1
|
Mao W, Robertson CM, Bower JF. Heteroaryl-Directed Iridium-Catalyzed Enantioselective C-H Alkenylations of Secondary Alcohols. J Am Chem Soc 2025; 147:118-124. [PMID: 39715233 PMCID: PMC11726574 DOI: 10.1021/jacs.4c16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Under iridium-catalyzed conditions, 2-aza-aryl-substituted secondary alcohols undergo C(sp3)-H addition reactions to alkynes to provide alkenylated tertiary alcohols. The processes occur with very high regio- and enantioselectivity. An analogous addition to styrene is shown to provide a prototype C(sp3)-H alkylation process. A mechanism based on directed aza-enolization of the reactant alcohol is proposed.
Collapse
Affiliation(s)
- Wenbin Mao
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Craig M. Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - John F. Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| |
Collapse
|
2
|
Franov LJ, Wilsdon TL, Czyz ML, Polyzos A. Electroinduced Reductive and Dearomative Alkene-Aldehyde Coupling. J Am Chem Soc 2024; 146:29450-29461. [PMID: 39417706 DOI: 10.1021/jacs.4c08691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The direct coupling of alkene feedstocks with aldehydes represents an expedient approach to the generation of new and structurally diverse C(sp3)-hybridized alcohols that are primed for elaboration into privileged architectures. Despite their abundance, current disconnection strategies enabling the direct coupling of carbon-carbon π-bonds and aldehydes remain challenging because contemporary methods are often limited by substrate or functional group tolerance and compatibility in complex molecular environments. Here, we report a coupling between simple alkenes, heteroarenes and unactivated aliphatic aldehydes via an electrochemically induced reductive activation of C-C π-bonds. The cornerstone of this approach is the discovery of rapid alternating polarity (rAP) electrolysis to access and direct highly reactive radical anion intermediates derived from conjugated alkenes and heterocyclic compounds. Our developed catalyst-free protocol enables direct access to new and structurally diverse C(sp3)-hybridized alcohol products. This is achieved by the controlled reduction of conjugated alkenes and the C2-C3 π-bond in heteroarenes via an unprecedented reductive dearomative functionalization for heterocyclic compounds. Experimental mechanistic studies demonstrate a kinetically biased single-electron reduction of C-C π-bonds over aldehydes. Application of rAP enables chemoselective generation of olefinic radical anion intermediates and avoids undesired saturative overreduction. Overall, this technology provides a versatile approach to the reductive coupling of olefin and heterocycle feedstocks with aliphatic aldehydes, offering straightforward access to diverse C(sp3)-rich oxygenated scaffolds.
Collapse
Affiliation(s)
- Liam J Franov
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tayla L Wilsdon
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Milena L Czyz
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
3
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Beaufils A, Melle P, Lentz N, Albrecht M. Air-Stable Coordinatively Unsaturated Ruthenium(II) Complex for Ligand Binding and Catalytic Transfer Hydrogenation of Ketones from Ethanol. Inorg Chem 2024; 63:2072-2081. [PMID: 38230574 DOI: 10.1021/acs.inorgchem.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Coordinatively unsaturated complexes are interesting from a fundamental level for their formally empty coordination site and, in particular, from a catalytic perspective as they provide opportunities for substrate binding and transformation. Here, we describe the synthesis of a novel underligated ruthenium complex [Ru(cym)(N,N')]+, 3, featuring an amide-functionalized pyridylidene amide (PYA) as the N,N'-bidentate coordinating ligand. In contrast to previously investigated underligated complexes, complex 3 offers potential for dynamic modifications, thanks to the flexible donor properties of the PYA ligand. Specifically, they allow both for stabilizing the formally underligated metal center in complex 3 through nitrogen π-donation and for facilitating through π-acidic bonding properties the coordination of a further ligand L to the ruthenium center to yield the formal 18 e- complexes [Ru(cym)(N,N')(L)]+ (4: L = P(OMe)3; 5: L = PPh3; 6: L = N-methylimidazole; 7: L = pyridine) and neutral complex [RuCl(cym)(N,N')] 8. Analysis by 1H NMR and UV-vis spectroscopies reveals an increasing Ru-L bond strength along the sequence pyridine <1-methylimidazole < PPh3 < P(OMe)3 with binding constants varying over 3 orders of magnitude with log(Keq) values between 2.8 and 5.7. The flexibility of the Ru(PYA) unit and the ensuing accessibility of saturated and unsaturated species with one and the same ligand are attractive from a fundamental point of view and also for catalytic applications, as catalytic transformations rely on the availability of transiently vacant coordination sites. Thus, while complex 3 does not form stable adducts with O-donors such as ketones or alcohols, it transiently binds these species, as evidenced by the considerable catalytic activity in the transfer hydrogenation of ketones. Notably, and as one of only a few catalysts, complex 3 is compatible with EtOH as a hydrogen source. Complex 3 shows excellent performance in the transfer hydrogenation of pyridyl-containing substrates, in agreement with the poor coordination strength of this functional group to the ruthenium center in 3.
Collapse
Affiliation(s)
- Alicia Beaufils
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Philipp Melle
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Nicolas Lentz
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
5
|
Spinello BJ, Wu J, Cho Y, Krische MJ. Conversion of Primary Alcohols and Butadiene to Branched Ketones via Merged Transfer Hydrogenative Carbonyl Addition-Redox Isomerization Catalyzed by Rhodium. J Am Chem Soc 2021; 143:13507-13512. [PMID: 34415159 PMCID: PMC8739284 DOI: 10.1021/jacs.1c07230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first examples of rhodium-catalyzed carbonyl addition via hydrogen autotransfer are described, as illustrated in tandem butadiene-mediated carbonyl addition-redox isomerizations that directly convert primary alcohols to isobutyl ketones. Related reductive coupling-redox isomerizations of aldehyde reactants mediated by sodium formate also are reported. A double-labeling crossover experiment reveals that the rhodium alkoxide obtained upon carbonyl addition enacts redox isomerization without dissociation of rhodium at any intervening stage.
Collapse
Affiliation(s)
- Brian J Spinello
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
7
|
Sieber JD, Agrawal T. Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.1 Introduction2 Ni Catalysis3 Cu Catalysis4 Ru, Rh, and Ir Catalysis4.1 Alkenes4.2 1,3-Dienes4.3 Allenes4.4 Alkynes4.5 Enynes5 Fe, Co, and Mn Catalysis6 Conclusion and Outlook
Collapse
|
8
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis. Angew Chem Int Ed Engl 2019; 58:14055-14064. [PMID: 31162793 PMCID: PMC6764920 DOI: 10.1002/anie.201905532] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 12/11/2022]
Abstract
Use of abundant feedstock pronucleophiles in catalytic carbonyl reductive coupling enhances efficiency in target-oriented synthesis. For such reactions, equally inexpensive reductants are desired or, ideally, corresponding hydrogen autotransfer processes may be enacted wherein alcohols serve dually as reductant and carbonyl proelectrophile. As described in this Minireview, these concepts allow reactions that traditionally require preformed organometallic reagents to be conducted catalytically in a byproduct-free manner from inexpensive π-unsaturated precursors.
Collapse
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Cole C. Meyer
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
9
|
Cooze C, Dada R, Lundgren RJ. Direct Formic Acid Mediated
Z
‐Selective Reductive Coupling of Dienes and Aldehydes. Angew Chem Int Ed Engl 2019; 58:12246-12251. [DOI: 10.1002/anie.201905540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/12/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher Cooze
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Raphael Dada
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
10
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
11
|
Cooze C, Dada R, Lundgren RJ. Direct Formic Acid Mediated
Z
‐Selective Reductive Coupling of Dienes and Aldehydes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher Cooze
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Raphael Dada
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
12
|
Ueda Y, Iwai T, Sawamura M. Nickel‐Copper‐Catalyzed Hydroacylation of Vinylarenes with Acyl Fluorides and Hydrosilanes. Chemistry 2019; 25:9410-9414. [DOI: 10.1002/chem.201900822] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yusuke Ueda
- Department of ChemistryFaculty of ScienceHokkaido University 060-0810 Sapporo Japan
| | - Tomohiro Iwai
- Department of ChemistryFaculty of ScienceHokkaido University 060-0810 Sapporo Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Kita 21, Nishi 10, Kita-ku 001-0021 Sapporo Japan
- Department of ChemistryFaculty of ScienceHokkaido University 060-0810 Sapporo Japan
| |
Collapse
|
13
|
Swyka RA, Shuler WG, Spinello BJ, Zhang W, Lan C, Krische MJ. Conversion of Aldehydes to Branched or Linear Ketones via Regiodivergent Rhodium-Catalyzed Vinyl Bromide Reductive Coupling-Redox Isomerization Mediated by Formate. J Am Chem Soc 2019; 141:6864-6868. [PMID: 30998328 DOI: 10.1021/jacs.9b03113] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A regiodivergent catalytic method for direct conversion of aldehydes to branched or linear alkyl ketones is described. Rhodium complexes modified by P tBu2Me catalyze formate-mediated aldehyde-vinyl bromide reductive coupling-redox isomerization to form branched ketones. Use of the less strongly coordinating ligand, PPh3, promotes vinyl- to allylrhodium isomerization en route to linear ketones. This method bypasses the 3-step sequence often used to convert aldehydes to ketones involving the addition of pre-metalated reagents to Weinreb or morpholine amides.
Collapse
Affiliation(s)
- Robert A Swyka
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - William G Shuler
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Brian J Spinello
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Wandi Zhang
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Chunling Lan
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
14
|
Weingart P, Thiel WR. Applying Le Chatelier's Principle for a Highly Efficient Catalytic Transfer Hydrogenation with Ethanol as the Hydrogen Source. ChemCatChem 2018. [DOI: 10.1002/cctc.201801334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pascal Weingart
- Fachbereich ChemieTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. 54 67663 Kaiserslautern Germany
| | - Werner R. Thiel
- Fachbereich ChemieTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. 54 67663 Kaiserslautern Germany
| |
Collapse
|
15
|
Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MacMillan DWC. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. Angew Chem Int Ed Engl 2018; 57:5369-5373. [PMID: 29490112 PMCID: PMC6448405 DOI: 10.1002/anie.201800749] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/26/2018] [Indexed: 11/09/2022]
Abstract
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method.
Collapse
Affiliation(s)
- Jack Twilton
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Melodie Christensen
- Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065, USA
| | - Daniel A DiRocco
- Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065, USA
| | - Rebecca T Ruck
- Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065, USA
| | - Ian W Davies
- Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
16
|
Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MacMillan DWC. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800749] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jack Twilton
- Merck Center for Catalysis at Princeton University; Washington Road Princeton NJ 08544 USA
| | - Melodie Christensen
- Process Research and Development, MRL; Merck Sharp & Dohme Corp.; Rahway NJ 07065 USA
| | - Daniel A. DiRocco
- Process Research and Development, MRL; Merck Sharp & Dohme Corp.; Rahway NJ 07065 USA
| | - Rebecca T. Ruck
- Process Research and Development, MRL; Merck Sharp & Dohme Corp.; Rahway NJ 07065 USA
| | - Ian W. Davies
- Process Research and Development, MRL; Merck Sharp & Dohme Corp.; Rahway NJ 07065 USA
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University; Washington Road Princeton NJ 08544 USA
| |
Collapse
|
17
|
Roane J, Holmes M, Krische MJ. Reductive C-C Coupling via Hydrogenation and Transfer Hydrogenation: Departure from Stoichiometric Metals in Carbonyl Addition. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2017; 7:1-5. [PMID: 29726550 PMCID: PMC5926236 DOI: 10.1016/j.cogsc.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal catalyzed reductive couplings of π-unsaturated reagents with carbonyl compounds via hydrogenation or transfer hydrogenation has emerged as an alternative to the use of stoichiometric organometallic reagents in carbonyl addition.
Collapse
Affiliation(s)
- James Roane
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael Holmes
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|