1
|
Wang ZL, Cheng JK, Wang F. Iron-catalyzed C-7 Selective NH 2 Amination of Indoles. Angew Chem Int Ed Engl 2024; 63:e202412103. [PMID: 38979667 DOI: 10.1002/anie.202412103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
7-Aminoindoles are important synthetic intermediates to a broad range of bioactive molecules. Transition metal-catalyzed directed C-H amination is among the most straightforward route for their synthesis, whereas methods that could directly incorporate an NH2 group in a highly selective manner remains elusive. Moreover, there is still high demand for the development of earth-abundant metal catalysis for such attractive reactivity. We present here the first C-7 selective NH2 amination of indoles through a directed homolytic aromatic substitution (HAS) with iron-aminyl radical. The reaction exhibits broad substrate scope, tolerates variety of functional groups, and is readily scalable with catalyst loading down to 0.1 mol % and turnover number (TON) up to 4500.
Collapse
Affiliation(s)
- Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Jin-Kai Cheng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
2
|
Mihalovits LM, Kollár L, Bajusz D, Knez D, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Molecular Mechanism of Labelling Functional Cysteines by Heterocyclic Thiones. Chemphyschem 2024; 25:e202300596. [PMID: 37888491 DOI: 10.1002/cphc.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Heterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.
Collapse
Affiliation(s)
- Levente M Mihalovits
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Levente Kollár
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Damijan Knez
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Krištof Bozovičar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tímea Imre
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- MS Metabolomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
| | - Stanislav Gobec
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
3
|
Gillespie JE, Lam NYS, Phipps RJ. Ortho-Selective amination of arene carboxylic acids via rearrangement of acyl O-hydroxylamines. Chem Sci 2023; 14:10103-10111. [PMID: 37772106 PMCID: PMC10530477 DOI: 10.1039/d3sc03293k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Direct amination of arene C-H bonds is an attractive disconnection to form aniline-derived building blocks. This transformation presents significant practical challenges; classical methods for ortho-selective amination require strongly acidic or forcing conditions, while contemporary catalytic processes often require bespoke directing groups and/or precious metal catalysis. We report a mild and procedurally straightforward ortho-selective amination of arene carboxylic acids, arising from a facile rearrangement of acyl O-hydroxylamines without requiring precious metal catalysts. A broad scope of benzoic acid substrates are compatible and the reaction can be applied to longer chain arene carboxylic acids. Mechanistic studies probe the specific requirement for trifluoroacetic acid in generating the active aminating agent, and suggest that two separate mechanisms may be operating in parallel in the presence of an iron catalyst: (i) an iron-nitrenoid intermediate and (ii) a radical chain pathway. Regardless of which mechanism is followed, high ortho selectivity is obtained, proposed to arise from the directivity (first) or attractive interactions (second) arising with the carboxylic acid motif.
Collapse
Affiliation(s)
- James E Gillespie
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
4
|
Wang J, Hu D, Sun X, Hong H, Shi Y. Pd-Catalyzed Aryl C-H Amination with Diaziridinone. Org Lett 2023; 25:2006-2011. [PMID: 36926923 DOI: 10.1021/acs.orglett.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This work describes an efficient Pd-catalyzed ortho-C-H amination of N-(quinolin-8-yl)benzamides with di-t-butyldiaziridinone, providing a variety of anthranilic amides in good yields. The reaction likely involves the formation of a pallada(II)heterocycle via aryl C-H activation and subsequent amination with di-t-butyldiaziridinone.
Collapse
Affiliation(s)
- Jianjun Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Daguo Hu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xiaofeng Sun
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Huiying Hong
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Kumar M, Rastogi A, Raziullah, Ahmad A, Gangwar MK, Koley D. Cu(II)-Catalyzed, Site Selective Sulfoximination to Indole and Indolines via Dual C-H/N-H Activation. Org Lett 2022; 24:8729-8734. [PMID: 36444657 DOI: 10.1021/acs.orglett.2c02817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed protocol furnishing N-arylated sulfoximines has been developed via dual N-H/C-H activation. Arylalkyl- and less reactive diarylsulfoximines were efficiently coupled with privileged scaffolds like indolines, indoles, and N-Ar-7-azaindoles. Sulfoximines based on medicinally relevant scaffolds (phenothiazine, dibenzothiophene, thioxanthenone) were also well tolerated. Detailed mechanistic studies indicate that the deprotometalation and protodemetalation step is the reversible step.
Collapse
Affiliation(s)
- Mohit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushka Rastogi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Banerjee S, Mishra M, Punniyamurthy T. Copper-Catalyzed C7-Selective C–H/N–H Cross-Dehydrogenative Coupling of Indolines with Sulfoximines. Org Lett 2022; 24:7997-8001. [DOI: 10.1021/acs.orglett.2c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
7
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
8
|
Wang J, Tu C, Feng ML, Li N. TEMPO/PhI(OAc) 2-Mediated Direct Sulfoximination of Benzoxazoles under Metal-Free Conditions. CHEM LETT 2022. [DOI: 10.1246/cl.220177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, 610106, P. R. China
| | - Changqing Tu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, 610106, P. R. China
| | - Mei-Lin Feng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Nan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|
9
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
10
|
Tu Y, Shi P, Bolm C. Visible-Light-Mediated α-Ketoacylations of NH-Sulfoximines with gem-Difluoroalkenes. Org Lett 2022; 24:907-911. [PMID: 35040650 DOI: 10.1021/acs.orglett.1c04254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photochemical approach for the preparation of α-keto-N-acyl sulfoximines from NH sulfoximines and gem-difluoroalkenes has been developed. In the presence of NBS, the reactions proceed in air without the need of a photocatalyst or additional oxidant. Results of mechanistic studies suggest that the two oxygens in the products stem from water and dioxygen.
Collapse
Affiliation(s)
- Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
11
|
Ma J, Zhou X, Guo P, Cheng H, Ji H. Copper‐Mediated
and Catalyzed
C‐H
Bond Amination via
Chelation‐Assistance
: Scope, Mechanism and Synthetic Applications. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiao‐Li Ma
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Xu‐Ming Zhou
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Peng‐Hu Guo
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Hui‐Cheng Cheng
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Hong‐bing Ji
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat‐sen University Guangzhou 510275 PR China
| |
Collapse
|
12
|
Wang HW, Wu JX, Li DC, Qiao YH, Yao QX, Sun WC, Dou JM. The synthesis of aryl-heteroaryl derivatives via the Rh III-catalyzed heteroarylation of arenes and heteroaromatic boronates. Org Biomol Chem 2021; 20:686-693. [PMID: 34951443 DOI: 10.1039/d1ob02201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient RhIII-catalyzed strategy for constructing aryl-heteroaryl derivatives with removable ketoxime ether auxiliaries via direct C-H heteroarylation based on arenes and heteroaromatic boronates has been disclosed. This protocol could tolerate various pyridine, pyrimidine, pyrazole, thiophene, and furan heteroaromatic boronates well, providing the desired products with high reactivities and excellent regioselectivity. The easy synthetic accessibility may offer potential for application in the synthesis of heterocyclic drug molecules containing aryl-heteroaryl motifs.
Collapse
Affiliation(s)
- Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Jia-Xue Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Yu-Han Qiao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Qing-Xia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Wen-Can Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
13
|
Tu Y, Zhang D, Shi P, Wang C, Ma D, Bolm C. Visible light-induced C-C bond cleavage in a multicomponent reaction cascade allowing acylations of sulfoximines with ketones. Org Biomol Chem 2021; 19:8096-8101. [PMID: 34487133 DOI: 10.1039/d1ob01411k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light induces C-C-bond cleavage reactions of ketones, which can be utilized for N-acylations of sulfoximines. No (photo)catalyst is required, and the reactions occur at ambient temperature in air. The substrate scope is broad for both ketones and sulfoximines. For converting NH-sulfoximines, the presence of NBS is essential.
Collapse
Affiliation(s)
- Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Duo Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Chenyang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Zhang YF, Dong XY, Cheng JT, Yang NY, Wang LL, Wang FL, Luan C, Liu J, Li ZL, Gu QS, Liu XY. Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines. J Am Chem Soc 2021; 143:15413-15419. [PMID: 34505516 DOI: 10.1021/jacs.1c07726] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Chiral alkyl primary amines are virtually universal synthetic precursors for all other α-chiral N-containing compounds ubiquitous in biological, pharmaceutical, and material sciences. The enantioselective amination of common alkyl halides with ammonia is appealing for potential rapid access to α-chiral primary amines, but has hitherto remained rare due to the multifaceted difficulties in using ammonia and the underdeveloped C(sp3)-N coupling. Here we demonstrate sulfoximines as excellent ammonia surrogates for enantioconvergent radical C-N coupling with diverse racemic secondary alkyl halides (>60 examples) by copper catalysis under mild thermal conditions. The reaction efficiently provides highly enantioenriched N-alkyl sulfoximines (up to 99% yield and >99% ee) featuring secondary benzyl, propargyl, α-carbonyl alkyl, and α-cyano alkyl stereocenters. In addition, we have converted the masked α-chiral primary amines thus obtained to various synthetic building blocks, ligands, and drugs possessing α-chiral N-functionalities, such as carbamate, carboxylamide, secondary and tertiary amine, and oxazoline, with commonly seen α-substitution patterns. These results shine light on the potential of enantioconvergent radical cross-coupling as a general chiral carbon-heteroatom formation strategy.
Collapse
Affiliation(s)
- Yu-Feng Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiang-Tao Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fu-Li Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Juan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
More SG, Rupanawar BD, Suryavanshi G. Metal-Free, Acid-Catalyzed 1,6-Conjugate Addition of NH-Sulfoximines to para-Quinone Methides: Accessing to Diarylmethine Imino Sulfanone. J Org Chem 2021; 86:10129-10139. [PMID: 34264087 DOI: 10.1021/acs.joc.1c00869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have reported an efficient and metal-free method for the construction of α-diarylmethine imino sulfanone using acid-catalyzed 1,6-conjugate addition of sulfoximines on para-quinine methides (p-QMs). This method showed broad functional group tolerance and a wide range of substrate scope with good to excellent yield. The excellent protocol exhibits mild reaction conditions with high atom economy. The practicability of the present method was supported by a Gram-scale reaction.
Collapse
Affiliation(s)
- Satish G More
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Bapurao D Rupanawar
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
16
|
Rashid M, Baker DD, Greer A. Two-step Two-intermediate Photorelease Bolm-McCulla Reaction: Dual Release of Nitrene and Atomic Oxygen Reactive Intermediates. Photochem Photobiol 2021; 97:1453-1455. [PMID: 34242417 DOI: 10.1111/php.13485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
This article is a highlight of the paper by Isor et al. in this issue of Photochemistry and Photobiology. It describes the photolysis of a dibenzothiophene sulfoximine (bearing N-phenyl imino and S-oxide groups) to produce two reactive intermediates in tandem. The sulfoximine undergoes a S-N and S-O photocleavage to release phenyl nitrene and atomic oxygen [O(3 P)]. The phenyl nitrene dimerizes to azobenzene or is trapped by diethylamine to reach an azepine. From there, atomic oxygen arises in a secondary photolysis of dibenzothiophene sulfoxide. A computational analysis also reveals that the S-N bond is labile for initial nitrene release, with the secondary release of atomic oxygen by S-O cleavage. Whether future sulfoximine scaffolds can produce the reverse order release of O(3 P) then nitrene, or release both simultaneously, is yet to be established. Nonetheless, molecules with dual-intermediate release, such as coupled photoaffinity labeling and cellular oxidation, are worth pursuing.
Collapse
Affiliation(s)
- Mahir Rashid
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY
| | - Devora D Baker
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
17
|
Copper-mediated ortho C H primary amination of anilines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Isor A, Hommelsheim R, Cone GW, Frings M, Petroff JT, Bolm C, McCulla RD. Photochemistry of N-Phenyl Dibenzothiophene Sulfoximine †. Photochem Photobiol 2021; 97:1322-1334. [PMID: 34022069 DOI: 10.1111/php.13456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023]
Abstract
Sulfoximines are popular scaffolds in drug discovery due to their hydrogen bonding properties and chemical stability. In recent years, the role of reactive intermediates such as nitrenes has been studied in the synthesis and degradation of sulfoximines. In this work, the photochemistry of N-phenyl dibenzothiophene sulfoximine [5-(phenylimino)-5H-5λ4 -dibenzo[b,d]thiophene S-oxide] was analyzed. The structure resembles a combination of N-phenyl iminodibenzothiophene and dibenzothiophene S-oxide, which generate nitrene and O(3 P) upon UV-A irradiation, respectively. The photochemistry of N-phenyl dibenzothiophene sulfoximine was explored by monitoring the formation of azobenzene, a photoproduct of triplet nitrene, using direct irradiation and sensitized experiments. The reactivity profile was further studied through direct irradiation experiments in the presence of diethylamine (DEA) as a nucleophile. The studies demonstrated that N-phenyl dibenzothiophene sulfoximine underwent S-N photocleavage to release singlet phenyl nitrene which formed a mixture of azepines in the presence of DEA and generated moderate amounts of azobenzene in the absence of DEA to indicate formation of triplet phenyl nitrene.
Collapse
Affiliation(s)
- Ankita Isor
- Department of Chemistry, Saint Louis University, St. Louis, MO
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Grant W Cone
- Department of Chemistry, Saint Louis University, St. Louis, MO
| | - Marcus Frings
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - John T Petroff
- Department of Chemistry, Saint Louis University, St. Louis, MO
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Ryan D McCulla
- Department of Chemistry, Saint Louis University, St. Louis, MO
| |
Collapse
|
19
|
Nickel-mediated C(sp2)-H amidation in synthesis of secondary sulfonamides via sulfonyl azides as amino source. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang HW, Qiao YH, Wu JX, Wang QP, Tian MX, Li YF, Yao QX, Li DC, Dou JM, Lu Y. Rh III-Catalyzed C-H (Het)arylation/Vinylation of N-2,6-Difluoroaryl Acrylamides. Org Lett 2021; 23:656-662. [PMID: 33443430 DOI: 10.1021/acs.orglett.0c03688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RhIII-catalyzed sp2 C-H cross-coupling of acrylamides with organoboron reactants has been accomplished using a commercially available N-2,6-difluoroaryl acrylamide auxiliary. A broad range of aryl and vinyl boronates as well as a variety of heterocyclic boronates with strong coordinating ability can serve as the coupling partners. This transformation proceeds under moderate reaction conditions with excellent functional group tolerance and high regioselectivity.
Collapse
Affiliation(s)
- Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yu-Han Qiao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jia-Xue Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qiu-Ping Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Meng-Xin Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yong-Fei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qing-Xia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Ioannou DI, Gioftsidou DK, Tsina VE, Kallitsakis MG, Hatzidimitriou AG, Terzidis MA, Angaridis PA, Lykakis IN. Selective Reduction of Nitroarenes to Arylamines by the Cooperative Action of Methylhydrazine and a Tris( N-heterocyclic thioamidate) Cobalt(III) Complex. J Org Chem 2021; 86:2895-2906. [PMID: 33497222 DOI: 10.1021/acs.joc.0c02814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an efficient catalytic protocol that chemoselectively reduces nitroarenes to arylamines, by using methylhydrazine as a reducing agent in combination with the easily synthesized and robust catalyst tris(N-heterocyclic thioamidate) Co(III) complex [Co(κS,N-tfmp2S)3], tfmp2S = 4-(trifluoromethyl)-pyrimidine-2-thiolate. A series of arylamines and heterocyclic amines were formed in excellent yields and chemoselectivity. High conversion yields of nitroarenes into the corresponding amines were observed by using polar protic solvents, such as MeOH and iPrOH. Among several hydrogen donors that were examined, methylhydrazine demonstrated the best performance. Preliminary mechanistic investigations, supported by UV-vis and NMR spectroscopy, cyclic voltammetry, and high-resolution mass spectrometry, suggest a cooperative action of methylhydrazine and [Co(κS,N-tfmp2S)3] via a coordination activation pathway that leads to the formation of a reduced cobalt species, responsible for the catalytic transformation. In general, the corresponding N-arylhydroxylamines were identified as the sole intermediates. Nevertheless, the corresponding nitrosoarenes can also be formed as intermediates, which, however, are rapidly transformed into the desired arylamines in the presence of methylhydrazine through a noncatalytic path. On the basis of the observed high chemoselectivity and yields, and the fast and clean reaction processes, the present catalytic system [Co(κS,N-tfmp2S)3]/MeNHNH2 shows promise for the efficient synthesis of aromatic amines that could find various industrial applications.
Collapse
Affiliation(s)
- Dimitris I Ioannou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Dimitra K Gioftsidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Vasiliki E Tsina
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Michael G Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Antonios G Hatzidimitriou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Michael A Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki 57400, Greece
| | - Panagiotis A Angaridis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| |
Collapse
|
22
|
Feng YL, Shi BF. Recent Advances in Base Metal (Copper, Cobalt and Nickel)-Catalyzed Directed C—H Amination. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Wang L, Cornella J. A Unified Strategy for Arylsulfur(VI) Fluorides from Aryl Halides: Access to Ar-SOF 3 Compounds. Angew Chem Int Ed Engl 2020; 59:23510-23515. [PMID: 32940381 PMCID: PMC7756513 DOI: 10.1002/anie.202009699] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/01/2020] [Indexed: 12/20/2022]
Abstract
A convenient protocol to selectively access various arylsulfur(VI) fluorides from commercially available aryl halides in a divergent fashion is presented. Firstly, a novel sulfenylation reaction with the electrophilic N-(chlorothio)phthalimide (Cl-S-Phth) and arylzinc reagents afforded the corresponding Ar-S-Phth compounds. Subsequently, the S(II) atom was selectively oxidized to distinct fluorinated sulfur(VI) compounds under mild conditions. Slight modifications on the oxidation protocol permit the chemoselective installation of 1, 3, or 4 fluorine atoms at the S(VI) center, affording the corresponding Ar-SO2 F, Ar-SOF3 , and Ar-SF4 Cl. Of notice, this strategy enables the effective introduction of the rare and underexplored -SOF3 moiety into various (hetero)aryl groups. Reactivity studies demonstrate that such elusive Ar-SOF3 can be utilized as a linchpin for the synthesis of highly coveted aryl sulfonimidoyl fluorides (Ar-SO(NR)F).
Collapse
Affiliation(s)
- Lin Wang
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| |
Collapse
|
24
|
Wang C, Wang H, Bolm C. Sulfoximines with
α
‐Ketoester Functionalities at Nitrogen from Cyanoacetates and Air. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chenyang Wang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Han Wang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
25
|
Shi P, Tu Y, Wang C, Kong D, Ma D, Bolm C. Synthesis of Benzothiadiazine-1-oxides by Rhodium-Catalyzed C-H Amidation/Cyclization. Org Lett 2020; 22:8842-8845. [PMID: 33170727 DOI: 10.1021/acs.orglett.0c03212] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A rhodium-catalyzed C-H amidation/cyclization sequence provides benzothiadiazine-1-oxides from sulfoximines and 1,4,2-dioxazol-5-ones in good yields. The reaction is characterized by a high functional group tolerance and, in contrast to most previous transformations of this type, is well-suited for S-alkyl-S-aryl-substituted sulfoximines.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Chenyang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
26
|
Wang L, Cornella J. A Unified Strategy for Arylsulfur(VI) Fluorides from Aryl Halides: Access to Ar‐SOF
3
Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lin Wang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr 45470 Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr 45470 Germany
| |
Collapse
|
27
|
Wang C, Tu Y, Ma D, Bolm C. Photocatalytic Fluoro Sulfoximidations of Styrenes. Angew Chem Int Ed Engl 2020; 59:14134-14137. [PMID: 32415689 PMCID: PMC7496861 DOI: 10.1002/anie.202005844] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Reactions of difluoroiodotoluene with NH‐sulfoximines provide new hypervalent iodine(III) reagents, which photocatalytically transfer a fluoro and a sulfoximidoyl group onto styrenes with high regioselectivity. The substrate scope is broad with respect to both sulfoximines and olefins. Following an operationally simple protocol, a large library of fluorine‐containing N‐functionalized sulfoximines can be accessed. Results from mechanistic investigations revealed the importance of radical intermediates.
Collapse
Affiliation(s)
- Chenyang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
28
|
Wang C, Tu Y, Ma D, Bolm C. Photocatalytic Fluoro Sulfoximidations of Styrenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenyang Wang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yongliang Tu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ding Ma
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
29
|
Grandhi GS, Dana S, Mandal A, Baidya M. Copper-Catalyzed 8-Aminoquinoline-Directed Oxidative C–H/N–H Coupling for N-Arylation of Sulfoximines. Org Lett 2020; 22:2606-2610. [DOI: 10.1021/acs.orglett.0c00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
30
|
Ikawa T, Masuda S, Akai S. One‐Pot Generation of Benzynes from Phenols: Formation of Primary Anilines by the Deoxyamination of Phenols. Chemistry 2020; 26:4320-4332. [DOI: 10.1002/chem.201904987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Takashi Ikawa
- Graduate School of Pharmaceutical Sciences Osaka University Yamadaoka 1–6 Suita Osaka 565-0871 Japan
| | - Shigeaki Masuda
- Graduate School of Pharmaceutical Sciences Osaka University Yamadaoka 1–6 Suita Osaka 565-0871 Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences Osaka University Yamadaoka 1–6 Suita Osaka 565-0871 Japan
| |
Collapse
|
31
|
Grison C, Carrasco D, Pelissier F, Moderc A. Reflexion on Bio-Sourced Mosquito Repellents: Nature, Activity, and Preparation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Neetha M, Saranya S, Ann Harry N, Anilkumar G. Recent Advances and Perspectives in the Copper‐Catalysed Amination of Aryl and Heteroaryl Halides. ChemistrySelect 2020. [DOI: 10.1002/slct.201904436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | - Nissy Ann Harry
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O Kottayam, Kerala India 686560
| |
Collapse
|
33
|
Li S, Jie K, Yan W, Pan Q, Zhang M, Wang Y, Fu Z, Guo S, Cai H. Selective C–C bond cleavage of amides fused to 8-aminoquinoline controlled by a catalyst and an oxidant. Chem Commun (Camb) 2020; 56:13820-13823. [DOI: 10.1039/d0cc04960c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, copper-catalyzed direct C–C bond cleavage of amides fused to 8-aminoquinoline as a directing group to form urea in the presence of amines and dioxygen is reported.
Collapse
Affiliation(s)
- Sen Li
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Kun Jie
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Wenjie Yan
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Qingjun Pan
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Min Zhang
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Yufeng Wang
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Zhengjiang Fu
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Shengmei Guo
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Hu Cai
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| |
Collapse
|
34
|
Schumacher C, Fergen H, Puttreddy R, Truong KN, Rinesch T, Rissanen K, Bolm C. N-(2,3,5,6-Tetrafluoropyridyl)sulfoximines: synthesis, X-ray crystallography, and halogen bonding. Org Chem Front 2020. [DOI: 10.1039/d0qo01139h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-(Tetrafluoropyridyl)sulfoximines are obtained from NH-sulfoximines and pentafluoropyridine under solution-based or mechanochemical conditions, and the solid-state structures of 26 products have been determined by X-ray diffraction analysis.
Collapse
Affiliation(s)
| | - Hannah Fergen
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
- University of Jyvaskyla
| | - Khai-Nghi Truong
- University of Jyvaskyla
- Department of Chemistry
- FI-40014 Jyväskylä
- Finland
| | - Torsten Rinesch
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Kari Rissanen
- University of Jyvaskyla
- Department of Chemistry
- FI-40014 Jyväskylä
- Finland
| | - Carsten Bolm
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
35
|
Yin G, Yao J, Hong S, Zhang Y, Xiao Z, Yu T, Li H, Yin P. A dual-responsive colorimetric probe for the detection of Cu 2+ and Ni 2+ species in real water samples and human serum. Analyst 2019; 144:6962-6967. [PMID: 31621707 DOI: 10.1039/c9an01451a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The monitoring of heavy transition metals has increasingly attracted great attention because they pollute the environment and have unique physiological functions. Chemosensors are useful tools for monitoring heavy transition metals due to their simple visualization, excellent sensitivity and high selectivity. Herein, we have developed a novel chemosensor for the detection of water-soluble Cu2+ and Ni2+ species with different mechanisms, and low detection limits of 2.1 nM for Cu2+ and 1.2 nM for Ni2+ were obtained. The colorimetric probe CPH has been applied to qualitative and quantitative detection of Cu2+ and Ni2+ species in real samples.
Collapse
Affiliation(s)
- Guoxing Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Baranwal S, Gupta S, Sabiah S, Kandasamy J. Molybdenumhexacarbonyl‐Mediated Imino‐Carbonylative Acylation of
NH
‐Sulfoximines with Aryl Iodides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Siddharth Baranwal
- Department of ChemistryIndian Institute of Technology (BHU)-Varanasi Uttar Pradesh 221005 India
| | - Surabhi Gupta
- Department of ChemistryIndian Institute of Technology (BHU)-Varanasi Uttar Pradesh 221005 India
| | - Shahulhameed Sabiah
- Department of ChemistryPondicherry University R. V. Nagar, Kalapet Pondicherry- 605014 India
| | - Jeyakumar Kandasamy
- Department of ChemistryIndian Institute of Technology (BHU)-Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
37
|
Kwak SH, Daugulis O. N-Aminopyridinium Ylide-Directed, Copper-Promoted Amination of sp 2 C-H Bonds. J Org Chem 2019; 84:13022-13032. [PMID: 31502845 DOI: 10.1021/acs.joc.9b01847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-Aminopyridinium ylides are used as monodentate directing groups for copper-promoted C-H/N-H coupling of sp2 C-H bonds with pyrazoles, imidazoles, and sulfonamides. Reactions proceed in fluorinated alcohol solvents at elevated temperatures and require use of 1.3-3 equiv of copper(II) acetate. This appears to be the first method for copper-promoted C-H/N-H coupling directed by a removable monodentate auxiliary in absence of added ligands.
Collapse
Affiliation(s)
- Se Hun Kwak
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Olafs Daugulis
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
38
|
Yu L, Yang C, Yu Y, Liu D, Hu L, Xiao Y, Song ZN, Tan Z. Ammonia as Ultimate Amino Source in Synthesis of Primary Amines via Nickel-Promoted C–H Bond Amination. Org Lett 2019; 21:5634-5638. [DOI: 10.1021/acs.orglett.9b01968] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Liang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ze-Nan Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
39
|
Verbelen B, Siemes E, Ehnbom A, Räuber C, Rissanen K, Wöll D, Bolm C. From One-Pot NH-Sulfoximidations of Thiophene Derivatives to Dithienylethene-Type Photoswitches. Org Lett 2019; 21:4293-4297. [DOI: 10.1021/acs.orglett.9b01475] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bram Verbelen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| | - Eric Siemes
- Institute of Physical Chemistry, RWTH Aachen University Landoltweg 2, 52074 Aachen, Germany
| | - Andreas Ehnbom
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Christoph Räuber
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University Landoltweg 2, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
40
|
Chen Z, Liu B, Liang P, Luo H, Zheng J, Wen X, Liu T, Luo G, Ye M. Construction of N-S and C-N Bonds from Reactions of Benzofuroxans with DMSO or THF. ACS OMEGA 2019; 4:281-291. [PMID: 31459330 PMCID: PMC6648239 DOI: 10.1021/acsomega.8b03353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 05/06/2023]
Abstract
Novel ring-opening reactions are achieved employing benzofuroxan as a new type of iminating or aminating reagent. These diverse transformations give access to three types of molecular scaffolds, N-aryl dimethylsulfoximines, methanesulfonamides, and hemiaminal ethers, which are important structural motifs in organic and medicinal chemistry. The procedures feature solvent-involved reactions, easily available starting materials, operational simplicity, high atom economy, and the potential further transformation of nitro group.
Collapse
Affiliation(s)
- Zhengwang Chen
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
- E-mail: (Z.C.)
| | - Botao Liu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Pei Liang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Haiqing Luo
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Jing Zheng
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaowei Wen
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Tanggao Liu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guotian Luo
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Min Ye
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
- E-mail: (M.Y.)
| |
Collapse
|
41
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
42
|
Kim H, Heo J, Kim J, Baik MH, Chang S. Copper-Mediated Amination of Aryl C-H Bonds with the Direct Use of Aqueous Ammonia via a Disproportionation Pathway. J Am Chem Soc 2018; 140:14350-14356. [PMID: 30346156 DOI: 10.1021/jacs.8b08826] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The direct amination of C-H bonds with ammonia is a challenge in synthetic chemistry. Herein, we present a copper-mediated approach that enables a chelation-assisted aromatic C-H bond amination using aqueous ammonia. A key strategy was to use soft low-valent Cu(I) species to avoid the strong coordination of ammonia. Mechanistic investigations suggest that the catalysis is initiated by a facile deprotonation of bound ammonia, and the C-N coupling is achieved by subsequent reductive elimination of the resultant copper-amido intermediate from a Cu(III) intermediate that is readily generated by disproportionation of low-valent copper analogues. This mechanistic postulate was supported by a preliminary kinetic isotope effect study and computations. This new chelation-assisted, copper-mediated C-H bond amination with aqueous ammonia was successfully applied to a broad range of substrates to deliver primary anilines. Moreover, the mild conditions required for this transformation allowed the reaction to operate even under substoichiometric conditions to enable a late-stage application for the preparation of pharmaceutical agents.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea.,Center for Catalytic Hydrocarbon Functionalization , Institute for Basic Science (IBS) , Daejeon 34141 , South Korea
| | - Joon Heo
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea.,Center for Catalytic Hydrocarbon Functionalization , Institute for Basic Science (IBS) , Daejeon 34141 , South Korea
| | - Junho Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - Mu-Hyun Baik
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea.,Center for Catalytic Hydrocarbon Functionalization , Institute for Basic Science (IBS) , Daejeon 34141 , South Korea
| | - Sukbok Chang
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea.,Center for Catalytic Hydrocarbon Functionalization , Institute for Basic Science (IBS) , Daejeon 34141 , South Korea
| |
Collapse
|
43
|
Jones AW, Rank CK, Becker Y, Malchau C, Funes‐Ardoiz I, Maseras F, Patureau FW. Accelerated Ru-Cu Trinuclear Cooperative C-H Bond Functionalization of Carbazoles: A Kinetic and Computational Investigation. Chemistry 2018; 24:15178-15184. [PMID: 29928784 PMCID: PMC6221041 DOI: 10.1002/chem.201802886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 01/13/2023]
Abstract
The mechanism of a trinuclear cooperative dehydrogenative C-N bond-forming reaction is investigated in this work, which avoids the use of chelate-assisting directing groups. Two new highly efficient Ru/Cu co-catalyzed systems were identified, allowing orders of magnitude greater TOFs than the previous state of the art. In-depth kinetic studies were performed in combination with advanced DFT calculations, which reveal a decisive rate-determining trinuclear Ru-Cu cooperative reductive elimination step (CRE).
Collapse
Affiliation(s)
- Alexander W. Jones
- FB ChemieTU KaiserslauternErwin Schrödinger Strasse 5267663KaiserslauternGermany
| | - Christian K. Rank
- FB ChemieTU KaiserslauternErwin Schrödinger Strasse 5267663KaiserslauternGermany
| | - Yanik Becker
- FB ChemieTU KaiserslauternErwin Schrödinger Strasse 5267663KaiserslauternGermany
| | - Christian Malchau
- FB ChemieTU KaiserslauternErwin Schrödinger Strasse 5267663KaiserslauternGermany
| | - Ignacio Funes‐Ardoiz
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and TechnologyAvgda. Països Catalans, 1643007TarragonaSpain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and TechnologyAvgda. Països Catalans, 1643007TarragonaSpain
- Departament de QuímicaUniversitat Autònoma de Barcelona08193BellaterraSpain
| | - Frederic W. Patureau
- FB ChemieTU KaiserslauternErwin Schrödinger Strasse 5267663KaiserslauternGermany
| |
Collapse
|
44
|
Martinez GE, Nugent JW, Fout AR. Simple Nickel Salts for the Amination of (Hetero)aryl Bromides and Iodides with Lithium Bis(trimethylsilyl)amide. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel Espinosa Martinez
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joseph W. Nugent
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
46
|
Yu M, Zhang T, Jalani HB, Dong X, Lu H, Li G. Iridium-Catalyzed Aryl C–H Sulfonamidation and Amide Formation Using a Bifunctional Nitrogen Source. Org Lett 2018; 20:4828-4832. [DOI: 10.1021/acs.orglett.8b01977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meng Yu
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Zhang
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hitesh B. Jalani
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Xunqing Dong
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongjian Lu
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
47
|
Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Thirty Years of (TMS)3SiH: A Milestone in Radical-Based Synthetic Chemistry. Chem Rev 2018; 118:6516-6572. [DOI: 10.1021/acs.chemrev.8b00109] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Yannick Landais
- University of Bordeaux, Institute of Molecular Sciences, UMR-CNRS 5255, 351 cours de la libération, 33405 Talence Cedex, France
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Avenue, Madison, Wisconsin 53726, United States
| |
Collapse
|
48
|
Xu LL, Wang X, Ma B, Yin MX, Lin HX, Dai HX, Yu JQ. Copper mediated C-H amination with oximes: en route to primary anilines. Chem Sci 2018; 9:5160-5164. [PMID: 29997868 PMCID: PMC6001278 DOI: 10.1039/c8sc01256c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022] Open
Abstract
Here we report an efficient Cu(i)-mediated C-H amination reaction with oximes as amino donors to introduce NH2 groups directly. Various strongly coordinating heterocycles including quinoline, pyrimidine, pyrazine, pyrazole and triazole were tolerated well. The potential utility was further demonstrated in a late-stage modification of telmisartan (an antagonist for the angiotensin II receptor).
Collapse
Affiliation(s)
- Lin-Lin Xu
- Department of Chemistry , Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai , 200444 , China
| | - Xing Wang
- Department of Medicinal Chemistry , Shanghai Institute of Materia Medica , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai , 201203 , China .
| | - Biao Ma
- Department of Medicinal Chemistry , Shanghai Institute of Materia Medica , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai , 201203 , China .
| | - Ming-Xing Yin
- Department of Medicinal Chemistry , Shanghai Institute of Materia Medica , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai , 201203 , China .
| | - Hai-Xia Lin
- Department of Chemistry , Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai , 200444 , China
| | - Hui-Xiong Dai
- Department of Medicinal Chemistry , Shanghai Institute of Materia Medica , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai , 201203 , China .
| | - Jin-Quan Yu
- Department of Chemistry , The Scripps Research Institute , 10550N. Torrey Pines Road , La Jolla , California 92037 , USA
| |
Collapse
|
49
|
Li Y, Chang Y, Li Y, Cao C, Yang J, Wang B, Liang D. Iron-Catalyzed exo
-Selective Synthesis of Cyanoalkyl Indolines via Cyanoisopropylarylation of Unactivated Alkenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800296] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanni Li
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Yu Chang
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Yufen Li
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Cheng Cao
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Jinshuang Yang
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Baoling Wang
- Yunnan Engineering Technology Research Center for Plastic Films; Kunming 650214 People's Republic of China
| | - Deqiang Liang
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
- Yunnan Engineering Technology Research Center for Plastic Films; Kunming 650214 People's Republic of China
| |
Collapse
|
50
|
Synthesis of pyrroles via ruthenium-catalyzed nitrogen-transfer [2 + 2 + 1] cycloaddition of α,ω-diynes using sulfoximines as nitrene surrogates. Commun Chem 2018. [DOI: 10.1038/s42004-018-0022-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|