharam P. Pujari
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | | | - Guanna Li
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Biobased Chemistry and Technology Wageningen University Bornse Weilanden 9 6708WG Wageningen The Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemical and Materials Engineering Faculty of Engineering King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
34
|
Zhang W, Deng X, Zhang FX, Lin JH, Xiao JC, Liang SH. Synthesis and 18F Labeling of Alkenyl Sulfonyl Fluorides via an Unconventional Elimination Pathway. Org Lett 2022; 24:4992-4997. [PMID: 35771975 DOI: 10.1021/acs.orglett.2c02091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A successful Cu-catalyzed addition of both Cl and SO2OCF2H groups into alkenes allows us to discover the unusual reactivity of the SO2OCF2H group. As opposed to common sulfonic esters (RSO2-O-R'), in which the R' group is highly electrophilic, the SO2 moiety demonstrates higher electrophilicity in RSO2-OCF2H. The unexpected reactivity is further developed not only as a synthetic tool for well-functionalized alkenyl sulfonyl fluorides but also for the first 18F labeling of alkenyl sulfonyl fluorides.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States
| |
Collapse
|
35
|
Qin HY, Gui H, Zhang ZW, Shu T, Qin HL. A regio- and stereoselective Heck-Matsuda process for construction of γ-aryl allylsulfonyl fluorides. RSC Adv 2022; 12:19402-19405. [PMID: 35865583 PMCID: PMC9251648 DOI: 10.1039/d2ra03733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
A highly efficient regio- and stereoselective Heck–Matsuda method was developed employing aryl diazoniums and allylsulfonyl fluorides for the construction of a class of novel γ-aryl allylsulfonyl fluorides in the presence of Pd(OAc)2 and PPh3. The method features excellent regio- and stereoselectivity (up to 100% E-selectivity), broad substrate scope and mild reaction conditions. Further application of γ-aryl allylsulfonyl fluoride in SuFEx reactions was achieved to provide their corresponding sulfonates and sulfonamides in excellent yields. A Heck–Matsuda reaction of aryl diazoniums with allylsulfonyl fluorides for the construction of γ-aryl allylsulfonyl fluorides was developed.![]()
Collapse
Affiliation(s)
- Hao-Yong Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
| | - Houying Gui
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
| | - Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
| | - Tao Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
36
|
Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO 2F radical reagent. Nat Commun 2022; 13:3515. [PMID: 35717500 PMCID: PMC9206656 DOI: 10.1038/s41467-022-31296-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides are key components in the fields of chemical biology, materials science and drug discovery. In this line, the highly active SO2F radical has been employed for the construction of sulfonyl fluorides, but the utilization of gaseous ClSO2F as radical precursor is limited due to the tedious and hazardous preparation. Meanwhile, the synthesis of sulfonyl fluorides from inert SO2F2 gas through a fluorosulfonyl radical (·SO2F) process has met with inevitable difficulties due to the high homolytic bond dissociation energy of the S(VI)-F bond. Here we report a radical fluorosulfonylation strategy for the stereoselective synthesis of alkenyl sulfonyl fluorides and functional alkyl sulfonyl fluorides with an air-stable crystalline benzimidazolium fluorosulfonate cationic salt reagent. This bench-stable redox-active reagent offers a useful and operational protocol for the radical fluorosulfonylation of unsaturated hydrocarbons with good yield and high stereoselectivity, which can be further transformed into valuable functional SO2F moieties. Sulfonyl fluorides have potential application in chemical biology, materials science, and drug discovery, but their preparation remains challenging. Here, the authors report an air-stable fluorosulfonylating reagent that enables the radical fluorosulfonylation, hydrofluorosulfonylation and migratory SO2F-difunctionalization of unsaturated hydrocarbons to construct a variety of sulfonyl fluoride compounds.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaojuan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
37
|
Tryniszewski M, Basiak D, Barbasiewicz M. Olefination with Sulfonyl Halides and Esters: Synthesis of Unsaturated Sulfonyl Fluorides. Org Lett 2022; 24:4270-4274. [PMID: 35653711 PMCID: PMC9490844 DOI: 10.1021/acs.orglett.2c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Methanedisulfonyl fluoride, CH2(SO2F)2, transforms aromatic aldehydes into β-arylethenesulfonyl fluorides, useful substrates for the SuFEx "click"-type transformations. The reaction mimics mechanism of the Horner-Wadsworth-Emmons olefination, which runs via addition of the carbanion, followed by cyclization-fragmentation of the four-membered ring intermediate. In the absence of base, electron-rich aldehydes follow an alternative pathway of the Knoevenagel condensation to provide unsaturated 1,1-disulfonyl fluorides. We demonstrate also trapping of elusive ethene-1,1-disulfonyl fluoride, CH2═C(SO2F)2, with 4-(dimethylamino)pyridine (DMAP) that forms zwitterionic adduct, characterized with X-ray studies.
Collapse
Affiliation(s)
- Michał Tryniszewski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dariusz Basiak
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Barbasiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
38
|
Zhu DY, Chen Y, Zhang XJ, Yan M. Regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride. Org Biomol Chem 2022; 20:4714-4718. [PMID: 35622375 DOI: 10.1039/d2ob00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride (ESF) has been developed. In the presence of different bases, N2-alkylated and C4-alkylated isoxazol-5-ones with a sulfonyl fluoride group were obtained separately with good to excellent yields. Further transformations with amines and phenol gave sulfonamides and sulfonates. The intriguing combination of isoxazol-5-ones and the sulfonyl fluoride group produces valuable products for drug discovery.
Collapse
Affiliation(s)
- Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuan Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Wang P, Zhang H, Nie X, Xu T, Liao S. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat Commun 2022; 13:3370. [PMID: 35690603 PMCID: PMC9188602 DOI: 10.1038/s41467-022-31089-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides have attracted considerable and growing research interests from various disciplines, which raises a high demand for novel and effective methods to access this class of compounds. Radical flurosulfonylation is recently emerging as a promising approach for the synthesis of sulfonyl fluorides. However, the scope of applicable substrate and reaction types are severely restricted by limited known radical reagents. Here, we introduce a solid state, redox-active type of fluorosulfonyl radical reagents, 1-fluorosulfonyl 2-aryl benzoimidazolium triflate (FABI) salts, which enable the radical fluorosulfonylation of olefins under photoredox conditions. In comparison with the known radical precursor, gaseous FSO2Cl, FABI salts are bench-stable, easy to handle, affording high yields in the radical fluorosulfonylation of olefins with before challenging substrates. The advantage of FABIs is further demonstrated in the development of an alkoxyl-fluorosulfonyl difunctionalization reaction of olefins, which forges a facile access to useful β-alkoxyl sulfonyl fluorides and related compounds, and would thus benefit the related study in the context of chemical biology and drug discovery in the future.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
- Beijing National Laboratory of Molecular Science (BNLMS), 100190, Beijing, China.
| |
Collapse
|
40
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
41
|
Zhang X, Fang WY, Qin HL. Regio- and Stereoselective Installation of Bromide onto Vinyl Sulfonyl Fluorides: Construction of a Class of Versatile Sulfur Fluoride Exchange Hubs. Org Lett 2022; 24:4046-4051. [PMID: 35622119 DOI: 10.1021/acs.orglett.2c01509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient protocol for the exclusively regio- and stereoselective installation of a bromine atom on the 2-arylvinylsulfonyl fluorides using lithium bromide (LiBr) as the bromine source was described, providing (Z)-1-bromo-2-arylethene-1-sulfonyl fluorides (Z-BASF) with versatile reactive handles (bromide, vinyl, and sulfonyl fluoride) in ≤88% yield. Meanwhile, Z-BASF molecules displayed various reactivities in a series of chemical transformations.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
42
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
43
|
Frye NL, Daniliuc CG, Studer A. Radical 1-Fluorosulfonyl-2-alkynylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202115593. [PMID: 34958162 PMCID: PMC9305502 DOI: 10.1002/anie.202115593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/12/2022]
Abstract
Sulfonyl fluorides have found widespread use in chemical biology and drug discovery. The development of synthetic methods for the introduction of the sulfonyl fluoride moiety is therefore of importance. Herein, a transition-metal-free radical 1,2-difunctionalization of unactivated alkenes via FSO2 -radical addition with subsequent vicinal alkynylation to access β-alkynyl-fluorosulfonylalkanes is presented. Alkynyl sulfonyl fluorides are introduced as highly valuable bifunctional radical trapping reagents that also serve as FSO2 -radical precursors. The β-alkynyl-fluorosulfonylalkanes obtained in these transformations can be readily diversified by using SuFEx click chemistry to obtain sulfonates and sulfonamides.
Collapse
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
44
|
Li BY, Voets L, Van Lommel R, Hoppenbrouwers F, Alonso M, Verhelst SHL, De Borggraeve WM, Demaerel J. SuFEx-enabled, chemoselective synthesis of triflates, triflamides and triflimidates. Chem Sci 2022; 13:2270-2279. [PMID: 35310484 PMCID: PMC8864708 DOI: 10.1039/d1sc06267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Sulfur(vi) Fluoride Exchange (SuFEx) chemistry has emerged as a next-generation click reaction, designed to assemble functional molecules quickly and modularly. Here, we report the ex situ generation of trifluoromethanesulfonyl fluoride (CF3SO2F) gas in a two chamber system, and its use as a new SuFEx handle to efficiently synthesize triflates and triflamides. This broadly tolerated protocol lends itself to peptide modification or to telescoping into coupling reactions. Moreover, redesigning the SVI-F connector with a S[double bond, length as m-dash]O → S[double bond, length as m-dash]NR replacement furnished the analogous triflimidoyl fluorides as SuFEx electrophiles, which were engaged in the synthesis of rarely reported triflimidate esters. Notably, experiments showed H2O to be the key towards achieving chemoselective trifluoromethanesulfonation of phenols vs. amine groups, a phenomenon best explained-using ab initio metadynamics simulations-by a hydrogen bonded termolecular transition state for the CF3SO2F triflylation of amines.
Collapse
Affiliation(s)
- Bing-Yu Li
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Lauren Voets
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Fien Hoppenbrouwers
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
- Leibniz Institute for Analytical Sciences ISAS e.V., Otto-Hahn-Str. 6b 44227 Dortmund Germany
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Joachim Demaerel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
| |
Collapse
|
45
|
Frye NL, Daniliuc CG, Studer A. Radikalische 1‐Fluorsulfonyl‐2‐alkinylierung von nicht aktivierten Alkenen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| |
Collapse
|
46
|
Lou TSB, Willis MC. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 2022; 6:146-162. [PMID: 37117299 DOI: 10.1038/s41570-021-00352-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The advent of sulfur(VI)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur-fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.
Collapse
|
47
|
Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen QY, Liu C. Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org Chem Front 2022. [DOI: 10.1039/d1qo01655e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general and efficient approach to various aliphatic sulfonyl fluorides by the reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acids via a radical sulfur dioxide insertion and fluorination strategy was developed.
Collapse
Affiliation(s)
- Zhanhu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
48
|
Zhang G, Guan C, Zhao Y, Miao H, Ding C. ‘Awaken’ aryl sulfonyl fluoride: a new partner in the Suzuki–Miyaura coupling reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An example of the activation of the –SO2F group, which is traditionally considered a stable group even in the presence of a transition metal, is described using a novel partner in the Suzuki–Miyaura coupling reaction catalyzed by Pd(OAc)2 and Ruphos as ligands.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chenfei Guan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center, Hangzhou, 310012, P. R. China
| | - Huihui Miao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
49
|
Takemura H, Orimoto G, Kobayashi A, Hosoya T, Yoshida S. Modular synthesis of triazoles from 2-azidoacrylamides having a nucleophilic amino group. Org Biomol Chem 2022; 20:6007-6011. [DOI: 10.1039/d2ob00151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assembling methods using 2-azidoacrylamides having a nucleophilic amino group are disclosed. Divergent transformations of the amine-type trivalent platform were accomplished with a wide variety of electrophiles to provide a broad...
Collapse
|
50
|
Cui J, Ke S, Zhao J, Wu S, Luo W, Xu S, Su X, Li Y. Photocatalytic access to aromatic keto sulfonyl fluorides from vinyl fluorosulfates. Org Chem Front 2022. [DOI: 10.1039/d2qo00416j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A photocatalytic transformation of vinyl fluorosulfates to aromatic β-keto sulfonyl fluorides is developed using 1 mol% of Ir catalyst irradiated by 3 W blue LEDs. This methodology provides an efficient and readily scalable approach to aromatic β-keto sulfonyl fluorides.
Collapse
Affiliation(s)
- Jianchao Cui
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Sen Ke
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jia Zhao
- Fuzhou Institute of Technology, Fuzhou 350506, China
| | - Shufeng Wu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wencheng Luo
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shinuo Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaolong Su
- Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|