1
|
Fan J, Yan Q, Wang X, Li L, Li Z. Radical alkylation of acrylamides with peroxides to access mono/dialkylated fused N-heterocycles. Org Biomol Chem 2024. [PMID: 39440932 DOI: 10.1039/d4ob01555j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A simple mono/dialkylation of acrylamide derivatives was achieved, affording diverse mono/dialkylated benzo[4,5]imidazo[2,1-a]isoquinolines or polycyclic coumarins with good substrate scope. This system used common peroxides as alkylating reagents. Meanwhile, a series of scaled-up reactions and mechanistic explorations well demonstrated the application and reaction process of this cascade system.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Qinqin Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Xueli Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Lijun Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Zejiang Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
2
|
Chi D, Qi H, Wang L, Chen S. Pd-Catalyzed cascade Heck cyclization/carbonylation of indoles with aryl formates: enantioselective construction of indolo[2,1- a]isoquinolines. Chem Commun (Camb) 2024; 60:8613-8616. [PMID: 39046243 DOI: 10.1039/d4cc02577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An efficient palladium-catalyzed cascade cyclization/carbonylation of indoles with aryl formates to access ester-functionalized indolo[2,1-a]isoquinoline scaffolds has been developed. In addition, an asymmetric variant is also achieved using a chiral phosphine ligand, affording the indolo[2,1-a]isoquinoline products in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Dongmei Chi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Leming Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
3
|
Hannam A, Kankraisri P, Thombare KR, Meher P, Jean A, Hilton ST, Murarka S, Arseniyadis S. Visible light-mediated difluoromethylation/cyclization in batch and flow: scalable synthesis of CHF 2-containing benzimidazo- and indolo[2,1- a]isoquinolin-6(5 H)-ones. Chem Commun (Camb) 2024; 60:7938-7941. [PMID: 38984848 DOI: 10.1039/d4cc02557a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We report here a practical and cost-effective method for the synthesis of CHF2-containing benzimidazo- and indolo[2,1,a]-isoquinolin-6(5H)-ones through a visible light-mediated difluoromethylation/cyclization cascade. The method, which affords functionalized multifused N-heterocyclic scaffolds in moderate to high yields under mild reaction conditions, is also easily scalable using low-cost 3D printed photoflow reactors.
Collapse
Affiliation(s)
- Al Hannam
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Phinyada Kankraisri
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Karan R Thombare
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stephen T Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Stellios Arseniyadis
- Department of Chemistry, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
4
|
Sadaphal VA, Wu TL, Liu RS. Synthesis of two nitrogen-containing polyaromatic compounds through gold catalysis/DBU-promoted cyclizations. Chem Commun (Camb) 2024; 60:4294-4297. [PMID: 38546213 DOI: 10.1039/d4cc00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This work reports an efficient synthesis of novel benzo[7,8]indolizino[2,3,4,5-ija]quinazoline derivatives between 2-(2-ethynylaryl)acetonitriles 1 and anthranils 2. The synthetic approach involves the initial formation of 7-formylindole intermediates that can be implemented by DBU to activate a novel indole-nitrile-aldehyde cyclization.
Collapse
Affiliation(s)
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
5
|
Lim JM, Shim S, Bui HT, Kim J, Kim HJ, Hwa Y, Cho S. Substitution Effect of a Single Nitrogen Atom on π-Electronic Systems of Linear Polycyclic Aromatic Hydrocarbons (PAHs): Theoretically Visualized Coexistence of Mono- and Polycyclic π-Electron Delocalization. Molecules 2024; 29:784. [PMID: 38398536 PMCID: PMC10892997 DOI: 10.3390/molecules29040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
We theoretically investigated the nitrogen substitution effect on the molecular structure and π-electron delocalization in linear nitrogen-substituted polycyclic aromatic hydrocarbons (N-PAHs). Based on the optimized molecular structures and magnetic field-induced parameters of fused bi- and tricyclic linear N-PAHs, we found that the local π-electron delocalization of subcycles (e.g., mono- and bicyclic constituent moieties) in linear N-PAHs is preserved, despite deviation from ideal structures of parent monocycles. The introduction of a fused five-membered ring with a pyrrolic N atom (N-5MR) in linear N-PAHs significantly perturbs the π-electronic condition of the neighboring fused six-membered ring (6MR). Monocyclic pyrrole exhibits substantial bond length alternations, strongly influencing the π-electronic systems of both the fused N-5MR and 6MR in linear N-PAHs, depending on the location of shared covalent bonds. A fused six-membered ring with a graphitic N atom in an indolizine moiety cannot generate monocyclic π-electron delocalization but instead contributes to the formation of polycyclic π-electron delocalization. This is evidenced by bifurcated diatropic ring currents induced by an external magnetic field. In conclusion, the satisfaction of Hückel's 4n + 2 rule for both mono- and polycycles is crucial for understanding the overall π-electron delocalization. It is crucial to consider the unique characteristics of the three types of substituted N atoms and the spatial arrangement of 5MR and 6MR in N-PAHs.
Collapse
Affiliation(s)
- Jong Min Lim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Hoa Thi Bui
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (H.T.B.); (J.K.)
| | - Jimin Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (H.T.B.); (J.K.)
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea;
| | - Yoon Hwa
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Sung Cho
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (H.T.B.); (J.K.)
| |
Collapse
|
6
|
Zhang H, Zi Y, Cao C, Huang W, Jiang A, Lu C, He J, Tang Y, Wu ZG. Base Metal-Controlled Chemodivergent Cyclization of Propargylamines for the Atom-Economic Synthesis of Nitrogen Heterocycles. Org Lett 2023; 25:9030-9035. [PMID: 38019556 DOI: 10.1021/acs.orglett.3c03725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Herein, a base metal-enabled chemodivergent cyclization of propargylamines for the atom-economic construction of nitrogen heterocycles has been developed. Due to the different modes of activation of metal to propargylamine, copper-catalyzed 6-endo-dig cyclization generates functionalized 2-substitued quinoline-4-carboxylates, while iron-promoted cascade amino Claisen rearrangement, aromatization, and aza-Michael addition afford diverse 2-substituted indole-3-carboxylate derivatives. Excellent selectivity, broad functional group tolerance, mild conditions, and flexible late-stage functionalization illustrate the high efficiency and synthetic utility of this chemodivergent reaction.
Collapse
Affiliation(s)
- Hui Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chenhui Cao
- Anhui Sholon New Material Technology Company, Ltd., Chuzhou, Anhui 239500, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Aiwei Jiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaowu Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Jie He
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
7
|
Liu S, Zhao C, Pan M, Liao H, Liu Y, Zhang J, Rong L. Copper(I)-Catalyzed Radical Carbamylation/Cyclization of 2-Aryl- N-methacryloylindoles with Substituted Formamides to Assemble Amidated Indolo[2,1- a]isoquinolin-6(5 H)-ones. J Org Chem 2023; 88:16352-16364. [PMID: 37971731 DOI: 10.1021/acs.joc.3c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
An efficient synthesis of amidated indolo[2,1-a]isoquinolin-6(5H)-ones has been achieved via copper(I)-catalyzed radical carbamylation/cyclization of 2-aryl-N-methacryloylindoles with substituted formamides. In this reaction, an isoquinoline ring was constructed by carbamylation of a carbon-carbon double bond in 2-arylindoles. This strategy successfully introduces the substituted amide group into the indolo[2,1-a]isoquinoline skeleton and has advantages such as wide substituent scope, mild reaction conditions, high regioselectivity, and good to excellent yields.
Collapse
Affiliation(s)
- Shengjun Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Congcong Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Mei Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Hailin Liao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Yun Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221006, Jiangsu, PR China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| |
Collapse
|
8
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
9
|
Meher P, Samanta RK, Manna S, Murarka S. Visible light photoredox-catalyzed arylative cyclization to access benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Chem Commun (Camb) 2023; 59:6092-6095. [PMID: 37128950 DOI: 10.1039/d3cc00605k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photoredox-catalyzed arylative radical cascade involving N-acryloyl-2-arylbenzoimidazoles and diaryliodonium triflates leading to the formation of a broad array of pharmaceutically important arylated-benzimidazo[2,1-a]isoquinolin-6(5H)-ones is described. Importantly, the synthesized benzimidazoisoquinolinones are amenable for further synthetic manipulation and allowed efficient access to benzimidazo-fused polycyclic heterocycles.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Raj Kumar Samanta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sourav Manna
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
10
|
Sui K, Leng Y, Wu Y. Synthesis of Difluoroarymethyl-Substituted Benzimidazo[2,1- a]isoquinolin-6(5 H)-ones under Mild Conditions. ACS OMEGA 2023; 8:7517-7528. [PMID: 36872989 PMCID: PMC9979369 DOI: 10.1021/acsomega.2c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A highly efficient method for synthesis of difluoroarymethyl-substituted benzimidazo[2,1-a]isoquinolin-6(5H)-ones using 2-arylbenzoimidazoles with α,α-difluorophenylacetic acid as reaction substrates has been developed through radical cascade cyclization. The advantage of this strategy lies in excellent functional group tolerance to generate the corresponding products in good yields under base- and metal-free conditions.
Collapse
|
11
|
Matsuyama H, Zhang X, Terada M, Jin T. Construction of Alkylidene Fluorene Scaffolds Using Pd-Catalyzed Direct Arene/Alkene Coupling Strategy. Org Lett 2023; 25:800-804. [PMID: 36700879 DOI: 10.1021/acs.orglett.2c04307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A versatile synthetic method for the construction of alkylidene fluorenes and their heteroarene derivatives has been developed successfully by means of a Pd(II)-catalyzed direct C-H/C-H coupling of o-alkenyl biaryls. Use of the Pd(OAc)2 catalyst under aerobic oxidation conditions gives rise to the corresponding alkylidene fluorenes having various functional groups and diversely fused polycyclic systems. The resulting products can serve as versatile synthetic building blocks for the construction of structurally diverse polycyclic arenes and heteroarenes.
Collapse
Affiliation(s)
- Hidenori Matsuyama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Xuan Zhang
- Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Tienan Jin
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
12
|
Wang S, Li S, Liu L, Ying J, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Amide-Containing Indolo[2,1- a]isoquinolines from Alkene-Tethered Indoles and Nitroarenes. Org Lett 2023; 25:821-825. [PMID: 36717216 DOI: 10.1021/acs.orglett.2c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this new procedure, amide-containing indolo[2,1-a]isoquinoline scaffolds were prepared by palladium-catalyzed carbonylative cyclization of alkene-tethered indoles with nitroarenes. By using Mo(CO)6 as the CO source and reductant and nitroarenes as the nitrogen source, this reaction produced various amide-containing indolo[2,1-a]isoquinoline derivatives in good yields in general. Furthermore, the late-stage modifications of bioactive molecules using this protocol were demonstrated as well.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuwei Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liangcai Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
13
|
Yu WQ, Xiong BQ, Zhong LJ, Liu Y. Visible-light-promoted radical cascade alkylation/cyclization: access to alkylated indolo/benzoimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2022; 20:9659-9671. [PMID: 36416184 DOI: 10.1039/d2ob01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new protocol is herein described for the direct generation of alkylated indolo/benzoimidazo[2,1-a]isoquinolin-6(5H)-one derivatives by using Hantzsch esters as alkylation radical precursors using a photoredox/K2S2O8 system. This oxidative alkylation of active alkenes involves a radical cascade cyclization process and a sequence of Hantzsch ester single electron oxidation, C-C bond cleavage, alkylation, arylation and oxidative deprotonation.
Collapse
Affiliation(s)
- Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
14
|
Tan Z, Jiang Y, Xu K, Zeng C. Electrophotoredox/Cerium-Catalyzed Unactivated Alkanes Activation for the Sustainable Synthesis of Alkylated Benzimidazo-Fused Isoquinolinones. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Heckershoff R, May G, Däumer J, Eberle L, Krämer P, Rominger F, Rudolph M, Mulks FF, Hashmi ASK. Entropy-Induced Selectivity Switch in Gold Catalysis: Fast Access to Indolo[1,2-a]quinolines. Chemistry 2022; 28:e202201816. [PMID: 35699266 DOI: 10.1002/chem.202201816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/07/2023]
Abstract
New N-heterocyclic compounds for organic functional materials and their efficient syntheses are highly demanded. A surprising entropy-induced selectivity switch in the gold-catalyzed intramolecular hydroarylation of 2-ethynyl N-aryl indoles was found and its exploitation led to straightforward syntheses of indolo[1,2-a]quinolines. Experimental and computational mechanistic investigations gave insight into this uncommon selectivity phenomenon and into the special reactivity of the indolo[1,2-a]quinolines. The high functional group tolerance of this methodology enabled access to a diverse scope with high yields. In addition, bidirectional approaches, post-functionalization reactions, and π-extension of the core structure were feasible. An in-depth study of the photophysical properties explored the structure-effect relationship for different derivatives and revealed a high potential of these compounds for future applications as functional materials.
Collapse
Affiliation(s)
- Robin Heckershoff
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Garrett May
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Janika Däumer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Florian F Mulks
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141 (Republic of, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
16
|
Palladium-catalyzed carbonylative cyclization of alkene-tethered indoles with phenols or arylboronic acids: construction of carbonyl-containing indolo[2,1-a]isoquinoline derivatives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang JS, Zhang J, Wang S, Ying J, Li CY, Wu XF. Palladium-catalyzed domino carbonylative cyclization to access functionalized heterocycles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Li Z, Cao Y, Chen L, Rong D, Huang G, Xie Y. Copper-catalyzed radical cascade cyclization: Synthesis of benzylated benzimidazo [2,1-a]isoquinoline-6(5H)-ones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Tang L, Ouyang Y, Sun K, Yu B. Visible-light-promoted decarboxylative radical cascade cyclization to acylated benzimidazo/indolo[2,1- a]isoquinolin-6(5 H)-ones in water. RSC Adv 2022; 12:19736-19740. [PMID: 35865204 PMCID: PMC9260743 DOI: 10.1039/d2ra03467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
A metal-free visible-light-induced decarboxylative radical addition/cyclization procedure at room temperature was described for the synthesis of acylated benzimidazo/indolo[2,1-a]isoquinolines. The procedure was prepared in water via a reaction of functionalized 2-arylbenzoimidazoles or 2,3-diarylindoles and α-oxocarboxylic acids in the presence of phenyliodine(iii) diacetate (PIDA) in one step under mild reaction conditions. In this procedure, traditional heating and metal reagents could be effectively avoided to access 1,4-dicarbonyl-containing benzimidazo/indolo[2,1-a]isoquinoline-6(5H)-ones in satisfactory yields.
Collapse
Affiliation(s)
- Lili Tang
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China
| | - Yuejun Ouyang
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China
| | - Kai Sun
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China .,College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Bing Yu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
20
|
Chen Z, Huang X, Sun J, Liu Y, Li Z. Metal‐free Cascade Radical Cyclization of
N
‐Methylacrylyl‐2‐phenylbenzimidazole: Construction of Aryldifluoromethylated Benzimidazole[2,1‐
a
]
iso
‐Quinoline‐6(5
H
)‐ketone. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Yanmin Liu
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| |
Collapse
|
21
|
Guo Y, Huang PF, Liu Y, He BH. Visible-light-induced acylation/cyclization of active alkenes: facile access to acylated isoquinolinones. Org Biomol Chem 2022; 20:3767-3778. [PMID: 35438126 DOI: 10.1039/d2ob00528j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen heterocycles, especially polycyclic compounds, are significant skeletons in valuable molecules. Herein, we developed an efficient and practical visible-light-induced acylation/cyclization of active alkenes with acyl oxime derivatives for constructing acylated indolo/benzimidazo-[2,1,a]isoquinolin-6(5H) ones. This reaction was compatible with various functional groups and a series of fused indole/imidazole skeletons were prepared in up to 95% yield at room temperature.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bin-Hong He
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
22
|
Zhang J, Yang Z, Yu JT, Pan C. Three-component synthesis of arylsulfonyl-substituted indolo[2,1- a]isoquinolinones and benzimidazo-[2,1- a]isoquinolin-6(5 H)-ones by SO 2 insertion and radical cascade cyclization. Org Biomol Chem 2022; 20:3067-3071. [PMID: 35348170 DOI: 10.1039/d2ob00409g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient arylsulfonylation/cyclization of 2-aryl-N-methacryloyl indoles with potassium metabisulfite and aryldiazonium tetrafluoroborates was developed. A series of variously substituted arylsulfonyl indolo[2,1-a]isoquinolin-6(5H)-ones were formed in moderate to good yields via utilization of the nature abundant inorganic salt potassium metabisulfite as a SO2 surrogate. Additionally, this three-component protocol can also be employed for the synthesis of arylsulfonyl-substituted benzimidazo-[2,1-a]isoquinolin-6(5H)-ones.
Collapse
Affiliation(s)
- Jie Zhang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
23
|
Xiao Y, Tang L, Xu TT, Feng JJ. Boron Lewis Acid Catalyzed Intermolecular trans-Hydroarylation of Ynamides with Hydroxyarenes. Org Lett 2022; 24:2619-2624. [PMID: 35389667 DOI: 10.1021/acs.orglett.2c00574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An atom-economic protocol for the efficient and highly chemo- and stereoselective trans-hydroarylation of ynamides with hydroxyarenes catalyzed by B(C6F5)3 has been developed. Use of readily available starting materials, low catalyst loading, mild reaction conditions, a broad substrate scope, ease of scale-up, and versatile functionalizations of the enamide products make this approach very practical and attractive.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
24
|
Kerwin SM, Jewett AL, Bondoc JA, Gilbreath BL, Reinus BJ. Spirocyclic Products via Carbene Intermediates from Thermolysis of 1,2-Dialkynylpyrrole and 1,2-Diethynylimidazole. Synlett 2022. [DOI: 10.1055/s-0041-1737937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe thermal rearrangements of 1,2-dialkynylimidazoles have been shown to lead to trapping products of cyclopenta[b]pyrazine carbene intermediates. Here we show that a similar rearrangement also occurs in the case of 1,2-diethynyl-1H-pyrrole, and that trapping the intermediate cyclopenta[b]pyridine carbene with solvent THF affords an ylide that undergoes a Stevens rearrangement to a spirocyclic product. An analogous rearrangement and trapping is observed for thermolysis of 1,2-dialkynylimidazoles in THF or 1,4-dioxane.
Collapse
Affiliation(s)
- Sean M. Kerwin
- Department of Chemistry and Biochemistry, Texas State University
| | - Ashley L. Jewett
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin
| | - Joshua A. Bondoc
- Department of Chemistry and Biochemistry, Texas State University
| | - Bradford L. Gilbreath
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin
| | | |
Collapse
|
25
|
Tang Y, Huang H, Li M, Wang F, Hu X, Zhang X. Copper-Catalyzed Oxidative Cascade Cyclization of Activated Alkenes with Azobis Compounds: Access to Cyano-Substituted Benzimidazo[2,1-a]isoquinolin-6(5H)-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428021120174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Liu ML, Wang JL, Li XS, Sun WH, Liu XY. Copper-Catalyzed Amino Radical Tandem Cyclization toward the Synthesis of Indolo-[2,1-a]isoquinolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00051b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a convenient process to the synthesis of indolo-[2,1-a]isoquinoline tetracyclic skeletons in one-pot via a low-cost copper-catalyzed tandem amino radical cyclization, in which one C-C bond and one C-N...
Collapse
|
27
|
Liu B, Wang Z, Sun K, Tang S, Wang X. Silver-Mediated Radical Trifluoromethylthiolation Cyclization: Synthesis of CF 3S-Containing Benzimidazole[2,1- a]isoquinolines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Kwak H, Kang E, Song JY, Kang G, Joo JM. Pd‐Catalyzed Cyclization of Alkynyl Norbornene Derivatives for the Synthesis of Benzofused Heteroarenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hayeon Kwak
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | - Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | - Jae Yeong Song
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | - Geunhee Kang
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
29
|
Kang QQ, Zhang WK, Ge GP, Zheng H, Wei WT. The construction of benzimidazo[2,1- a]isoquinolin-6(5 H)-ones from N-methacryloyl-2-phenylbenzoimidazoles through radical strategies. Org Biomol Chem 2021; 19:8874-8885. [PMID: 34610071 DOI: 10.1039/d1ob01465j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzimidazo[2,1-a]isoquinolin-6(5H)-one constitutes a structurally unique class of tetracyclic N-heterocycles that are found throughout a myriad of biologically active natural products, pharmaceutical compounds, and functional materials. Various synthetic routes for the preparation of benzimidazo[2,1-a]isoquinolin-6(5H)-ones have been reported. In particular, the use of N-methacryloyl-2-phenylbenzoimidazoles to construct benzimidazo[2,1-a]isoquinolin-6(5H)-ones through various radical strategies have attracted widespread attention due to the versatility and simple preparation of raw materials, as well as the step-economy and mild reaction conditions. Using representative examples, we highlight significant progress in the synthesis of benzimidazo[2,1-a]isoquinolin-6(5H)-ones, including the selection of the catalytic system, substrate scope, mechanistic understanding, and applications. The contents of this review focus on the development of C-, S-, P-, and Si-centered radical addition-intramolecular cyclization strategies.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei-Kang Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
30
|
Lenko I, Mamontov A, Alayrac C, Legay R, Witulski B. Media‐Driven Pd‐Catalyzed Reaction Cascades with 1,3‐Diynamides Leading Selectively to Either Indoles or Quinolines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Illia Lenko
- Laboratoire de Chimie Moléculaire et Thio-organique CNRS UMR 6507 ENSICAEN & UNICAEN Normandie Univ. 6 Bvd Maréchal Juin 14050 Caen France
| | - Alexander Mamontov
- Laboratoire de Chimie Moléculaire et Thio-organique CNRS UMR 6507 ENSICAEN & UNICAEN Normandie Univ. 6 Bvd Maréchal Juin 14050 Caen France
| | - Carole Alayrac
- Laboratoire de Chimie Moléculaire et Thio-organique CNRS UMR 6507 ENSICAEN & UNICAEN Normandie Univ. 6 Bvd Maréchal Juin 14050 Caen France
| | - Rémi Legay
- Laboratoire de Chimie Moléculaire et Thio-organique CNRS UMR 6507 ENSICAEN & UNICAEN Normandie Univ. 6 Bvd Maréchal Juin 14050 Caen France
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique CNRS UMR 6507 ENSICAEN & UNICAEN Normandie Univ. 6 Bvd Maréchal Juin 14050 Caen France
| |
Collapse
|
31
|
Lenko I, Mamontov A, Alayrac C, Legay R, Witulski B. Media-Driven Pd-Catalyzed Reaction Cascades with 1,3-Diynamides Leading Selectively to Either Indoles or Quinolines. Angew Chem Int Ed Engl 2021; 60:22729-22734. [PMID: 34411395 DOI: 10.1002/anie.202110221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/10/2022]
Abstract
Divergent Pd-catalyzed reaction cascades with various 1,3-diynamides yielding either 2-amino-3-alkynylindoles or 2-amino-4-alkenylquinolines were established. Omitting or adding TBAF (tetrabutylammonium fluoride) to the reaction of N,N-(2-iodophenyl)(4-toluenesulfonyl)-1,3-diynamides with secondary or primary amines in the presence of KOH in THF and catalytic amounts of Pd(PPh3 )4 completely changed the outcome of the reaction. In the absence of TBAF, 2-amino-3-alkynylindoles were the sole products, while the presence of TBAF switched the product formation to 2-amino-4-alkenylquinolines. Deuterium labeling proceeded selectively at the C3 and C11 positions of the 2-amino-4-alkenylquinoline products and this suggests the unprecedented formation of [4]cumulenimines from 1,3-diynamides as reactive key intermediates.
Collapse
Affiliation(s)
- Illia Lenko
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Alexander Mamontov
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Carole Alayrac
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Rémi Legay
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| |
Collapse
|
32
|
Rao MLN, Islam SS, Dasgupta P. Copper-catalyzed domino synthesis of ynamines. Org Biomol Chem 2021; 19:7855-7860. [PMID: 34549214 DOI: 10.1039/d1ob01383a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hitherto unexplored N-alkynylation of electron-withdrawing or protecting group free N-heteroarenes such as indole, carbazole and pyrrole was developed using gem-dibromoalkenes to synthesize ynamines under ligand-free copper-catalyzed domino conditions. The development methodology of ynamines was also applied in the synthesis of enynamines, multi-coupled bis-ynamines, tris-ynamines, and the natural product peyonine, demonstrating its broad synthetic scope and applications.
Collapse
Affiliation(s)
- Maddali L N Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.
| | - Sk Shamim Islam
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.
| | - Priyabrata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
33
|
Wang C, Sun G, Huang HL, Liu J, Tang H, Li Y, Hu H, He S, Gao F. Visible-Light-Driven Sulfonylation/Cyclization to Access Sulfonylated Benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones. Chem Asian J 2021; 16:2618-2621. [PMID: 34342941 DOI: 10.1002/asia.202100681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Indexed: 12/17/2022]
Abstract
Visible-light-driven sulfonylation/cyclization of N-methacryloyl-2-phenylbenzoimidazoles has been successfully developed. Using commercially available sulfonyl chloride as sulfonylation reagent, a wide range of sulfonylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones with potential antitumor activity were provided in acceptable to excellent yields. This method has the advantages of mild reaction conditions and outstanding functional group tolerance, and provides a new strategy for the development of potential antitumor lead compounds.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Guoquan Sun
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, P. R. China
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Shandong, 252059, P. R. China
| | - Jing Liu
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hua Tang
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yinghua Li
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Honggang Hu
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shipeng He
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Fei Gao
- Institute of Translation Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
34
|
Zhao B, Hammond GB, Xu B. Aromatic Ketone-Catalyzed Photochemical Synthesis of Imidazo-isoquinolinone Derivatives. J Org Chem 2021; 86:12851-12861. [PMID: 34436893 DOI: 10.1021/acs.joc.1c01486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed an efficient photocatalytic decarboxylative radical addition/cyclization strategy to synthesize imidazo-isoquinolinone derivatives using inexpensive aromatic ketone photocatalysts. This method not only tolerates a wide range of functional groups but also works well for both alkyl and aryl radicals.
Collapse
Affiliation(s)
- Bin Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
35
|
Shelke YG, Hande PE, Gharpure SJ. Recent advances in the synthesis of pyrrolo[1,2- a]indoles and their derivatives. Org Biomol Chem 2021; 19:7544-7574. [PMID: 34524330 DOI: 10.1039/d1ob01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pyrrolo[1,2-a]indole unit is a privileged heterocycle found in numerous natural products and has been shown to exhibit diverse pharmacological properties. Thus, recent years have witnessed immense interest from the synthesis community on the synthesis of this scaffold. In light of the ever-increasing demand for pyrrolo[1,2-a]indoles in drug discovery, this review provides an overview of recent synthesis methods for the preparation of pyrrolo[1,2-a]indoles and their derivatives. The mechanistic pathway and stereo-electronic factors affecting the yield and selectivity of the product are briefly explained. Furthermore, we have attempted to demonstrate the utility of the developed methods in the synthesis of bioactive molecules and natural products, wherever offered.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
36
|
Pan C, Yuan C, Yu J. Molecular Oxygen‐Mediated Radical Cyclization of Acrylamides with Boronic Acids. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Changduo Pan
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou 213001 People's Republic of China
| | - Cheng Yuan
- School of Chemical and Environmental Engineering Jiangsu University of Technology Changzhou 213001 People's Republic of China
| | - Jin‐Tao Yu
- School of Petrochemical Engineering Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology Changzhou University Changzhou 213164 People's Republic of China
| |
Collapse
|
37
|
Abstract
Organocatalysts are abundantly used for various transformations, particularly to obtain highly enantio- and diastereomeric pure products by controlling the stereochemistry. These applications of organocatalysts have been the topic of several reviews. Organocatalysts have emerged as one of the very essential areas of research due to their mild reaction conditions, cost-effective nature, non-toxicity, and environmentally benign approach that obviates the need for transition metal catalysts and other toxic reagents. Various types of organocatalysts including amine catalysts, Brønsted acids, and Lewis bases such as N-heterocyclic carbene (NHC) catalysts, cinchona alkaloids, 4-dimethylaminopyridine (DMAP), and hydrogen bond-donating catalysts, have gained renewed interest because of their regioselectivity. In this review, we present recent advances in regiodivergent reactions that are governed by organocatalysts. Additionally, we briefly discuss the reaction pathways of achieving regiodivergent products by changes in conditions such as solvents, additives, or the temperature.
Collapse
|
38
|
Kuribara T, Nakajima M, Nemoto T. Mechanistic Studies of the Pd- and Pt-Catalyzed Selective Cyclization of Propargyl/Allenyl Complexes. J Org Chem 2021; 86:9670-9681. [PMID: 34176262 DOI: 10.1021/acs.joc.1c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following the discovery of an unusual transition-metal-catalyzed reaction, the elucidation of the underlying mechanism is essential to understand the characteristic reactivity of the metal. We previously reported a synthetic method for tricyclic indoles using Pt-catalyzed Friedel-Crafts-type C-H coupling. In this reaction, the Pt catalyst selectively formed a seven-membered ring, but the Pd catalyst only afforded a six-membered ring. However, the reasons for the different selectivities caused by Pd and Pt were unclear. We performed density functional theory (DFT) calculations and experimental studies to reveal the origin of the different behaviors of the two metals. The calculations revealed that the formation of the six- and seven-membered rings proceeds via η1-allenyl and η3-propargyl/allenyl complexes, respectively. A molecular orbital analysis of the η3-propargyl/allenyl complex revealed that, for the platinum complex, the energy required to convert the unoccupied molecular orbital on the reactive carbon into the lowest unoccupied molecular orbital (LUMO) was lower than that for the palladium complex. In addition, DFT calculations revealed that the combination of platinum and bis[2-(diphenylphosphino)phenyl] ether (DPEphos) reduced the activation energy of the seven-membered cyclization in comparison with palladium or PPh3. Additional experimental studies, including NMR studies and stoichiometric reactions, support the aforementioned examination.
Collapse
Affiliation(s)
- Takahito Kuribara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
39
|
Pan C, Yuan C, Yu JT. Peroxide-mediated synthesis of benzimidazo[2,1- a]isoquinoline-6(5 H)-ones via cascade methylation/ethylation and intramolecular cyclization. Org Biomol Chem 2021; 19:619-626. [PMID: 33367428 DOI: 10.1039/d0ob02383c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A metal-free oxidative radical methylation/arylation of 2-arylbenzoimidazoles with DTBP as the oxidant and methyl radical source was developed. The reaction proceeds through a sequential methyl radical addition/cyclization pathway and affords a series of methyl functionalized benzimidazo[2,1-a]isoquinoline-6(5H)-ones in moderate to good yields. Besides, the ethylation/arylation of 2-arylbenzoimidazoles was also achieved with DTAP.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Cheng Yuan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
40
|
Markovič M, Koóš P, Čarný T, Gracza T. Recent advances in the construction of isoindolo[2,1-a]indol/indolin-6-ones via C C cross-coupling reactions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Nikonov IL, Kopchuk DS, Zyryanov GV, Chupakhin ON. Synthetic approaches to pyrido[1,2-a]indoles (microreview). Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Sun K, Li G, Li Y, Yu J, Zhao Q, Zhang Z, Zhang G. Oxidative Radical Relay Functionalization for the Synthesis of Benzimidazo[2,1‐
a
]iso‐quinolin‐6(5
H
)‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000040] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kai Sun
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang 455000 People's Republic of China
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
| | - Guofeng Li
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
| | - Yuyang Li
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang 455000 People's Republic of China
| | - Jie Yu
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang 455000 People's Republic of China
| | - Qing Zhao
- College of Chemistry and Chemical EngineeringAnyang Normal University Anyang 455000 People's Republic of China
| | - Zhiguo Zhang
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
| | - Guisheng Zhang
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
| |
Collapse
|
43
|
Lu H, Yang X, Zhou L, Li W, Deng G, Yang Y, Liang Y. Palladium-catalyzed domino Heck-disilylation and -borylation of alkene-tethered 2-(2-halophenyl)-1H-indoles: access to diverse disilylated and borylated indolo[2,1-a]isoquinolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00492h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A chemoselective domino Heck-disilylation and -borylation reaction for generating various disilylated and borylated tetracyclic indolo[2,1-a]isoquinolines has been developed.
Collapse
Affiliation(s)
- Haiyan Lu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Liwei Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Wenguang Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research
- Ministry of Education
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- College of Chemistry and Chemical Engineering
| |
Collapse
|
44
|
Jiang SS, Xiao YT, Wu YC, Luo SZ, Song RJ, Li JH. Manganese(iii)-promoted tandem phosphinoylation/cyclization of 2-arylindoles/2-arylbenzimidazoles with disubstituted phosphine oxides. Org Biomol Chem 2020; 18:4843-4847. [PMID: 32608447 DOI: 10.1039/d0ob00877j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and practical method for the synthesis of phosphoryl-substituted indolo[2,1-a]isoquinolin-6(5H)-ones and benzimidazo[2,1-a]isoquinolin-6(5H)-ones through manganese(iii)-promoted tandem phosphinoylation/cyclization of 2-arylindoles or 2-arylbenzimidazoles with disubstituted phosphine oxides was developed. In this transformation, new C-P bond and C-C bond were constructed simultaneously under silver-free conditions, exhibiting a broad substrate scope. It was noted that not only diarylphosphine oxides but also dialkyl and arylalkyl-phosphine oxides were compatible with the conditions.
Collapse
Affiliation(s)
- Shuai-Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu-Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yan-Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Shu-Zheng Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| |
Collapse
|
45
|
Yuan Y, Pan G, Zhang X, Li B, Xiang S, Huang Q. Synthesis of Seven-Membered Azepino[3,2,1-hi]indoles via Rhodium-Catalyzed Regioselective C–H Activation/1,8-Diazabicyclo[5.4.0]undec-7-ene-Catalyzed Intramolecular Amidation of 7-Phenylindoles in One Pot. J Org Chem 2019; 84:14701-14711. [DOI: 10.1021/acs.joc.9b02289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Sun K, Si Y, Chen X, Lv Q, Peng Y, Qu L, Yu B. Synthesis of Phosphoryl‐Substituted Benzimidazo[2,1‐
a
]isoquinolin‐6(5
H
)‐ones from 2‐Arylbenzoimidazoles and Diarylphosphine Oxides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900570] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Sun
- College of ChemistryZhengzhou University Zhengzhou 450001 China
| | - Ya‐Feng Si
- College of ChemistryZhengzhou University Zhengzhou 450001 China
| | - Xiao‐Lan Chen
- College of ChemistryZhengzhou University Zhengzhou 450001 China
| | - Qi‐Yan Lv
- College of ChemistryZhengzhou University Zhengzhou 450001 China
- Henan Nonferrous Metals Geological Exploration Institute Zhengzhou 450052 China
| | - Yu‐Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 China
| | - Ling‐Bo Qu
- College of ChemistryZhengzhou University Zhengzhou 450001 China
| | - Bing Yu
- College of ChemistryZhengzhou University Zhengzhou 450001 China
- Henan Nonferrous Metals Geological Exploration Institute Zhengzhou 450052 China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
47
|
Yang X, Lu H, Zhu X, Zhou L, Deng G, Yang Y, Liang Y. Palladium-Catalyzed Cascade Cyclization of Alkene-Tethered Aryl Halides with o-Bromobenzoic Acids: Access to Diverse Fused Indolo[2,1-a]isoquinolines. Org Lett 2019; 21:7284-7288. [DOI: 10.1021/acs.orglett.9b02541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Haiyan Lu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaoming Zhu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Liwei Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
48
|
Liu A, Han Q, Zhang X, Li B, Huang Q. Transition-Metal-Controlled Synthesis of 11H-Benzo[a]carbazoles and 6-Alkylidene-6H-isoindo[2,1-a]indoles via Sequential Intermolecular/Intramolecular Cross-Dehydrogenative Coupling from 2-Phenylindoles. Org Lett 2019; 21:6839-6843. [DOI: 10.1021/acs.orglett.9b02476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anyi Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Qingshuai Han
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine, Fujian Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
49
|
Diastereoselective pot-and atom-economical synthesis of densely-substituted polycyclic 1,2- and 1,2,3-fused indole scaffolds. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Abstract
Heterocycles are very common substructures in a number of pharmaceuticals. Over the past several years, the use of palladium-catalyzed oxidative cyclization for heterocyclic synthesis has become much more prevalent. This review collects recent reports using palladium catalysis to synthesize a wide variety of heterocyclic scaffolds. Many of these reactions use oxygen as the terminal oxidant. Some salient mechanistic features are discussed.
Collapse
Affiliation(s)
- John C. Hershberger
- Department of Chemistry and Physics, Arkansas State University, State University, AR, United States
| |
Collapse
|