1
|
Yasui K, Hamamoto K. Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5134. [PMID: 39459840 PMCID: PMC11509499 DOI: 10.3390/ma17205134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes is relatively low when mechanical properties are relatively good. In the present review, mechanisms of ionic conduction in soft matter electrolytes are discussed in order to achieve higher ionic conductivity with sufficient mechanical properties where soft matter electrolytes are defined as polymer electrolytes and polymeric or inorganic gel electrolytes. They could also be defined by Young's modulus from about 105 Pa to 109 Pa. Many soft matter electrolytes exhibit VFT (Vogel-Fulcher-Tammann) type temperature dependence of ionic conductivity. VFT behavior is explained by the free volume model or the configurational entropy model, which is discussed in detail. Mostly, the amorphous phase of polymer is a better ionic conductor compared to the crystalline phase. There are, however, some experimental and theoretical reports that the crystalline phase is a better ionic conductor. Some methods to increase the ionic conductivity of polymer electrolytes are discussed, such as cavitation under tensile deformation and the microporous structure of polymer electrolytes, which could be explained by the conduction mechanism of soft matter electrolytes.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan;
| | | |
Collapse
|
2
|
Zhao N, Liu L, Lu X, Li Y, Wu X, Peng S, Wei J, Gao Y, Zhang H, Fan Y, Yin Z, Feng R, Wang R, Hu X, Ding S, Liu W. Elevating Discharge Voltage of Li 2CO 3-Routine Li-CO 2 Battery over 2.9 V at an Ultra-Wide Temperature Window. Angew Chem Int Ed Engl 2024; 63:e202407303. [PMID: 38837854 DOI: 10.1002/anie.202407303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
The Li-CO2 batteries utilizing greenhouse gas CO2 possess advantages of high energy density and environmental friendliness. However, these batteries following Li2CO3-product route typically exhibit low work voltage (<2.5 V) and energy efficiency. Herein, we have demonstrated for the first time that cobalt phthalocyanine (CoPc) as homogeneous catalyst can elevate the work plateau towards 2.98 V, which is higher than its theoretical discharge voltage without changing the Li2CO3-product route. This unprecedented discharge voltage is illustrated by mass spectrum and electrochemical analyses that CoPc has powerful adsorption capability with CO2 (-7.484 kJ mol-1) and forms discharge intermediate of C33H16CoN8O2. Besides high discharge capacity of 18724 mAh g-1 and robust cyclability over 1600 hours (1000 mAh g-1 cut-off) at a current density of 100 mA g-1, the batteries show high temperature adaptability (-30-80 °C). Our work is paving a promising avenue for the progress of high-efficiency Li-CO2 batteries.
Collapse
Affiliation(s)
- Ning Zhao
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Limin Liu
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Xuan Lu
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Yuyang Li
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Xiaosha Wu
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Shaochen Peng
- HeBei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Jingwen Wei
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Yang Gao
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Hanqi Zhang
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Yiming Fan
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Zicheng Yin
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Rongfen Feng
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Ru Wang
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Xiaofei Hu
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, ShaanXi, 710061, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Shujiang Ding
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, ShaanXi, 710061, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, ShaanXi, 710061, China
| | - Wenfeng Liu
- School of Chemistry, School of Electrical Engineering and School of Aerospace, Engineering Xi'an Jiaotong University, ShaanXi, 710061, China
| |
Collapse
|
3
|
Sun X, Wang D, Wen Z, Li W, Zhou H, He P. An inorganic molten salt electrolyte-based Li-CO 2 battery with moderate working temperature and enhanced performance. Chem Commun (Camb) 2024. [PMID: 39076153 DOI: 10.1039/d4cc02878c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Herein, a binary inorganic molten salt electrolyte based on lithium bis(fluorosulfonyl)imide (LiFSI) and potassium bis(fluorosulfonyl)imide (KFSI) is applied to Li-CO2 batteries that can operate under 80 °C. Benefiting from the intrinsic nonvolatility, electrochemical stability, raised ionic conductivity, sufficient solubility and safety, the molten electrolyte endows the Li-CO2 battery with a large discharge capacity of 4612 mA h g-1 and superior rate capability. The introduction of the Ru@Super P carbon cathode further optimizes the discharge capacity (9503 mA h g-1), overpotential (1.15 V), and rate capability.
Collapse
Affiliation(s)
- Xinyi Sun
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Di Wang
- Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhang Wen
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Wei Li
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| |
Collapse
|
4
|
Wu Y, Ju J, Shen B, Wei J, Jiang H, Li C, Hu Y. Rich-Carbonyl Carbon Catalysis Facilitating the Li 2CO 3 Decomposition for Cathode Lithium Compensation Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311891. [PMID: 38178190 DOI: 10.1002/smll.202311891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 01/06/2024]
Abstract
The active lithium loss of lithium-ion batteries can be well addressed by adding a cathode lithium compensation agent. Due to the poor conductivity and electrochemical activity, lithium carbonate (Li2CO3) is not considered as a candidate. Herein, an effective cathode lithium compensation agent, the recrystallized Li2CO3 combined with large specific surface area disordered porous carbon (R-LCO@SPC) is prepared. The screened SPC makes it easier for nano-sized Li2CO3 to adsorb and decompose on carbon substrate, meantime, exposing plenty of catalytic active sites of C═O, which can significantly improve the electrochemical activity and conductivity of Li2CO3, thus greatly reducing the decomposition potential of Li2CO3 (4.0 V) and releasing high irreversible capacity (580 mAh g-1) compared to the unmodified Li2CO3 (nearly no capacity above 4.6 V). Meantime, the Li2CO3 can disappear completely without any by-product after the initial cycle accompanied by partially dissolved in electrolyte, optimizing the composition of SEI. The resultant lithium compensation agent applied to LMFP//graphite full cell exhibits a 19.1% increase in energy density, enhancing the rate and cycling performance, demonstrating great practical applications potential in high energy density lithium-ion batteries.
Collapse
Affiliation(s)
- Yingjie Wu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Ju
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bolei Shen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Wei
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjie Hu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Jie Y, Tang C, Xu Y, Guo Y, Li W, Chen Y, Jia H, Zhang J, Yang M, Cao R, Lu Y, Cho J, Jiao S. Progress and Perspectives on the Development of Pouch-Type Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202307802. [PMID: 37515479 DOI: 10.1002/anie.202307802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Lithium (Li) metal batteries (LMBs) are the "holy grail" in the energy storage field due to their high energy density (theoretically >500 Wh kg-1 ). Recently, tremendous efforts have been made to promote the research & development (R&D) of pouch-type LMBs toward practical application. This article aims to provide a comprehensive and in-depth review of recent progress on pouch-type LMBs from full cell aspect, and to offer insights to guide its future development. It will review pouch-type LMBs using both liquid and solid-state electrolytes, and cover topics related to both Li and cathode (including LiNix Coy Mn1-x-y O2 , S and O2 ) as both electrodes impact the battery performance. The key performance criteria of pouch-type LMBs and their relationship in between are introduced first, then the major challenges facing the development of pouch-type LMBs are discussed in detail, especially those severely aggravated in pouch cells compared with coin cells. Subsequently, the recent progress on mechanistic understandings of the degradation of pouch-type LMBs is summarized, followed with the practical strategies that have been utilized to address these issues and to improve the key performance criteria of pouch-type LMBs. In the end, it provides perspectives on advancing the R&Ds of pouch-type LMBs towards their application in practice.
Collapse
Affiliation(s)
- Yulin Jie
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Tang
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Ningde Amperex Technology limited (ATL), Ningde, Fujian, 352100, China
| | - Yaolin Xu
- Department of Electrochemical Energy Storage (CE-AEES), Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA-02139, USA
| | - Youzhang Guo
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wanxia Li
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yawei Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haojun Jia
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA-02139, USA
| | - Jing Zhang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Ming Yang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuhao Lu
- Ningde Amperex Technology limited (ATL), Ningde, Fujian, 352100, China
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Shuhong Jiao
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Zhao J, Wang Y, Zhao H, Liu L, Li S, Hu X, Ding S. Enabling All-Solid-State Lithium-Carbon Dioxide Battery Operation in a Wide Temperature Range. ACS NANO 2024. [PMID: 38311845 DOI: 10.1021/acsnano.3c12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Flexible all-solid-state lithium-carbon dioxide batteries (FASSLCBs) are recognized as a next-generation energy storage technology by solving safety and shuttle effect problems. However, the present FASSLCBs rely heavily on high-temperature operation due to sluggish solid-solid-gas multiphase mass transfer and unclear capacity degradation mechanism. Herein, we designed bicontinuous hierarchical porous structures (BCHPSs) for both solid polymer electrolyte and cathode for FASSLCBs to facilitate the mass transfer in all connected directions. The formed large Lewis acidic surface effectively promotes the lithium salt dissociation and the CO2 conversion. Furthermore, it is unraveled that the battery capacity degradation originates from the "dead Li2CO3" formation, which is inhibited by the fast decomposition of Li2CO3. Accordingly, the assembled FASSLCBs exhibit an excellent cycling stability of 133 cycles at 60 °C, which is 2.7 times longer than that without BCHPSs, and the FASSLCBs can be operated repeatedly even at room temperature. This BCHPS method and fundamental deactivation mechanism provide a perspective for designing FASSLCBs with long cycling life.
Collapse
Affiliation(s)
- Jianyun Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Chemistry for Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
- School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Yang Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Chemistry for Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Limin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Chemistry for Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Shengtao Li
- School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Xiaofei Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Chemistry for Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Chemistry for Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
- School of Future Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Ji X, Liu Y, Zhang Z, Cui J, Fan Y, Qiao Y. Carbon nanotubes with CoNi alloy nanoparticles growing on porous carbon substrate as cathode for Li-CO 2 batteries. J Colloid Interface Sci 2024; 655:693-698. [PMID: 37976742 DOI: 10.1016/j.jcis.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The over-exploitation of fossil fuels and rapid industrialization has released a large number of carbon dioxide. As a major greenhouse gas, it can induce the increasing global temperature and result in environmental issues. It is an urgent necessity to reduce carbon dioxide emission and increase carbon capture, utilization and storage. Li-CO2 battery can be used for the fixation and conversion of carbon dioxide to electrochemical energy. However, it is necessary to explore and design efficient catalysts, due to the low electronic conductivity and sluggish decomposition kinetics for lithium carbonate as the discharge product. Herein, carbon nanotubes with CoNi alloy nanoparticles growing on porous carbon substrate (PC/CoNi-CNTs) is designed by immersing porous melamine formaldehyde sponge into cobalt nitrate and nickel chloride solution with the subsequent carbonization. The porous structure of carbon substrate facilitates the electrolyte infiltration and carbon dioxide diffusion. The carbon nanotubes and CoNi alloy catalysts can efficiently enhance the reversible deposition and decomposition of lithium carbonate and carbon, taking advantage of their synergistic effect. At a current density of 0.05 mA cm-2, the terminal discharge and charge voltages are 2.76 and 4.23 V with a limited specific capacity of 0.2 mA h cm-2, respectively. These results demonstrat that the design of carbon nanotubes with alloy nanoparticles on porous carbon substrate as cathode can enhance the electrochemical performances of Li-CO2 battery.
Collapse
Affiliation(s)
- Xu Ji
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhuxi Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiabao Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yangyang Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yun Qiao
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Liu W, Wang N, Wu Y, Zhang Q, Chen X, Li Y, Xu R. High-Rate Nonaqueous Mg-CO 2 Batteries Enabled by Mo 2 C-Nanodot-Embedded Carbon Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306576. [PMID: 37803924 DOI: 10.1002/smll.202306576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Indexed: 10/08/2023]
Abstract
The widespread acceptance of nonaqueous rechargeable metal-gas batteries, known for their remarkably high theoretical energy density, faces obstacles such as poor reversibility and low energy efficiency under high charge-discharge current densities. To tackle these challenges, a novel catalytic cathode architecture for Mg-CO2 batteries, fabricated using a one-pot electrospinning method followed by heat treatment, is presented. The resulting structure features well-dispersed molybdenum carbide nanodots embedded within interconnected carbon nanofibers, forming a 3D macroporous conducting network. This cathode design enhances the volumetric efficiency, enabling effective discharge product deposition, while also improving electrical properties and boosting catalytic activity. This enhancement results in high discharge capacities and excellent rate capabilities, while simultaneously minimizing voltage hysteresis and maximizing energy efficiency. The battery exhibits a stable cycle life of over 250 h at a current density of 200 mA g-1 with a low initial charge-discharge voltage gap of 0.72 V. Even at incredibly high current densities, reaching 1600 mA g-1 , the battery maintains exceptional performance. These findings highlight the crucial role of cathode architecture design in enhancing the performance of Mg-CO2 batteries and hold promise for improving other metal-gas batteries that involve deposition-decomposition reactions.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongjun Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianyi Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoyan Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanmei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rui Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Ji X, Liu Y, Zhang Z, Cui J, Fan Y, Qiao Y. Porous Carbon Foam with Carbon Nanotubes as Cathode for Li-CO 2 Batteries. Chemistry 2024; 30:e202303319. [PMID: 38010959 DOI: 10.1002/chem.202303319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 11/29/2023]
Abstract
With the extensive use of fossil fuels, the ever-increasing greenhouse gas of mainly carbon dioxide emissions will result in global climate change. It is of utmost importance to reduce carbon dioxide emissions and its utilization. Li-CO2 batteries can convert carbon dioxide into electrochemical energy. However, developing efficient catalysts for the decomposition of Li2 CO3 as the discharge product represents a challenge in Li-CO2 batteries. Herein, we demonstrate a carbon foam composite with growing carbon nanotube by using cobalt as the catalyst, showing the ability to enhance the decomposition rate of Li2 CO3 , and thus improve the electrochemical performance of Li-CO2 batteries. Benefiting from its abundant pore structure and catalytic sites, the as-assembled Li-CO2 battery exhibits a desirable overpotential of 1.67 V after 50 cycles. Moreover, the overpotentials are 1.05 and 2.38 V at current densities of 0.02 and 0.20 mA cm-2 , respectively. These results provide a new avenue for the development of efficient catalysts for Li-CO2 batteries.
Collapse
Affiliation(s)
- Xu Ji
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhuxi Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jiabao Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yangyang Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yun Qiao
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
10
|
Sarkar A, Dharmaraj VR, Yi CH, Iputera K, Huang SY, Chung RJ, Hu SF, Liu RS. Recent Advances in Rechargeable Metal-CO 2 Batteries with Nonaqueous Electrolytes. Chem Rev 2023; 123:9497-9564. [PMID: 37436918 DOI: 10.1021/acs.chemrev.3c00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.
Collapse
Affiliation(s)
- Ayan Sarkar
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Chia-Hui Yi
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Yang Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
11
|
Zhu T, Wang S, Yu Z, Song H, Xu J, Chen K. High-Performance Li-CO 2 Battery Based on Carbon-Free Porous Ru@QNFs Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301498. [PMID: 37093201 DOI: 10.1002/smll.202301498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Lithium-carbon dioxide (Li-CO2 ) batteries have attracted much attention due to their high theoretical energy density. However, due to the existance of lithium carbonate and amorphous carbon in the discharge products that are difficult to decompose, the battery shows low coulombic efficiency and poor cycle performance. Here, by adjusting the adsorption of carbon dioxide (CO2 ) on ruthenium (Ru) catalysts surface, this work reports an ultralow charge overpotential and long cycle life Li-CO2 battery that consists of typical lithium metal, ternary molten salt electrolyte (TMSE), and Ru-based cathode. Experimental results show that the Ru catalysts deposited on quartz nanofiber (QF) can suppress the four-electron conversion of CO2 to lithium carbonate (Li2 CO3 ). As a result, the battery shows a long-cycle-life of over 457 cycles at 1.0 A g-1 with a limited capacity of 500 mAh g-1 Ru . Remarkably, a recorded low discharge potential of ≈3.0 V has been achieved after 35 cycles at 0.5 A g-1 , with a charge potential retention of over 99%. Moreover, the battery can operate over 25 A g-1 and recover 96% potential. This battery technology paves the way for designing high-performance rechargeable Li-CO2 batteries with carbon neutrality.
Collapse
Affiliation(s)
- Ting Zhu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Sheng Wang
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhiqian Yu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hucheng Song
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
12
|
Liu T, Zhao S, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X. Reversible Discharge Products in Li-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208925. [PMID: 36502282 DOI: 10.1002/adma.202208925] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Indexed: 05/19/2023]
Abstract
Lithium-air (Li-air) batteries stand out among the post-Li-ion batteries due to their high energy density, which has rapidly progressed in the past years. Regarding the fundamental mechanism of Li-air batteries that discharge products produced and decomposed during charging and recharging progress, the reversibility of products closely affects the battery performance. Along with the upsurge of the mainstream discharge products lithium peroxide, with devoted efforts to screening electrolytes, constructing high-efficiency cathodes, and optimizing anodes, much progress is made in the fundamental understanding and performance. However, the limited advancement is insufficient. In this case, the investigations of other discharge products, including lithium hydroxide, lithium superoxide, lithium oxide, and lithium carbonate, emerge and bring breakthroughs for the Li-air battery technologies. To deepen the understanding of the electrochemical reactions and conversions of discharge products in the battery, recent advances in the various discharge products, mainly focusing on the growth and decomposition mechanisms and the determining factors are systematically reviewed. The perspectives for Li-air batteries on the fundamental development of discharge products and future applications are also provided.
Collapse
Affiliation(s)
- Tong Liu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Siyuan Zhao
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jie Yu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Meng Ni
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
13
|
Zhang X, Wang Y, Li Y. Mechanical Understanding of Li-CO 2 Batteries: The Critical Role of Forming Intermediate *Li 2O. J Phys Chem Lett 2023; 14:1604-1608. [PMID: 36749174 DOI: 10.1021/acs.jpclett.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emerging Li-CO2 batteries are considered a promising next-generation power system because they can fix CO2 while storing energy; however, their underlying mechanism remains elusive, impeding their efficient development. Meanwhile, apart from the conventional discharge product Li2CO3, the unexpected Li2O species has also been detected, but its formation process is thus far undecided. Here, we report a new mechanism for Li-CO2 batteries using first-principles calculations, which explains the long-standing puzzles. We show that such a process can be divided into two stages: (I) forming intermediate *Li2C2O4 via surface lithiation and (II) generating -Li2CO3 and C through a *Li2O-mediated pathway. We discover that the major kinetic barrier occurs in the coupling of *Li2CO2 and CO2 in the first stage. Especially, in the second stage, *CO produced from *Li2C2O4 decomposition is preferentially lithiated to *LiOC rather than disproportionated, and then *LiOC can be further lithiated to intermediate *Li2O after C nucleation, which contributes to the final formation of Li2CO3 in the presence of sufficient CO2.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
14
|
Gu Y, Liu B, Zeng X, Wu G, Xue L, Dong P, Zhang Y, Xiao J. A flexible Li-CO2 batteries with enhanced cycling stability enabled by a IrO2/carbon fiber self-standing cathode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Chen Y, Xu J, He P, Qiao Y, Guo S, Yang H, Zhou H. Metal-air batteries: progress and perspective. Sci Bull (Beijing) 2022; 67:2449-2486. [PMID: 36566068 DOI: 10.1016/j.scib.2022.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The metal-air batteries with the largest theoretical energy densities have been paid much more attention. However, metal-air batteries including Li-air/O2, Li-CO2, Na-air/O2, and Zn-air/O2 batteries, are complex systems that have their respective scientific problems, such as metal dendrite forming/deforming, the kinetics of redox mediators for oxygen reduction/evolution reactions, high overpotentials, desolution of CO2, H2O, etc. from the air and related side reactions on both anode and cathode. It should be the main direction to address these shortages to improve performance. Here, we summarized recently research progress in these metal-air/O2 batteries. Some perspectives are also provided for these research fields.
Collapse
Affiliation(s)
- Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jijing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaohua Guo
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Huijun Yang
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
16
|
Chourasia AK, Pathak AD, Bongu C, Manikandan K, Praneeth S, Naik KM, Sharma CS. In Situ/Operando Characterization Techniques: The Guiding Tool for the Development of Li-CO 2 Battery. SMALL METHODS 2022; 6:e2200930. [PMID: 36333232 DOI: 10.1002/smtd.202200930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In recent times, the Li-CO2 battery has gained significant importance arising from its higher gravimetric energy density (1876 Wh kg-1 ) compared to the conventional Li-ion batteries. Also, its ability to utilize the greenhouse gas CO2 to operate an energy storage system and the prospective utilization on extraterrestrial planets such as Mars motivate to practicalize it. However, it suffers from numerous challenges such as (i) the reluctant CO2 reduction/evolution; (ii) solid/liquid/gas interface blockage arising from the deposition of Li2 CO3 discharge product on the cathode; (iii) high overpotential to decompose the stable discharge product Li2 CO3 ; and (iv) instability of the electrolytes. Numerous efforts have been undertaken to tackle these challenges by developing catalysts, improving the stability of electrolytes, protecting the anode, etc. Despite these efforts, due to the lack of a decisive confirmation of the reaction mechanisms of the discharging/charging reactions occurring in the system, the progress of the Li-CO2 battery system has been slow. In situ characterization techniques help overcome ex-situ techniques' limitations by monitoring the processes with the progress of a reaction. The current review focuses on bridging the gap in the understanding of the Li-CO2 batteries by exploring the various in situ/operando characterization techniques that have been employed.
Collapse
Affiliation(s)
- Ankit K Chourasia
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Anil D Pathak
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Chandrasekhar Bongu
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - K Manikandan
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Sai Praneeth
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Keerti M Naik
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Chandra S Sharma
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| |
Collapse
|
17
|
Xu Y, Gong H, Ren H, Fan X, Li P, Zhang T, Chang K, Wang T, He J. Highly Efficient Cu-Porphyrin-Based Metal-Organic Framework Nanosheet as Cathode for High-Rate Li-CO 2 Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203917. [PMID: 36156850 DOI: 10.1002/smll.202203917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The lithium-carbon dioxide (Li-CO2 ) battery as a novel metal-air battery has a high specific energy density and unique CO2 conversion ability. However, its further development is limited by incomplete product decomposition resulting in poor cycling and rate performance. In this work, Cu-tetra(4-carboxyphenyl) porphyrin (Cu-TCPP) nanosheets are prepared through the solvothermal method successfully. An efficient Li-CO2 battery with Cu-TCPP as catalyst achieves a high discharge capacity of 20393 mAh g-1 at 100 mA g-1 , a long-life cycle of 123 at 500 mA g-1 , and a lower overpotential of 1.8 V at 2000 mA g-1 . Density functional theory calculation reveals that Cu-TCPP has higher adsorption energy of CO2 and Li2 CO3 compared with TCPP, and a large number of electrons gather near the Cu-N4 active sites in Cu-TCPP. Therefore, the excellent CO2 capture ability of the porphyrin ligand and the synergic catalytic effect of Cu atom in Cu-TCPP promote the thermodynamics and kinetics of CO2 reduction and evolution processes.
Collapse
Affiliation(s)
- Yunyun Xu
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Hao Ren
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiaoli Fan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Peng Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tengfei Zhang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Kun Chang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tao Wang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jianping He
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
18
|
Guan DH, Wang XX, Li F, Zheng LJ, Li ML, Wang HF, Xu JJ. All-Solid-State Photo-Assisted Li-CO 2 Battery Working at an Ultra-Wide Operation Temperature. ACS NANO 2022; 16:12364-12376. [PMID: 35914235 DOI: 10.1021/acsnano.2c03534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At present, photoassisted Li-air batteries are considered to be an effective approach to overcome the sluggish reaction kinetics of the Li-air batteries. And, the organic liquid electrolyte is generally adopted by the current conventional photoassisted Li-air batteries. However, the superior catalytic activity of photoassisted cathode would in turn fasten the degradation of the organic liquid electrolyte, leading to limited battery cycling life. Herein, we tame the above limitation of the traditional liquid electrolyte system for Li-CO2 batteries by constructing a photoassisted all-solid-state Li-CO2 battery with an integrated bilayer Au@TiO2/Li1.5Al0.5Ge1.5(PO4)3 (LAGP)/LAGP (ATLL) framework, which can essentially improve battery stability. Taking advantage of photoelectric and photothermal effects, the Au@TiO2/LAGP layer enables the acceleration of the slow kinetics of the carbon dioxide reduction reaction and evolution reaction processes. The LAGP layer could resolve the problem of liquid electrolyte decomposition under illumination. The integrated double-layer LAGP framework endows the direct transportation of heat and Li+ in the entire system. The photoassisted all-solid-state Li-CO2 battery achieves an ultralow polarization of 0.25 V with illumination, as well as a high round-trip efficiency of 92.4%. Even at an extremely low temperature of -73 °C, the battery can still deliver a small polarization of 0.6 V by converting solar energy into heat to achieve self-heating. This study is not limited to the Li-air batteries but can also be applied to other battery systems, constituting a significant step toward the practical application of all-solid-state photoassisted Li-air batteries.
Collapse
Affiliation(s)
- De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ma-Lin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Huan-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- College of Chemical and Food, Zhengzhou University of Technology, Zhengzhou 450044, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Bharti A, Manna G, Saha P, Achutarao G, Bhattacharyya AJ. Probing the Function of a Li-CO 2 Battery with a MXene/Graphene Oxide Composite Cathode Electrocatalyst. J Phys Chem Lett 2022; 13:7380-7385. [PMID: 35925676 DOI: 10.1021/acs.jpclett.2c01499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We systematically diagnose here the various phases formed at the electrodes in a Li-CO2 battery. The CO2 cathode comprises a mixture of two-dimensional electrocatalysts, MXene and graphene oxide (MXene/GO), configured on Ni foam. The observed overpotential for MXene/GO (2.4 V) is lower than that for GO (2.8 V). MXene/GO also outperforms GO in terms of battery stability and performance. The overall battery reaction (Li2CO3 ↔ Li + CO2) is more efficient in the case of MXene/GO than in the case of GO. This is convincingly demonstrated using ex situ high-resolution synchrotron X-ray diffraction and Raman scattering spectroscopy, which strongly indicates that the MXene/GO composite is more capable than GO in converting Li2CO3 to Li and CO2. When the Li anode is probed, CO2 crossover is evident via the observation of the formation of LiOH/Li2CO3 phases, the proportions of which change during successive cycles.
Collapse
Affiliation(s)
- Abhishek Bharti
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Gouranga Manna
- Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Pinku Saha
- Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Govindaraj Achutarao
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Aninda J Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
20
|
Carbon Tube-Based Cathode for Li-CO 2 Batteries: A Review. NANOMATERIALS 2022; 12:nano12122063. [PMID: 35745402 PMCID: PMC9227857 DOI: 10.3390/nano12122063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
Metal–air batteries are considered the research, development, and application direction of electrochemical devices in the future because of their high theoretical energy density. Among them, lithium–carbon dioxide (Li–CO2) batteries can capture, fix, and transform the greenhouse gas carbon dioxide while storing energy efficiently, which is an effective technique to achieve “carbon neutrality”. However, the current research on this battery system is still in the initial stage, the selection of key materials such as electrodes and electrolytes still need to be optimized, and the actual reaction path needs to be studied. Carbon tube-based composites have been widely used in this energy storage system due to their excellent electrical conductivity and ability to construct unique spatial structures containing various catalyst loads. In this review, the basic principle of Li–CO2 batteries and the research progress of carbon tube-based composite cathode materials were introduced, the preparation and evaluation strategies together with the existing problems were described, and the future development direction of carbon tube-based materials in Li–CO2 batteries was proposed.
Collapse
|
21
|
Li Z, Chu L, Li S, Chen W, Li Z, Guo P, Hu R. Double‐Network Ionogel Electrolyte with Superior Mechanical Performance and High Safety for Flexible Lithium‐Ion Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhen Li
- Beijing Institute of Technology - Zhuhai Campus School of Materials and Environment CHINA
| | - Lin Chu
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Suli Li
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Weiping Chen
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Ziyong Li
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Panlong Guo
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Renzong Hu
- South China Unviersity of Technology School of Materials Science and Engineering South China Unviersity of Technology 510640 Guangzhou CHINA
| |
Collapse
|
22
|
Li J, Zhang K, Zhao Y, Wang C, Wang L, Wang L, Liao M, Ye L, Zhang Y, Gao Y, Wang B, Peng H. High‐Efficiency and Stable Li−CO
2
Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Yang Zhao
- Frontiers Science Center for Flexible Electronics Institute of Flexible Electronics Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Chuang Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Lipeng Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Lie Wang
- National Laboratory of Solid-State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC) Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 P. R. China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Ye Zhang
- National Laboratory of Solid-State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Chemistry and Biomedicine Innovation Center (ChemBIC) Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 P. R. China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
23
|
Li J, Zhang K, Zhao Y, Wang C, Wang L, Wang L, Liao M, Ye L, Zhang Y, Gao Y, Wang B, Peng H. High-Efficiency and Stable Li-CO 2 Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angew Chem Int Ed Engl 2021; 61:e202114612. [PMID: 34797581 DOI: 10.1002/anie.202114612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/07/2022]
Abstract
Li-CO2 batteries are explored as promising power systems to alleviate environmental issues and to implement space applications. However, sluggish cathode kinetics of CO2 reduction/evolution result in low round-trip efficiency and poor cycling stability of the fabricated energy-storage devices. Herein, we design a heterostructued photocathode comprising carbon nanotube and carbon nitride to accelerate cathode reactions of a Li-CO2 battery under illumination. Benefiting from the unique defective structure of carbon nitride and favorable interfacial charge transfer, the photocathode effectively harvests ultraviolet-visible light to generate abundant photoexcited carriers and coordinates energetic photoelectrons/holes to participate in the discharge/charge reactions, leading to efficient photo-energy utilization in decreasing reaction barriers and enhancing thermodynamic reversibility of Li-CO2 battery. The resulting battery delivers a high round-trip efficiency of 98.8 % (ultralow voltage hysteresis of 0.04 V) and superior cycling stability (86.1 % efficiency retention after 100 cycles).
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yang Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chuang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lipeng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lie Wang
- National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation, Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Ye Zhang
- National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation, Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
24
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
25
|
Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev 2021; 50:11785-11843. [PMID: 34559871 DOI: 10.1039/d1cs00219h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the discovery of N-doped carbon nanotubes as the first carbon-based metal-free electrocatalyst (C-MFEC) for oxygen reduction reaction (ORR) in 2009, C-MFECs have shown multifunctional electrocatalytic activities for many reactions beyond ORR, such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and hydrogen peroxide production reaction (H2O2PR). Consequently, C-MFECs have attracted a great deal of interest for various applications, including metal-air batteries, water splitting devices, regenerative fuel cells, solar cells, fuel and chemical production, water purification, to mention a few. By altering the electronic configuration and/or modulating their spin angular momentum, both heteroatom(s) doping and structural defects (e.g., atomic vacancy, edge) have been demonstrated to create catalytic active sites in the skeleton of graphitic carbon materials. Although certain C-MFECs have been made to be comparable to or even better than their counterparts based on noble metals, transition metals and/or their hybrids, further research and development are necessary in order to translate C-MFECs for practical applications. In this article, we present a timely and comprehensive, but critical, review on recent advancements in the field of C-MFECs within the past five years or so by discussing various types of electrocatalytic reactions catalyzed by C-MFECs. An emphasis is given to potential applications of C-MFECs for energy conversion and storage. The structure-property relationship for and mechanistic understanding of C-MFECs will also be discussed, along with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Chuangang Hu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Rajib Paul
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Quanbin Dai
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Yuan D, Dou Y, Wu Z, Tian Y, Ye KH, Lin Z, Dou SX, Zhang S. Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chem Rev 2021; 122:957-999. [PMID: 34709781 DOI: 10.1021/acs.chemrev.1c00636] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Ding Yuan
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhui Tian
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, Henan 450002, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2500, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
27
|
He X, Ni Y, Hou Y, Lu Y, Jin S, Li H, Yan Z, Zhang K, Chen J. Insights into the Ionic Conduction Mechanism of Quasi-Solid Polymer Electrolytes through Multispectral Characterization. Angew Chem Int Ed Engl 2021; 60:22672-22677. [PMID: 34423516 DOI: 10.1002/anie.202107648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Indexed: 11/08/2022]
Abstract
Quasi-solid polymer electrolytes (QPE) composed of Li salts, polymer matrix, and solvent, are beneficial for improving the security and energy density of batteries. However, the ionic conduction mechanism, existential form of solvent molecules, and interactions between different components of QPE remain unclear. Here we develop a multispectral characterization strategy combined with first-principles calculations to unravel aforesaid mysteries. The results indicate that the existential state of solvent in QPE is quite different from that in liquid electrolyte. The Li cations in gel polymer electrolyte are fully solvated by partial solvent molecules to form a local high concentration of Li+ , while the other solvent molecules are fastened by polymer matrix in QPE. As a result, the solvation structure and conduction mechanism of Li+ are similar to those in high-concentrated liquid electrolyte. This work provides a new insight into the ionic conduction mechanism of QPE and will promote its application for safe and high-energy batteries.
Collapse
Affiliation(s)
- Xin He
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Youxuan Ni
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yunpeng Hou
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Song Jin
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haixia Li
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
28
|
He X, Ni Y, Hou Y, Lu Y, Jin S, Li H, Yan Z, Zhang K, Chen J. Insights into the Ionic Conduction Mechanism of Quasi‐Solid Polymer Electrolytes through Multispectral Characterization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin He
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Youxuan Ni
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Yunpeng Hou
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Song Jin
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Haixia Li
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhenhua Yan
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter Renewable Energy Conversion and Storage Center (RECAST) Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
29
|
Hu Z, Xie Y, Yu D, Liu Q, Zhou L, Zhang K, Li P, Hu F, Li L, Chou S, Peng S. Hierarchical Ti 3C 2T x MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO 2 Batteries. ACS NANO 2021; 15:8407-8417. [PMID: 33979142 DOI: 10.1021/acsnano.0c10558] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrochemical carbon dioxide conversion at ambient temperature is an efficient route to synchronously provide a continuous power supply and produce useful chemicals such as carbonates. Rigid catalysts with rational morphological and structural design are used to overcome the sluggish reaction kinetics and contribute to a better cycle life in Li-CO2 batteries. In this report, a two-dimensional Ti3C2Tx MXene/carbon heterostructure assembled parallel-aligned tubular architecture was delicately synthesized through a self-sacrificial templating method and delivered an ultralow overpotential of 1.38 V at 0.2 A·g-1. The heterostructure that inherited the high catalytic performance of Ti3C2Tx MXene and the outstanding stability of carbon material promoted the adsorption of CO2 and accelerated the decomposition of lithium carbonate, which was proved by in situ and ex situ characterizations and density functional theory calculations. The tubular architecture with large surface area was demonstrated to provide a high durability for long cycle life and ensure good contacts among gas, electrolyte, and electrode.
Collapse
Affiliation(s)
- Zhe Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, New South Wales 2522, Australia
| | - Yaoyi Xie
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deshuang Yu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qiannan Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, New South Wales 2522, Australia
| | - Limin Zhou
- Department Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- Department Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Feng Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, New South Wales 2522, Australia
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
30
|
Abstract
As an emerging energy storage technology, Na-CO2 batteries with high energy density are drawing tremendous attention because of their advantages of combining cost-effective energy conversion and storage with CO2 clean recycle and utilization. Nevertheless, their commercial applications are impeded by unsatisfactory electrochemical performance including large overpotentials, poor rate capability, fast capacity deterioration, and inferior durability, which mainly results from the inefficient electrocatalysts of cathode materials. Therefore, novel structured cathode materials with efficient catalytic activity are highly desired. In this review, the latest advances of catalytic cathode materials for Na-CO2 batteries are summarized, with a special emphasis on the electrocatalysts for CO2 reduction and evolution, the formation and decomposition of discharge product, as well as their catalytic mechanism. Finally, an outlook is also proposed for the future development of Na-CO2 batteries.
Collapse
|
31
|
Lu Y, Cai Y, Zhang Q, Ni Y, Zhang K, Chen J. Rechargeable K-CO 2 Batteries with a KSn Anode and a Carboxyl-Containing Carbon Nanotube Cathode Catalyst. Angew Chem Int Ed Engl 2021; 60:9540-9545. [PMID: 33502789 DOI: 10.1002/anie.202016576] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Indexed: 11/08/2022]
Abstract
Metal K-CO2 batteries suffer from large polarization and safety hazards, which mainly result from the difficult decomposition of K2 CO3 and dendrite growth. Moreover, the battery redox mechanism remains not fully understood. Here we report K-CO2 batteries with KSn alloy as the anode and carboxyl-containing multi-walled carbon nanotubes (MWCNTs-COOH) as the cathode catalyst, proving the redox mechanism to be 4 KSn + 3 CO2 ⇄ 2 K2 CO3 + C + 4 Sn. Compared with K metal, the less active and dendrite-free KSn anode effectively enhances the safety and stability of CO2 batteries. More importantly, the strong electrostatic interaction between MWCNTs-COOH and K2 CO3 weakens the C=O bond in K2 CO3 and thus facilitates K2 CO3 decomposition. As a result, the K-CO2 batteries show excellent cycling stability (an overpotential increase of 0.89 V after 400 cycles) and good rate performance (up to 2000 mA g-1 ). This work paves a way to develop highly stable and safe CO2 -based batteries.
Collapse
Affiliation(s)
- Yong Lu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yichao Cai
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiu Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
32
|
Lu Y, Cai Y, Zhang Q, Ni Y, Zhang K, Chen J. Rechargeable K‐CO
2
Batteries with a KSn Anode and a Carboxyl‐Containing Carbon Nanotube Cathode Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong Lu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Yichao Cai
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Qiu Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
33
|
Yang T, Li H, Chen J, Ye H, Yao J, Su Y, Guo B, Peng Z, Shen T, Tang Y, Zhang L, Huang J. In situ imaging electrocatalytic CO 2 reduction and evolution reactions in all-solid-state Li-CO 2 nanobatteries. NANOSCALE 2020; 12:23967-23974. [PMID: 33295923 DOI: 10.1039/d0nr07066a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Li-CO2 batteries are promising energy storage devices owing to their high energy density and possible applications for CO2 capture. However, still some critical issues, such as high charging overpotential and poor cycling stability caused by the sluggish decomposition of Li2CO3 discharge products, need to be addressed before the practical applications of Li-CO2 batteries. Exploring highly efficient catalysts and understanding their catalytic mechanisms for the CO2 reduction reaction (CORR) and evolution reaction (COER) are critical for the application of Li-CO2 batteries. However, the direct imaging of electrocatalysis during CORR and COER is still elusive. Herein, we report the in situ imaging of electrocatalysis during CORR and COER in a Li-CO2 nanobattery using a Ni-Ru-coated α-MnO2 nanowire (Ni-Ru/MnO2) cathode in an advanced aberration corrected environmental transmission electron microscope. During the CORR, a thick Li2CO3 and carbon mixture layer was formed on the surface of the Ni-Ru/MnO2 nanowires via 4Li+ + 3CO2 + 4e-→ 2Li2CO3 + C. During the COER, the as-formed Li2CO3 decomposed via 2Li2CO3→ 2CO2 + O2 + 4Li+ + 4e-, while the as-formed amorphous carbon remained. In contrast, the decomposition of Li2CO3 on bare MnO2 nanowires was difficult, underscoring the important Ni-Ru bimetal electrocatalytic role in facilitating the COER. Our results provide an important understanding of the CO2 chemistry in Li-CO2 batteries, possibly helping in the designing of Li-CO2 batteries for energy storage applications.
Collapse
Affiliation(s)
- Tingting Yang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Meng J, Chen K, Wu Q, Wu X, Li C. Behind the Candelabra: A Facile Flame Vapor Deposition Method for Interfacial Engineering of Garnet Electrolyte To Enable Ultralong Cycling Solid-State Li-FeF 3 Conversion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33729-33739. [PMID: 32602697 DOI: 10.1021/acsami.0c08203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The frustrating interfacial issue between Li metal anode and solid electrolyte is the main obstacle that restricts the commercial promotion of solid-state batteries. The garnet-type ceramic electrolyte with high stability against metallic Li has drawn much attention, but it also suffers from huge interfacial resistance and Li dendrite penetration due to the unavoidable formation of the carbonate passivation layer and limited interface contact. Herein, we propose a facile and effective method of flame vapor deposition to spray candle soot (CS) coating on the garnet surface. It enables the reduction of the carbonate layer and the conversion to a highly lithiophilic interlayer especially when in contact with molten Li. The lithiophilicity is rooted in the enrichment of graphitic polycrystalline domains in CS, which can be chemically or electrochemically lithiated to form the ionic/electronic dual-conductive network containing LiC6 moieties. The CS interlayer binds the Li metal with the garnet electrolyte tightly with gradual transition of Li-ion conductivity, leading to a significant reduction of the area-specific resistance to 50 Ω cm2 at 60 °C with high cycling and current endurance. Garnet-based symmetric cells and solid-state full cells conducting this strategy exhibit impressive electrochemical reversibility and durability under the preservation of the compact interface and smooth Li plating/stripping. The modified Li/garnet/FeF3 batteries exhibit a discharge capacity as high as 500 mA h g-1 and long-term cyclability for at least 1500 cycles (with capacity preserved at 281.7 and 201 mA h g-1 at 100 and 200 μA cm-2, respectively). This candle combustion strategy can be extended to more ceramic electrolytes compatible with high-temperature pretreatment.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Meng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keyi Chen
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingping Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
| | - Xiaoxue Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chilin Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Mu X, Pan H, He P, Zhou H. Li-CO 2 and Na-CO 2 Batteries: Toward Greener and Sustainable Electrical Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903790. [PMID: 31512290 DOI: 10.1002/adma.201903790] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/11/2019] [Indexed: 05/08/2023]
Abstract
Metal-CO2 batteries, especially Li-CO2 and Na-CO2 batteries, offer a novel and attractive strategy for CO2 capture as well as energy conversion and storage with high specific energy densities. However, some scientific issues and challenges existing restrict their practical applications. Here, recent progress of crucial reaction mechanisms on cathodes in Li-CO2 and Na-CO2 batteries are summarized. The detailed reaction pathways can be modified by operation conditions, electrolyte compositions, and catalysts. Besides, specific discussions from aspects of catalyst design, stability of electrolytes, and anode protection are presented. Perspectives of several innovative directions are also put forward. This review provides an intensive understanding of Li-CO2 and Na-CO2 batteries and gives a useful guideline for the practical development of metal-CO2 batteries and even metal-air batteries.
Collapse
Affiliation(s)
- Xiaowei Mu
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hui Pan
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ping He
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Haoshen Zhou
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, 3058568, Japan
| |
Collapse
|
36
|
Yang R, Peng Z, Xie J, Huang Y, Borse RA, Wang X, Wu M, Wang Y. Reversible Hybrid Aqueous Li-CO 2 Batteries with High Energy Density and Formic Acid Production. CHEMSUSCHEM 2020; 13:2621-2627. [PMID: 32040263 DOI: 10.1002/cssc.201903297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Metal-CO2 batteries, an attractive technology for both energy storage and CO2 utilization, are typically classified into organic Li(Na)-CO2 batteries with a high energy density/output voltage and aqueous Zn-CO2 batteries with flexible chemical production. However, achieving both high-efficiency energy storage and flexible chemical production is still challenging. In this study, a reversible hybrid aqueous Li-CO2 battery is developed, integrating Li with an aqueous phase, which exhibits not only a high operating voltage and energy density but also highly selective formic acid production. Based on a Li plate as the anode, NaCl solution as the aqueous electrolyte, solid electrolyte Li1.5 Al0.5 Ge1.5 P3 O12 (LAGP) as a separator and Li+ transporter, and a bifunctional Pd-based electrocatalyst as the cathode, the resulting battery shows a high discharge voltage of up to 2.6 V, an outstanding energy conversion efficiency of above 80 %, and remarkable selectivity of CO2 -to-HCOOH conversion of up to 97 %. The related reaction mechanism is proposed as CO2 +2 Li+2 H+ ⇌HCOOH+2 Li+ .
Collapse
Affiliation(s)
- Rui Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Peng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiafang Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Yiyin Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Rahul Anil Borse
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maoxiang Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yang Qiao West Road 155#, Fuzhou, 350002, P. R. China
| |
Collapse
|
37
|
Hu X, Joo PH, Matios E, Wang C, Luo J, Yang K, Li W. Designing an All-Solid-State Sodium-Carbon Dioxide Battery Enabled by Nitrogen-Doped Nanocarbon. NANO LETTERS 2020; 20:3620-3626. [PMID: 32212736 DOI: 10.1021/acs.nanolett.0c00564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All-solid-state sodium-carbon dioxide (Na-CO2) battery is an emerging technology that effectively utilizes the greenhouse gas, CO2, for energy storage with the virtues of minimized electrolyte leakage and suppressed Na dendrite growth for the Na metal anode. However, the sluggish reduction/evolution reactions of CO2 on the solid electrolyte/CO2 cathode interface have caused premature battery failure. Herein, nitrogen (N)-doped nanocarbon derived from metal-organic frameworks is designed as a cathode catalyst to solve this challenge. The porous and highly conductive N-doped nanocarbon possesses superior uptake and binding capability with CO2, which significantly accelerates the CO2 electroreduction and promotes the formation of thin sheetlike discharged products (200 nm in thickness) that can be easily decomposed upon charging. Accordingly, reduced discharge/charge overpotential, high discharge capacity (>10 000 mAh g-1), long cycle life, and high energy density (180 Wh kg-1 in pouch cells) are achieved at 50 °C.
Collapse
Affiliation(s)
- Xiaofei Hu
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Paul Hyunggyu Joo
- Program of Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0418, United States
| | - Edward Matios
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Chuanlong Wang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Jianmin Luo
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Kesong Yang
- Program of Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0418, United States
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093-0448, United States
| | - Weiyang Li
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| |
Collapse
|
38
|
Thoka S, Chen CJ, Jena A, Wang FM, Wang XC, Chang H, Hu SF, Liu RS. Spinel Zinc Cobalt Oxide (ZnCo 2O 4) Porous Nanorods as a Cathode Material for Highly Durable Li-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17353-17363. [PMID: 32202752 DOI: 10.1021/acsami.9b21347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Li-CO2 batteries are of great interest among researchers due to their high energy density and utilization of the greenhouse gas CO2 to produce energy. However, several shortcomings have been encountered in the practical applications of Li-CO2 batteries, among which their poor cyclability and high charge overpotential necessary to decompose the highly insulating discharge product (Li2CO3) are the most important. Herein, the spinel zinc cobalt oxide porous nanorods with carbon nanotubes (ZnCo2O4@CNTs) composite is employed as a cathode material in Li-CO2 batteries to improve the latter's cycling performance. The ZnCo2O4@CNT cathode-based Li-CO2 battery exhibited a full discharge capacity of 4275 mAh g-1 and excellent cycling performance over 200 cycles with a charge overpotential below 4.3 V when operated at a current density of 100 mA g-1 and fixed capacity of 500 mAh g-1. The superior performance of the ZnCo2O4@CNT cathode composite was attributed to the synergistic effects of ZnCo2O4 and CNT. The highly porous ZnCo2O4 nanorod structures in the ZnCo2O4@CNT catalyst showed enhanced catalytic activity/stability, which effectively promoted CO2 diffusion during the discharging process and accelerated Li2CO3 decomposition at a low charge overpotential.
Collapse
Affiliation(s)
| | - Chih-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Anirudha Jena
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Fu-Ming Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Sustainable Energy Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Xing-Chun Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ho Chang
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
39
|
Liu T, Feng X, Jin X, Shao M, Su Y, Zhang Y, Zhang X. Protecting the Lithium Metal Anode for a Safe Flexible Lithium‐Air Battery in Ambient Air. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xi‐lan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
| | - Xin Jin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
| | - Ming‐zhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
| | - Yu‐tong Su
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Xin‐bo Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
40
|
Liu T, Feng XL, Jin X, Shao MZ, Su YT, Zhang Y, Zhang XB. Protecting the Lithium Metal Anode for a Safe Flexible Lithium-Air Battery in Ambient Air. Angew Chem Int Ed Engl 2019; 58:18240-18245. [PMID: 31588648 DOI: 10.1002/anie.201911229] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 12/22/2022]
Abstract
The flexible Li-air battery (FLAB) with ultrahigh energy density is a hopeful candidate for flexible energy storage devices. However, most current FLAB operate in a pure oxygen atmosphere, which is limited by safety and corrosion issues from the metallic lithium anode and has thus greatly impeded the application of FLAB. Now, inspired by the protection effect of the umbrella, a stable hydrophobic composite polymer electrolyte (SHCPE) film with high flexibility, hydrophobicity, and stability was fabricated to protect the lithium anode. The SHCPE mitigated lithium corrosion and improved the capacity, rate performance, and cycle life (from 24 cycles to 95 cycles) of a battery in the ambient air. Based on the protection of SHCPE and the catalysis of MnOOH, the prepared pouch-type FLAB displayed high flexibility, stable performances, long cycling life (180 cycles), and excellent safety; the battery can bear soaking in water, high temperature, and nail penetration.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xi-Lan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xin Jin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ming-Zhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yu-Tong Su
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
41
|
Porous NiO nanofibers as an efficient electrocatalyst towards long cycling life rechargeable Li–CO2 batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Yuan Y, Lu Y, Jia BE, Tang H, Chen L, Zeng YJ, Hou Y, Zhang Q, He Q, Jiao L, Leng J, Ye Z, Lu J. Integrated System of Solar Cells with Hierarchical NiCo 2O 4 Battery-Supercapacitor Hybrid Devices for Self-Driving Light-Emitting Diodes. NANO-MICRO LETTERS 2019; 11:42. [PMID: 34137998 PMCID: PMC7770920 DOI: 10.1007/s40820-019-0274-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 05/03/2023]
Abstract
An integrated system has been provided with a-Si/H solar cells as energy conversion device, NiCo2O4 battery-supercapacitor hybrid (BSH) as energy storage device, and light emitting diodes (LEDs) as energy utilization device. By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode, with capacitive electrode of active carbon (AC), BSHs were assembled with energy density of 16.6 Wh kg-1, power density of 7285 W kg-1, long-term stability with 100% retention after 15,000 cycles, and rather low self-discharge. The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs. The integrated system is rational for operation, having an overall efficiency of 8.1% with storage efficiency of 74.24%. The integrated system demonstrates a stable solar power conversion, outstanding energy storage behavior, and reliable light emitting. Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.
Collapse
Affiliation(s)
- Yuliang Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yangdan Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Bei-Er Jia
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haichao Tang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Lingxiang Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yu-Jia Zeng
- Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China.
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China
| | - Lei Jiao
- Ocean College, Zhejiang University, Zhoushan, 316021, People's Republic of China
| | - Jianxing Leng
- Ocean College, Zhejiang University, Zhoushan, 316021, People's Republic of China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China.
| |
Collapse
|
43
|
Wang X, Xie J, Ghausi MA, Lv J, Huang Y, Wu M, Wang Y, Yao J. Rechargeable Zn-CO 2 Electrochemical Cells Mimicking Two-Step Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807807. [PMID: 30803058 DOI: 10.1002/adma.201807807] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Metal-CO2 batteries represent a promising priority for sustainable energy and the environment. However, CO2 utilization in nonaqueous electrolytes mostly involves difficult CO2 electrochemistry, leading to poor selectivity and limited cycle performance. Herein, an aqueous rechargeable Zn-CO2 electrochemical cell that tunably produced CO fuel gas (90% Faradaic efficiency) during cell discharge (cathodic reaction: CO2 + 2e- + 2H+ → CO + H2 O) and O2 during cell charge at ≈2 V (cathodic reaction: H2 O → 1/2O2 + 2e- + 2H+ ), mimicking the separate steps of CO2 fixation and water oxidation during photosynthesis while exhibiting the advantages of high efficiency, tunable products, and operation independent of sunlight is proposed and realized. The cell achieves a remarkable energy efficiency of 68% with fuel generation, providing an alternative for the green, efficient, and safe utilization of CO2 by metal-CO2 batteries.
Collapse
Affiliation(s)
- Xueyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiafang Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Muhammad Arsalan Ghausi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Jiangquan Lv
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Yiyin Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Maoxiang Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
44
|
Wu Z, Wang Y, Liu X, Lv C, Li Y, Wei D, Liu Z. Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800716. [PMID: 30680813 DOI: 10.1002/adma.201800716] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 12/03/2018] [Indexed: 05/18/2023]
Abstract
Wearable electronics have received considerable attention in recent years. These devices have penetrated every aspect of our daily lives and stimulated interest in futuristic electronics. Thus, flexible batteries that can be bent or folded are desperately needed, and their electrochemical functions should be maintained stably under the deformation states, given the increasing demands for wearable electronics. Carbon nanomaterials, such as carbon nanotubes, graphene, and/or their composites, as flexible materials exhibit excellent properties that make them suitable for use in flexible batteries. Herein, the most recent progress on flexible batteries using carbon nanomaterials is discussed from the viewpoint of materials fabrication, structure design, and property optimization. Based on the current progress, the existing advantages, challenges, and prospects are outlined and highlighted.
Collapse
Affiliation(s)
- Ziping Wu
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yonglong Wang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Xianbin Liu
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Chao Lv
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Yesheng Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Di Wei
- Beijing Graphene Institute, Beijing, 100094, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100094, P. R. China
| |
Collapse
|
45
|
Zhao H, Li D, Li H, Tamirat AG, Song X, Zhang Z, Wang Y, Guo Z, Wang L, Feng S. Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li–CO2 batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Hu C, Lin Y, Connell JW, Cheng HM, Gogotsi Y, Titirici MM, Dai L. Carbon-Based Metal-Free Catalysts for Energy Storage and Environmental Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806128. [PMID: 30687978 DOI: 10.1002/adma.201806128] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Indexed: 05/03/2023]
Abstract
Owing to their high earth-abundance, eco-friendliness, high electrical conductivity, large surface area, structure tunability at the atomic/morphological levels, and excellent stability in harsh conditions, carbon-based metal-free materials have become promising advanced electrode materials for high-performance pseudocapacitors and metal-air batteries. Furthermore, carbon-based nanomaterials with well-defined structures can function as green catalysts because of their efficiency in advanced oxidation processes to remove organics in air or from water, which reduces the cost for air/water purification and avoids cross-contamination by eliminating the release of heavy metals/metal ions. Here, the research and development of carbon-based catalysts in supercapacitors and batteries for clean energy storage as well as in air/water treatments for environmental remediation are reviewed. The related mechanistic understanding and design principles of carbon-based metal-free catalysts are illustrated, along with the challenges and perspectives in this emerging field.
Collapse
Affiliation(s)
- Chuangang Hu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yi Lin
- National Institute of Aerospace, 100 Exploration Way, Hampton, VA, 23666, USA
| | - John W Connell
- Advanced Materials and Processing Branch at NASA Langley Research Center, Hampton, VA, 23681, USA
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center/Low-Dimensional Material and Device Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Maria-Magdalena Titirici
- School of Engineering and Materials Science and Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Liming Dai
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
47
|
Huaiyu L, yanping Q, lei C. The development and prospect of lithium carbon dioxide battery. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/218/1/012156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Bie S, Du M, He W, Zhang H, Yu Z, Liu J, Liu M, Yan W, Zhou L, Zou Z. Carbon Nanotube@RuO 2 as a High Performance Catalyst for Li-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5146-5151. [PMID: 30640419 DOI: 10.1021/acsami.8b20573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Efficient electrocatalysts for Li2CO3 decomposition play an important role in Li-CO2 batteries. In this paper, carbon nanotubes (CNTs) decorated with RuO2 is firstly introduced as cathode materials for Li-CO2 batteries. The CNT@RuO2 composite can not only deliver a high specific capacity but also a lower charge voltage. With the CNT@RuO2 cathodes, the Coulombic efficiency still remains around 100% until the 15th cycle. The charge voltage of early 30 cycles at a current of 50 mA·g-1 with a capacity limit of 500 mAh·g-1 can be fully lowered under 4.0 V. Particularly, the CNT@RuO2 cathode can realize most decomposition of prefilled Li2CO3 and show a platform at around 3.9 V. This catalytic activity toward both in situ formed and preloaded Li2CO3 is more feasible for practical application in complex environment.
Collapse
Affiliation(s)
- Shiyu Bie
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Meili Du
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Wenxiang He
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Huigang Zhang
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Zhentao Yu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Jianguo Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| | - Meng Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Wuwei Yan
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| | - Liang Zhou
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| |
Collapse
|
49
|
Zhou J, Li X, Yang C, Li Y, Guo K, Cheng J, Yuan D, Song C, Lu J, Wang B. A Quasi-Solid-State Flexible Fiber-Shaped Li-CO 2 Battery with Low Overpotential and High Energy Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804439. [PMID: 30474199 DOI: 10.1002/adma.201804439] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/12/2018] [Indexed: 06/09/2023]
Abstract
The rapid development of wearable electronics requires a revolution of power accessories regarding flexibility and energy density. The Li-CO2 battery was recently proposed as a novel and promising candidate for next-generation energy-storage systems. However, the current Li-CO2 batteries usually suffer from the difficulties of poor stability, low energy efficiency, and leakage of liquid electrolyte, and few flexible Li-CO2 batteries for wearable electronics have been reported so far. Herein, a quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency, by employing ultrafine Mo2 C nanoparticles anchored on a carbon nanotube (CNT) cloth freestanding hybrid film as the cathode, is demonstrated. Due to the synergistic effects of the CNT substrate and Mo2 C catalyst, it achieves a low charge potential below 3.4 V, a high energy efficiency of ≈80%, and can be reversibly discharged and charged for 40 cycles. Experimental results and theoretical simulation show that the intermediate discharge product Li2 C2 O4 stabilized by Mo2 C via coordinative electrons transfer should be responsible for the reduction of overpotential. The as-fabricated quasi-solid-state flexible fiber-shaped Li-CO2 battery can also keep working normally even under various deformation conditions, giving it great potential of becoming an advanced energy accessory for wearable electronics.
Collapse
Affiliation(s)
- Jingwen Zhou
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
- Sichuan Research Center of New Materials, Chengdu, Sichuan, 610200, P. R. China
| | - Xuelian Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
- Sichuan Research Center of New Materials, Chengdu, Sichuan, 610200, P. R. China
| | - Chao Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yinchuan Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
- Sichuan Research Center of New Materials, Chengdu, Sichuan, 610200, P. R. China
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
- Sichuan Research Center of New Materials, Chengdu, Sichuan, 610200, P. R. China
| | - Dingwang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Chenhui Song
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
- Sichuan Research Center of New Materials, Chengdu, Sichuan, 610200, P. R. China
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Bin Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
- Sichuan Research Center of New Materials, Chengdu, Sichuan, 610200, P. R. China
| |
Collapse
|
50
|
Wang X, Zhang X, Lu Y, Yan Z, Tao Z, Jia D, Chen J. Flexible and Tailorable Na−CO2
Batteries Based on an All-Solid-State Polymer Electrolyte. ChemElectroChem 2018. [DOI: 10.1002/celc.201801018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingchao Wang
- Key Laboratory of Advanced Energy Materials Chemistry; (Ministry of Education); College of Chemistry; Nankai University; Tianjin 300071 China
- Key Laboratory of Energy Materials Chemistry; Ministry of Education; Key Laboratory of Advanced Functional Materials; Autonomous Region, Institute of Applied Chemistry; Xinjiang University; Urumqi 830046, Xinjiang China
| | - Xuejing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry; (Ministry of Education); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Yong Lu
- Key Laboratory of Advanced Energy Materials Chemistry; (Ministry of Education); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry; (Ministry of Education); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry; (Ministry of Education); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry; Ministry of Education; Key Laboratory of Advanced Functional Materials; Autonomous Region, Institute of Applied Chemistry; Xinjiang University; Urumqi 830046, Xinjiang China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry; (Ministry of Education); College of Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|