1
|
Yang H, Zhu L, Wang X, Song Y, Dong Y, Xu W. Extension characteristics of TdT and its application in biosensors. Crit Rev Biotechnol 2024; 44:981-995. [PMID: 37880088 DOI: 10.1080/07388551.2023.2270772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
The advantages of rapid amplification of nucleic acid without a template based on terminal deoxyribonucleotidyl transferase (TdT) have been widely used in the field of biosensors. However, the catalytic efficiency of TdT is affected by extension conditions. The sensitivity of TdT- mediated biosensors can be improved only under appropriate conditions. Therefore, in this review, we provide a comprehensive overview of TdT extension characteristics and its applications in biosensors. We focus on the relationship between TdT extension conditions and extension efficiency. Furthermore, the construction strategy of TdT-mediated biosensors according to five different recognition types and their applications in targets are discussed and, finally, several current challenges and prospects in the field are taken into consideration.
Collapse
Affiliation(s)
- He Yang
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Longjiao Zhu
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Xinxin Wang
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
| | - Yuhan Song
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), China Agricultural University, Beijing, China
| | - Yulan Dong
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wentao Xu
- Department of Nutrition and Health, Ministry of Education, Key Laboratory of Precision Nutrition and Food Quality, Food Laboratory of Zhongyuan, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Li Y, Zhou Y, Zhou D, Jiang Y, Butt M, Yang H, Que Y, Li Z, Chen G. Regioselective Homolytic C 2-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction. J Am Chem Soc 2024; 146:21428-21441. [PMID: 39051926 DOI: 10.1021/jacs.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Collapse
Affiliation(s)
- Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| | - Dazhi Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yujie Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Madiha Butt
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Yang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yingchuan Que
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| |
Collapse
|
3
|
Oscorbin I, Filipenko M. Bst polymerase - a humble relative of Taq polymerase. Comput Struct Biotechnol J 2023; 21:4519-4535. [PMID: 37767105 PMCID: PMC10520511 DOI: 10.1016/j.csbj.2023.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
DNA polymerases are a superfamily of enzymes synthesizing DNA using DNA as a template. They are essential for nucleic acid metabolism and for DNA replication and repair. Modern biotechnology and molecular diagnostics rely heavily on DNA polymerases in analyzing nucleic acids. Among a variety of discovered DNA polymerases, Bst polymerase, a large fragment of DNA polymerase I from Geobacillus stearothermophilus, is one of the most commonly used but is not as well studied as Taq polymerase. The ability of Bst polymerase to displace an upstream DNA strand during synthesis, coupled with its moderate thermal stability, has provided the basis for several isothermal DNA amplification methods, including LAMP, WGA, RCA, and many others. Bst polymerase is one of the key components defining the robustness and analytical characteristics of diagnostic test systems based on isothermal amplification. Here, we present an overview of the biochemical and structural features of Bst polymerase and provide information on its mutated analogs.
Collapse
Affiliation(s)
- Igor Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Kumar V, Turnbull WB, Kumar A. Review on Recent Developments in Biocatalysts for Friedel–Crafts Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| |
Collapse
|
5
|
Ghosh P, Kropp HM, Betz K, Ludmann S, Diederichs K, Marx A, Srivatsan SG. Microenvironment-Sensitive Fluorescent Nucleotide Probes from Benzofuran, Benzothiophene, and Selenophene as Substrates for DNA Polymerases. J Am Chem Soc 2022; 144:10556-10569. [PMID: 35666775 DOI: 10.1021/jacs.2c03454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used. KlenTaq (A family DNA polymerase) is sensitive to the size of the modification as it incorporates only one heterobicycle-modified nucleotide into the growing polymer, whereas it efficiently incorporates the selenophene-modified nucleotide analog at multiple positions. Notably, in the single nucleotide incorporation assay, irrespective of the heterocycle size, it exclusively adds a single nucleotide at the 3'-end of a primer, which enabled devising a simple two-step site-specific ON labeling technique. KOD and Vent(exo-) DNA polymerases, belonging to the B family, tolerate all the three modified nucleotides and produce ONs with multiple labels. Importantly, the benzofuran-modified nucleotide (BFdUTP) serves as an excellent reporter by providing real-time fluorescence readouts to monitor enzyme activity and estimate the binding events in the catalytic cycle. Further, a direct comparison of the incorporation profiles, fluorescence data, and crystal structure of a ternary complex of KlenTaq DNA polymerase with BFdUTP poised for catalysis provides a detailed understanding of the mechanism of incorporation of heterocycle-modified nucleotides.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Heike M Kropp
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karin Betz
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Samra Ludmann
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Kay Diederichs
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
6
|
McGorman B, Fantoni NZ, O'Carroll S, Ziemele A, El-Sagheer AH, Brown T, Kellett A. Enzymatic Synthesis of Chemical Nuclease Triplex-Forming Oligonucleotides with Gene-Silencing Applications. Nucleic Acids Res 2022; 50:5467-5481. [PMID: 35640595 PMCID: PMC9177962 DOI: 10.1093/nar/gkac438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are short, single-stranded oligomers that hybridise to a specific sequence of duplex DNA. TFOs can block transcription and thereby inhibit protein production, making them highly appealing in the field of antigene therapeutics. In this work, a primer extension protocol was developed to enzymatically prepare chemical nuclease TFO hybrid constructs, with gene-silencing applications. Click chemistry was employed to generate novel artificial metallo-nuclease (AMN)-dNTPs, which were selectively incorporated into the TFO strand by a DNA polymerase. This purely enzymatic protocol was then extended to facilitate the construction of 5-methylcytosine (5mC) modified TFOs that displayed increased thermal stability. The utility of the enzymatically synthesised di-(2-picolyl)amine (DPA)-TFOs was assessed and compared to a specifically prepared solid-phase synthesis counterpart through gel electrophoresis, quantitative PCR, and Sanger sequencing, which revealed similar recognition and damage properties to target genes. The specificity was then enhanced through coordinated designer intercalators-DPQ and DPPZ-and high-precision DNA cleavage was achieved. To our knowledge, this is the first example of the enzymatic production of an AMN-TFO hybrid and is the largest base modification incorporated using this method. These results indicate how chemical nuclease-TFOs may overcome limitations associated with non-molecularly targeted metallodrugs and open new avenues for artificial gene-editing technology.
Collapse
Affiliation(s)
- Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nicolò Zuin Fantoni
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK
| | - Sinéad O'Carroll
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Anna Ziemele
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK.,Department of Science and Mathematics, Suez University, Faculty of Petroleum and Mining, Engineering, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
7
|
Medžiūnė J, Kapustina Ž, Žeimytė S, Jakubovska J, Sindikevičienė R, Čikotienė I, Lubys A. Advanced preparation of fragment libraries enabled by oligonucleotide-modified 2',3'-dideoxynucleotides. Commun Chem 2022; 5:34. [PMID: 36697673 PMCID: PMC9814608 DOI: 10.1038/s42004-022-00649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The ever-growing demand for inexpensive, rapid, and accurate exploration of genomes calls for refinement of existing sequencing techniques. The development of next-generation sequencing (NGS) was a revolutionary milestone in genome analysis. While modified nucleotides already were inherent tools in sequencing and imaging, further modification of nucleotides enabled the expansion into even more diverse applications. Herein we describe the design and synthesis of oligonucleotide-tethered 2',3'-dideoxynucleotide (ddONNTP) terminators bearing universal priming sites attached to the nucleobase, as well as their enzymatic incorporation and performance in read-through assays. In the context of NGS library preparation, the incorporation of ddONNTP fulfills two requirements at once: the fragmentation step is integrated into the workflow and the obtained fragments are readily labeled by platform-specific adapters. DNA polymerases can incorporate ddONNTP nucleotides, as shown by primer extension assays. More importantly, reading through the unnatural linkage during DNA synthesis was demonstrated, with 25-30% efficiency in single-cycle extension.
Collapse
Affiliation(s)
- Justina Medžiūnė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, LT-03225 Lithuania
| | - Žana Kapustina
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10257 Lithuania
| | - Simona Žeimytė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Jevgenija Jakubovska
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Rūta Sindikevičienė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Inga Čikotienė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, LT-03225 Lithuania
| | - Arvydas Lubys
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| |
Collapse
|
8
|
Howlader H, Suzol SH, Blanco K, Martin‐Rafa L, Laverde EE, Liu Y, Wnuk SF. Purine Nucleosides with a Reactive (
β
‐Iodovinyl)sulfone or a (
β
‐Keto)sulfone Group at the C8 Position and Their Polymerase‐Catalyzed Incorporation into DNA. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hasan Howlader
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Sazzad H. Suzol
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Kevin Blanco
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Lilian Martin‐Rafa
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Eduardo E. Laverde
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| | - Yuan Liu
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
- Biomolecular Sciences Institute Florida International University Miami Florida 33199 U.S.A
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistryan Florida International University Miami Florida 33199 U.S.A
| |
Collapse
|
9
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
10
|
Koboku S, Tsukada T, Oku Y, Kobayashi S, Saito Y. FRET-based dual-labeled oligonucleotide probe detects target DNA by probing a minor groove environment. Org Biomol Chem 2022; 20:1699-1706. [DOI: 10.1039/d2ob00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amino-modifier ESF nucleoside AM37zA (1) containing trifluoroacetyl (TFA)-protected amino group is designed for the functionalization of ODN probe after oligonucleotide synthesis. AM37zA (1) demonstrated remarkable solvatochromicity and ODN...
Collapse
|
11
|
Bujalska A, Basran K, Luedtke NW. [4+2] and [2+4] cycloaddition reactions on single- and double-stranded DNA: a dual-reactive nucleoside. RSC Chem Biol 2022; 3:698-701. [PMID: 35755194 PMCID: PMC9175100 DOI: 10.1039/d2cb00062h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Here we report dual reactivity of diene-modified duplex DNA containing 5-(1,3-butadienyl)-2'-deoxyuridine “BDdU”. Regular-electron demand [4+2] cycloaddition proceeded upon addition of a maleimide, whereas inversed-electron demand [2+4] cycloaddition occurred upon addition...
Collapse
Affiliation(s)
- Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Kaleena Basran
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| |
Collapse
|
12
|
Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021; 26:5925. [PMID: 34641475 PMCID: PMC8512084 DOI: 10.3390/molecules26195925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.
Collapse
Affiliation(s)
| | | | - Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| |
Collapse
|
13
|
Sengupta S, Das P. Application of diazonium chemistry in purine modifications: A focused review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saumitra Sengupta
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
14
|
Gutiérrez‐González A, Destito P, Couceiro JR, Pérez‐González C, López F, Mascareñas JL. Bioorthogonal Azide-Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angew Chem Int Ed Engl 2021; 60:16059-16066. [PMID: 33971072 PMCID: PMC9545742 DOI: 10.1002/anie.202103645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/20/2023]
Abstract
Tailored ruthenium sandwich complexes bearing photoresponsive arene ligands can efficiently promote azide-thioalkyne cycloaddition (RuAtAC) when irradiated with UV light. The reactions can be performed in a bioorthogonal manner in aqueous mixtures containing biological components. The strategy can also be applied for the selective modification of biopolymers, such as DNA or peptides. Importantly, this ruthenium-based technology and the standard copper-catalyzed azide-alkyne cycloaddition (CuAAC) proved to be compatible and mutually orthogonal.
Collapse
Affiliation(s)
- Alejandro Gutiérrez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Cibran Pérez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
15
|
Gutiérrez‐González A, Destito P, Couceiro JR, Pérez‐González C, López F, Mascareñas JL. Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alejandro Gutiérrez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cibran Pérez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
16
|
Krömer M, Brunderová M, Ivancová I, Poštová Slavětínská L, Hocek M. 2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove. Chempluschem 2021; 85:1164-1170. [PMID: 32496002 DOI: 10.1002/cplu.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/16/2022]
Abstract
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
17
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Jacob Rodriguez
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Heemal H. Dhanjee
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Andrei Loas
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
- The Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA
- Center for Environmental Health Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
18
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021; 60:12109-12115. [PMID: 33730425 DOI: 10.1002/anie.202103180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Organometallic reagents enable practical strategies for bioconjugation. Innovations in the design of water-soluble ligands and the enhancement of reaction rates have allowed for chemoselective cross-coupling reactions of peptides and proteins to be carried out in water. There are currently no organometallic-based methods for oligonucleotide bioconjugation to other biomolecules. Here we report bifunctional palladium(II)-oxidative addition complexes (OACs) as reagents for high-yielding oligonucleotide bioconjugation reactions. These bifunctional OACs react chemoselectively with amine-modified oligonucleotides to generate the first isolable, bench stable oligonucleotide-palladium(II) OACs. These complexes undergo site-selective C-S arylation with a broad range of native thiol-containing biomolecules at low micromolar concentrations in under one hour. This approach provided oligonucleotide-peptide, oligonucleotide-protein, oligonucleotide-small molecule, and oligonucleotide-oligonucleotide conjugates in >80 % yield and afforded conjugation of multiple copies of oligonucleotides onto a monoclonal antibody.
Collapse
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Heemal H Dhanjee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
19
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
20
|
Koplūnaitė M, Butkutė K, Meškys R, Tauraitė D. Synthesis of pyrimidine nucleoside and amino acid conjugates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
22
|
Bhoge BA, Mala P, Kurian JS, Srinivasan V, Saraogi I. Selective functionalization at N 2-position of guanine in oligonucleotides via reductive amination. Chem Commun (Camb) 2020; 56:13832-13835. [PMID: 33084637 DOI: 10.1039/d0cc05492e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemo- and site-specific modifications in oligonucleotides have wide applicability as mechanistic probes in chemical biology. However, methods that label specific sites in nucleic acids are scarce, especially for labeling DNA/RNA from biological or enzymatic sources rather than synthetic ones. Here we have employed a classical reaction, reductive amination, to selectively functionalize the N2-amine of guanosine and 2'-deoxyguanosine monophosphate (GMP/dGMP). This method specifically modifies guanine in DNA and RNA oligonucleotides, while leaving the other nucleobases unaffected. Using this approach, we have successfully incorporated a reactive handle chemoselectively into nucleic acids for further functionalization and downstream applications.
Collapse
Affiliation(s)
- Bapurao A Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| | | | | | | | | |
Collapse
|
23
|
Lapa SA, Guseinov TO, Pavlov AS, Shershov VE, Kuznetsova VE, Zasedatelev AS, Chudinov AV. A Simultaneous Use of Cy5-Modified Derivatives of Deoxyuridine and Deoxycytidine in PCR. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Matyašovský J, Hocek M. 2-Substituted 2'-deoxyinosine 5'-triphosphates as substrates for polymerase synthesis of minor-groove-modified DNA and effects on restriction endonuclease cleavage. Org Biomol Chem 2020; 18:255-262. [PMID: 31815989 DOI: 10.1039/c9ob02502b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Five 2-substituted 2'-deoxyinosine triphosphates (dRITP) were synthesized and tested as substrates in enzymatic synthesis of minor-groove base-modified DNA. Only 2-methyl and 2-vinyl derivatives proved to be good substrates for Therminator DNA polymerase, whilst all other dRITPs and other tested DNA polymerases did not give full length products in primer extension. The DNA containing 2-vinylhypoxanthine was then further modified through thiol-ene reactions with thiols. Cross-linking reaction between cysteine-containing minor-groove binding dodecapeptide and DNA proceeded thanks to the proximity effect between thiol and vinyl groups inside the minor groove. 2-Substituted dIRTPs and also previously prepared 2-substituted 2'-deoxyadenosine triphosphates (dRATP) were then used for enzymatic synthesis of minor-groove modified DNA to study the effect of minor-groove modifications on cleavage of DNA by type II restriction endonucleases (REs). Although the REs should recognize the sequence through H-bonds in the major groove, some minor-groove modifications also had an inhibiting effect on the cleavage.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.
| | | |
Collapse
|
25
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
26
|
Ito Y, Yamamoto K, Hari Y. Construction of Pyrimidine Bases Bearing Carboxylic Acid Equivalents at the C5 Position by Postsynthetic Modification of Oligonucleotides. ACTA ACUST UNITED AC 2020; 78:e91. [PMID: 31529781 DOI: 10.1002/cpnc.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit describes postsynthetic modification of oligonucleotides (ONs) containing 2'-deoxy-5-trifluoromethyluridine and 2'-deoxy-5-trifluoromethylcytidine. In ONs, the trifluoromethyl group at the C5 position of pyrimidine bases is converted into a variety of carboxylic acid equivalents using alkaline and amine solutions. In addition, treating fully protected and controlled pore glass (CPG)-attached ONs with methylamine and sodium hydroxide aqueous solution results in deprotection of all protecting groups (except the 4,4'-dimethoxytrityl group), cleavage from CPG, and simultaneous conversion of the trifluoromethyl group to afford the corresponding ONs containing 5-substituted pyrimidine bases. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| |
Collapse
|
27
|
Tera M, Luedtke NW. Three-Component Bioorthogonal Reactions on Cellular DNA and RNA. Bioconjug Chem 2019; 30:2991-2997. [DOI: 10.1021/acs.bioconjchem.9b00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masayuki Tera
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
28
|
Taniguchi Y, Sagara I, Nagata Y, Kikukawa Y, Sasaki S. Effects of the 2-Substituted Adenosine-1,3-diazaphenoxazine 5'-Triphosphate Derivatives on the Single Nucleotide Primer Extension Reaction by DNA Polymerase. Chem Pharm Bull (Tokyo) 2019; 67:1123-1130. [PMID: 31582632 DOI: 10.1248/cpb.c19-00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adenosine triphosphate derivatives of 2-oxo-1,3-diazaphenoxazine (dAdapTP) showed a significant discrimination ability for the template strand including that between 8-oxo-2'-deoxyguanosine (8-oxodG) and 2'-deoxyguanosine (dG) by the single nucleotide primer extension reaction using the Klenow Fragment. In this study, we synthesized new dAdapTP derivatives, i.e., 2-amino-dAdapTP, 2-chloro-dAdapTP and 2-iodo-dAdapTP, to investigate the effect on the selectivity and efficiency of incorporation for the primer extension reaction using a variety of DNA polymerases. In contrast to the previously tested dAdapTP, the selectivity and efficiency of the 2-halo-dAdapTP incorporation were dramatically decreased using the Klenow Fragment. Moreover, the efficiency of the 2-amino-dAdapTP incorporation into the T-containing template was almost the same with that of dAdapTP. In the case of the Bsu DNA polymerase, the efficiency of all the dAdapTP derivatives decreased compared to that using the Klenow Fragment. However, the incorporation selectivity of dAdapTP had improved against the oxodG-containing template for all the template sequences including the T-containing template. Moreover, 2-amino-dAdapTP showed a better efficiency than dAdapTP using the Bsu DNA polymerase. The 2-amino group of the adenosine unit may interact with syn-oxodG at the active site of the Bsu DNA polymerase during the single primer extension reaction.
Collapse
Affiliation(s)
| | - Ikuko Sagara
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yusuke Nagata
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
29
|
Ivancová I, Leone DL, Hocek M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr Opin Chem Biol 2019; 52:136-144. [DOI: 10.1016/j.cbpa.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
|
30
|
Deshpande S, Yang Y, Chilkoti A, Zauscher S. Enzymatic synthesis and modification of high molecular weight DNA using terminal deoxynucleotidyl transferase. Methods Enzymol 2019; 627:163-188. [PMID: 31630739 PMCID: PMC7241426 DOI: 10.1016/bs.mie.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The recognition that nucleic acids can be used as polymeric materials led to the blossoming of the field of DNA nanotechnology, with a broad range of applications in biotechnology, biosensors, diagnostics, and drug delivery. These applications require efficient methods to synthesize and chemically modify high molecular weight DNA. Here, we discuss terminal deoxynucleotidyl transferase (TdT)-catalyzed enzymatic polymerization (TcEP) as an alternative to conventional enzymatic and solid-phase DNA synthesis. We describe biochemical requirements for TcEP and provide step-by-step protocols to carry out TcEP in solution and from surfaces.
Collapse
Affiliation(s)
- Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Yunqi Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States.
| | - Stefan Zauscher
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States.
| |
Collapse
|
31
|
Jakubovska J, Tauraite D, Birštonas L, Meškys R. N4-acyl-2'-deoxycytidine-5'-triphosphates for the enzymatic synthesis of modified DNA. Nucleic Acids Res 2019; 46:5911-5923. [PMID: 29846697 PMCID: PMC6158702 DOI: 10.1093/nar/gky435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
A huge diversity of modified nucleobases is used as a tool for studying DNA and RNA. Due to practical reasons, the most suitable positions for modifications are C5 of pyrimidines and C7 of purines. Unfortunately, by using these two positions only, one cannot expand a repertoire of modified nucleotides to a maximum. Here, we demonstrate the synthesis and enzymatic incorporation of novel N4-acylated 2′-deoxycytidine nucleotides (dCAcyl). We find that a variety of family A and B DNA polymerases efficiently use dCAcylTPs as substrates. In addition to the formation of complementary CAcyl•G pair, a strong base-pairing between N4-acyl-cytosine and adenine takes place when Taq, Klenow fragment (exo–), Bsm and KOD XL DNA polymerases are used for the primer extension reactions. In contrast, a proofreading phi29 DNA polymerase successfully utilizes dCAcylTPs but is prone to form CAcyl•A base pair under the same conditions. Moreover, we show that terminal deoxynucleotidyl transferase is able to incorporate as many as several hundred N4-acylated-deoxycytidine nucleotides. These data reveal novel N4-acylated deoxycytidine nucleotides as beneficial substrates for the enzymatic synthesis of modified DNA, which can be further applied for specific labelling of DNA fragments, selection of aptamers or photoimmobilization.
Collapse
Affiliation(s)
- Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Tauraite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Lukas Birštonas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
32
|
Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc Chem Res 2019; 52:1730-1737. [PMID: 31181911 DOI: 10.1021/acs.accounts.9b00195] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-DNA interactions are important in replication, transcription, repair, as well as epigenetic modifications of DNA, which involve methylation and demethylation of DNA resulting in regulation of gene expression. Understanding of these processes and chemical tools for studying and perhaps even modulating them could be of great relevance and importance not only in chemical biology but also in real diagnostics and treatment of diseases. In the past decade, we have been working on development of synthesis of base-modified 2'-deoxyribo- or ribonucleoside triphosphates (dNTPs or NTPs) and their use in enzymatic synthesis of modified nucleic acids using DNA or RNA polymerases. These synthetic and enzymatic methods are briefly summarized with focus on recent development and outlining of scope, limitations, and further challenges. The main focus of this Account is on applications of base-modified nucleic acids in sensing of protein-DNA interactions, in covalent cross-linking to DNA-binding proteins ,and in modulation of protein-DNA binding and transcription. Several environment-sensitive fluorescent nucleotides were incorporated to DNA probes which responded to protein binding by light-up, changing of color, or lifetime of fluorescence. Using a cyclodextrin-peptide transporter, fluorescent nucleotides can be transported through the cell membrane and incorporated to genomic DNA. Several dNTPs bearing reactive groups (i.e., vinylsulfonamide or chloroacetamide) were used for polymerase synthesis of DNA reactive probes which cross-link to Cys, His, or Lys in peptides or proteins. An attractive challenge is to use DNA modifications and bioorthogonal reactions in the major groove of DNA for modulation and switching of protein-DNA interactions. We have systematically explored the influence of major-groove modifications on recognition and cleavage of DNA by restriction endonucleases and constructed simple chemical switches of DNA cleavage. Systematic study of the influence of major-groove modifications on transcription with bacterial RNA polymerases revealed not only that some modified bases are tolerated, but also that the presence of 5-hydroxymethyluracil or -cytosine can even enhance the transcription (350 or 250% compared to native DNA). Based on these results, we have constructed the first chemical switch of transcription based on photocaging of hydroxymethylpyrimidines in DNA by 2-nitrobenzyl protection (transcription off), photochemical deprotection of the DNA (transcription on), and enzymatic phosphorylation (only for 5-hydroxymethyluracil, transcription off). Although it has been so far demonstrated only in vitro, it is the proof-of-principle first step toward chemical epigenetics.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
33
|
Abstract
Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 2′-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs. Good conversions (49–67%) were achieved in all cases under screening conditions. Following this synthetic scheme, 7-methylguanine arabinoside iodide was also prepared with the purpose to synthesize the antiviral Vidarabine by a novel approach. However, in this case, neither the phosphorolysis of the sugar donor, nor the transglycosylation reaction were observed. This study was enlarged to two other ribonucleosides structurally related to Ribavirin and Tecadenoson, namely, Acadesine, or AICAR, and 2-chloro-N6-cyclopentyladenosine, or CCPA. Only the formation of CCPA was observed (52%). This study paves the way for the development of a new synthesis of the target APIs at a preparative scale. Furthermore, the screening herein reported contributes to the collection of new data about the specific substrate requirements of AhPNP.
Collapse
|
34
|
Mansot J, Aubert S, Duchemin N, Vasseur JJ, Arseniyadis S, Smietana M. A rational quest for selectivity through precise ligand-positioning in tandem DNA-catalysed Friedel-Crafts alkylation/asymmetric protonation. Chem Sci 2019; 10:2875-2881. [PMID: 30996865 PMCID: PMC6429601 DOI: 10.1039/c8sc05543b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Covalent anchorage of a metallic co-factor to a DNA-based architecture is merely the only way to ensure an accurate positioning of a catalytic site within the chiral micro-environment offered by the DNA double helix. Ultimately, it also allows a fine-tuning of the catalytic pocket through simple synthetic modifications of the DNA sequence. Here, we report highly selective copper(ii)-catalysed asymmetric Friedel-Crafts conjugate addition/enantioselective protonation, which is due to a careful positioning of a bipyridine ligand within a DNA framework. Most importantly, this study unveils specific structural features that account for an optimal chirality transfer from the duplex to the Friedel-Crafts adducts.
Collapse
Affiliation(s)
- Justine Mansot
- Institut des Biomolécules Max Mousseron , CNRS , Université de Montpellier , ENSCM , Place Eugène Bataillon , 34095 Montpellier , France .
| | - Sidonie Aubert
- School of Biological and Chemical Sciences , Queen Mary University of London , Joseph Priestley Building, Mile End Road , London E1 4NS , UK .
| | - Nicolas Duchemin
- School of Biological and Chemical Sciences , Queen Mary University of London , Joseph Priestley Building, Mile End Road , London E1 4NS , UK .
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron , CNRS , Université de Montpellier , ENSCM , Place Eugène Bataillon , 34095 Montpellier , France .
| | - Stellios Arseniyadis
- School of Biological and Chemical Sciences , Queen Mary University of London , Joseph Priestley Building, Mile End Road , London E1 4NS , UK .
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron , CNRS , Université de Montpellier , ENSCM , Place Eugène Bataillon , 34095 Montpellier , France .
| |
Collapse
|
35
|
Reisacher U, Ploschik D, Rönicke F, Cserép GB, Kele P, Wagenknecht HA. Copper-free dual labeling of DNA by triazines and cyclopropenes as minimal orthogonal and bioorthogonal functions. Chem Sci 2019; 10:4032-4037. [PMID: 31015943 PMCID: PMC6450502 DOI: 10.1039/c8sc05588b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Two different and small functions for inverse electron demand Diels–Alder reactions were applied for dual labeling of DNA: the 1,2,4-triazine was attached to the 5-position of 2′-deoxyuridine, and the 1-methylcyclopropene to the 7-position of 7-deaza-2′-deoxyadenosine.
Two different and small functions for inverse electron demand Diels–Alder reactions were applied for dual labeling of DNA: the 1,2,4-triazine was attached to the 5-position of 2′-deoxyuridine triphosphate, and the 1-methylcyclopropene to the 7-position of 7-deaza-2′-deoxyadenosine triphosphate. These two modified nucleotides were sequence-selectively incorporated into oligonucleotides by DNA polymerases. These products were labeled by two different fluorescent dyes using postsynthetic reactions that are not only bioorthogonal in general, but also mutually orthogonal.
Collapse
Affiliation(s)
- Ulrike Reisacher
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| | - Damian Ploschik
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| | - Franziska Rönicke
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| | - Gergely B Cserép
- Chemical Biology Research Group , Institute of Organic Chemistry , Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , H-1117 Budapest , Hungary
| | - Péter Kele
- Chemical Biology Research Group , Institute of Organic Chemistry , Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , H-1117 Budapest , Hungary
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany .
| |
Collapse
|
36
|
Takeda T, Yanagi M, Suzuki A, Katoh R, Saito Y. Synthesis of ethynylpyrene-modified 3-deaza-2′-deoxyguanosines as environmentally sensitive fluorescent nucleosides: Target DNA-sequence detection via changes in the fluorescence wavelength. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
38
|
Sinha AK, Equbal D. Thiol−Ene Reaction: Synthetic Aspects and Mechanistic Studies of an Anti-Markovnikov-Selective Hydrothiolation of Olefins. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800639] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arun K. Sinha
- Medicinal and Process Chemistry Division; C.S.I.R.-Central Drug Research Institute; Council of Scientific and Industrial Research); Lucknow- 226021 (U.P.) India
- Academy of Scientific and Innovative Research (AcSIR); Postal Staff College Area, Sector 19; Kamla Nehru Nagar; Ghaziabad, Uttar Pradesh- 201002
| | - Danish Equbal
- Medicinal and Process Chemistry Division; C.S.I.R.-Central Drug Research Institute; Council of Scientific and Industrial Research); Lucknow- 226021 (U.P.) India
| |
Collapse
|
39
|
Sabale P, Ambi UB, Srivatsan SG. Clickable PNA Probes for Imaging Human Telomeres and Poly(A) RNAs. ACS OMEGA 2018; 3:15343-15352. [PMID: 30556003 PMCID: PMC6289544 DOI: 10.1021/acsomega.8b02550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 05/10/2023]
Abstract
The ability to bind strongly to complementary nucleic acid sequences, invade complex nucleic acid structures, and resist degradation by cellular enzymes has made peptide nucleic acid (PNA) oligomers as very useful hybridization probes in molecular diagnosis. For such applications, the PNA oligomers have to be labeled with appropriate reporters as they lack intrinsic labels that can be used in biophysical assays. Although solid-phase synthesis is commonly used to attach reporters onto PNA, development of milder and modular labeling methods will provide access to PNA oligomers labeled with a wider range of biophysical tags. Here, we describe the establishment of a postsynthetic modification strategy based on bioorthogonal chemical reactions in functionalizing PNA oligomers in solution with a variety of tags. A toolbox composed of alkyne- and azide-modified monomers were site-specifically incorporated into PNA oligomers and postsynthetically click-functionalized with various tags, ranging from sugar, amino acid, biotin, to fluorophores, by using copper(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, and Staudinger ligation reactions. As a proof of utility of this method, fluorescent PNA hybridization probes were developed and used in imaging human telomeres in chromosomes and poly(A) RNAs in cells. Taken together, this simple approach of generating a wide range of functional PNA oligomers will expand the use of PNA in molecular diagnosis.
Collapse
|
40
|
Matyašovský J, Pohl R, Hocek M. 2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA. Chemistry 2018; 24:14938-14941. [PMID: 30074286 PMCID: PMC6221035 DOI: 10.1002/chem.201803973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/15/2022]
Abstract
A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
41
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
42
|
Saito Y, Hudson RH. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Probst N, Lartia R, Théry O, Alami M, Defrancq E, Messaoudi S. Efficient Buchwald-Hartwig-Migita Cross-Coupling for DNA Thioglycoconjugation. Chemistry 2018; 24:1795-1800. [PMID: 29205564 DOI: 10.1002/chem.201705371] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/11/2022]
Abstract
An efficient method for the thioglycoconjugation of iodinated oligonucleotides by Buchwald-Hartwig-Migita cross-coupling under mild conditions is reported. The method enables divergent synthesis of many different functionalized thioglycosylated ODNs in good yields, without affecting the integrity of the other A, C, and G nucleobases.
Collapse
Affiliation(s)
- Nicolas Probst
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Rémy Lartia
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Océane Théry
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Eric Defrancq
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| |
Collapse
|
44
|
Yanagi M, Suzuki A, Hudson RHE, Saito Y. A fluorescent 3,7-bis-(naphthalen-1-ylethynylated)-2′-deoxyadenosine analogue reports thymidine in complementary DNA by a large emission Stokes shift. Org Biomol Chem 2018; 16:1496-1507. [DOI: 10.1039/c8ob00062j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first example of a fluorescent adenosine analogue possessing simultaneous major- and minor-groove substitution selectively reports base-pairing to thymidine.
Collapse
Affiliation(s)
- Masaki Yanagi
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Azusa Suzuki
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Robert H. E. Hudson
- Department of Chemistry
- The University of Western Ontario
- London
- Canada N6A 5B7
| | - Yoshio Saito
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| |
Collapse
|
45
|
Röthlisberger P, Gasse C, Hollenstein M. Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. Int J Mol Sci 2017; 18:E2430. [PMID: 29144411 PMCID: PMC5713398 DOI: 10.3390/ijms18112430] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022] Open
Abstract
Recent progresses in organic chemistry and molecular biology have allowed the emergence of numerous new applications of nucleic acids that markedly deviate from their natural functions. Particularly, DNA and RNA molecules-coined aptamers-can be brought to bind to specific targets with high affinity and selectivity. While aptamers are mainly applied as biosensors, diagnostic agents, tools in proteomics and biotechnology, and as targeted therapeutics, these chemical antibodies slowly begin to be used in other fields. Herein, we review recent progress on the use of aptamers in the construction of smart DNA origami objects and MRI and PET imaging agents. We also describe advances in the use of aptamers in the field of neurosciences (with a particular emphasis on the treatment of neurodegenerative diseases) and as drug delivery systems. Lastly, the use of chemical modifications, modified nucleoside triphosphate particularly, to enhance the binding and stability of aptamers is highlighted.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Cécile Gasse
- Institute of Systems & Synthetic Biology, Xenome Team, 5 rue Henri Desbruères Genopole Campus 1, University of Evry, F-91030 Evry, France.
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
46
|
Destito P, Couceiro JR, Faustino H, López F, Mascareñas JL. Ruthenium-Catalyzed Azide-Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angew Chem Int Ed Engl 2017; 56:10766-10770. [PMID: 28685950 PMCID: PMC5638077 DOI: 10.1002/anie.201705006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/25/2017] [Indexed: 12/22/2022]
Abstract
The development of efficient metal-promoted bioorthogonal ligations remains as a major scientific challenge. Demonstrated herein is that azides undergo efficient and regioselective room-temperature annulations with thioalkynes in aqueous milieu when treated with catalytic amounts of a suitable ruthenium complex. The reaction is compatible with different biomolecules, and can be carried out in complex aqueous mixtures such as phosphate buffered saline, cell lysates, fetal bovine serum, and even living bacteria (E. coli). Importantly, the reaction is mutually compatible with the classical CuAAC.
Collapse
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Hélio Faustino
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Instituto de Química Orgánica General CSICJuan de la Cierva 328006MadridSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
47
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anu Naik
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jawad Alzeer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Therese Triemer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Anna Bujalska
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
48
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017; 56:10850-10853. [PMID: 28561928 DOI: 10.1002/anie.201702554] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Indexed: 11/10/2022]
Abstract
A new method for the post-synthetic modification of nucleic acids was developed that involves mixing a phenyl triazolinedione (PTAD) derivative with DNA containing a vinyl nucleobase. The resulting reactions proceeded through step-wise mechanisms, giving either a formal [4+2] cycloaddition product, or, depending on the context of nucleobase, PTAD addition along with solvent trapping to give a secondary alcohol in water. Catalyst-free addition between PTAD and the terminal alkene of 5-vinyl-2'-deoxyuridine (VdU) was exceptionally fast, with a second-order rate constant of 2×103 m-1 s-1 . PTAD derivatives selectively reacted with VdU-containing oligonucleotides in a conformation-selective manner, with higher yields observed for G-quadruplex versus duplex DNA. These results demonstrate a new strategy for copper-free bioconjugation of DNA that can potentially be used to probe nucleic acid conformations in cells.
Collapse
Affiliation(s)
- Anu Naik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Therese Triemer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
49
|
Destito P, Couceiro JR, Faustino H, López F, Mascareñas JL. Ruthenium-Catalyzed Azide-Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Hélio Faustino
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
- Instituto de Química Orgánica General CSIC; Juan de la Cierva 3 28006 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
50
|
Gowda ASP, Lee M, Spratt TE. N 2
-Substituted 2′-Deoxyguanosine Triphosphate Derivatives as Selective Substrates for Human DNA Polymerase κ. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- A. S. Prakasha Gowda
- Department of Biochemistry and Molecular Biology; Pennsylvania State University; 500 University Dr. Hershey PA 17033 USA
| | - Marietta Lee
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla NY 10595 USA
| | - Thomas E. Spratt
- Department of Biochemistry and Molecular Biology; Pennsylvania State University; 500 University Dr. Hershey PA 17033 USA
| |
Collapse
|