1
|
Nguyen THV, Chelli S, Mallet-Ladeira S, Breugst M, Lakhdar S. Reactivity of the phosphaethynolate anion with stabilized carbocations: mechanistic studies and synthetic applications. Chem Sci 2024:d4sc03518f. [PMID: 39165734 PMCID: PMC11331332 DOI: 10.1039/d4sc03518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024] Open
Abstract
The reactivity of sodium phosphaethynolate Na(OCP) towards various Mayr's reference electrophiles was investigated using conventional UV-visible and laser-flash photolysis techniques. The kinetic data, along with density functional theory (DFT) calculations, enabled the first experimental quantification of the phosphorus nucleophilicity of [OCP]-. Product studies of these reactions demonstrate the formation of secondary as well as tertiary phosphines. The mechanism of this unprecedented phosphorus-atom transfer reaction is thoroughly discussed, with key intermediates successfully isolated and characterized. Importantly, some bulky secondary phosphine oxides synthesized using this approach, have demonstrated high efficiency as ligands in the Suzuki coupling reaction.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Saloua Chelli
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz 09111 Chemnitz Germany
| | - Sami Lakhdar
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| |
Collapse
|
2
|
Bhunia M, Mohar JS, Sandoval-Pauker C, Fehn D, Yang ES, Gau M, Goicoechea J, Ozarowski A, Krzystek J, Telser J, Meyer K, Mindiola DJ. Softer Is Better for Titanium: Molecular Titanium Arsenido Anions Featuring Ti≡As Bonding and a Terminal Parent Arsinidene. J Am Chem Soc 2024; 146:3609-3614. [PMID: 38290427 DOI: 10.1021/jacs.3c12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We introduce the arsenido ligand onto the TiIV ion, yielding a remarkably covalent Ti≡As bond and the parent arsinidene Ti═AsH moiety. An anionic arsenido ligand is assembled via reductive decarbonylation involving the discrete TiII salt [K(cryptand)][(PN)2TiCl] (1) (cryptand = 222-Kryptofix) and Na(OCAs)(dioxane)1.5 in thf/toluene to produce the mixed alkali ate-complex [(PN)2Ti(As)]2(μ2-KNa(thf)2) (2) and the discrete salt [K(cryptand)][(PN)2Ti≡As] (3) featuring a terminal Ti≡As ligand. Protonation of 2 or 3 with various weak acids cleanly forms the parent arsinidene [(PN)2Ti═AsH] (4), which upon deprotonation with KCH2Ph in thf generates the more symmetric anionic arsenido [(PN)2Ti(As){μ2-K(thf)2}]2 (5). Experimental and computational studies suggest the pKa of 4 to be ∼23, and the bond orders in 2, 3, and 5 are all in the range of a Ti≡As triple bond, with decreasing bond order in 4.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Mohar
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Dominik Fehn
- Departments of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058 Erlangen, Germany
| | - Eric S Yang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Michael Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Jose Goicoechea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Karsten Meyer
- Departments of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Isolation of an Anionic Dicarbene Embedded Sn 2 P 2 Cluster and Reversible CO 2 Uptake. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305545. [PMID: 38018314 PMCID: PMC10837339 DOI: 10.1002/advs.202305545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Decarbonylation of a cyclic bis-phosphaethynolatostannylene [(ADC)Sn(PCO)]2 based on an anionic dicarbene framework (ADC = PhC{N(Dipp)C}2 ; Dipp = 2,6-iPr2 C6 H3 ) under UV light results in the formation of a Sn2 P2 cluster compound [(ADC)SnP]2 as a green crystalline solid. The electronic structure of [(ADC)SnP]2 is analyzed by quantum-chemical calculations. At room temperature, [(ADC)SnP]2 reversibly binds with CO2 and forms [(ADC)2 {SnOC(O)P}SnP]. [(ADC)SnP]2 enables catalytic hydroboration of CO2 and reacts with elemental selenium and Fe2 (CO)9 to afford [(ADC)2 {Sn(Se)P2 }SnSe] and [(ADC)Sn{Fe(CO)4 }P]2 , respectively. All compounds are characterized by multinuclear NMR spectroscopy and their solid-state molecular structures are determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
4
|
Luo YA, Zhao Z, Chen T, Li Y, Zhao Y, Stephan DW, Wu Y. Stannyl phosphaketene as a synthon for phosphorus analogues of β-lactams. Chem Commun (Camb) 2023; 59:10956-10959. [PMID: 37608644 DOI: 10.1039/d3cc03117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The reaction of the stannyl phosphaketene (Nacnac)SnPCO 1 (Nacnac = CH{(CMe)(2,6-iPr2C6H3N)}2) with B(C6F5)3 produced the 1,4-addition product of (Nacnac)SnPCO(B(C6F5)3). However, the corresponding reactions in the presence of dimethyl maleate, diisopropyl fumarate or diethyl-but-2-ynedioate gave [2+2] addition yielding four-membered phosphacycles, ((Nacnac)Sn(MeO2C))CHPC(OB(C6F5)3)CH(CO2Me), [(C6F5)3B)PC(OSn)C(CO2Me)CH(CO2Me)]2, (Nacnac)Sn(iPrO2C)CC(OAl(C6F5)3)P[CH(CO2iPr)CH2(CO2iPr)]CH(CO2iPr), and (Nacnac)SnP (EtO2CCC(CO2Et))CO(B(C6F5)3), respectively. In contrast, the corresponding reaction of phenylacetylene gave the FLP-addition product (Nacnac)SnOC(P)C(Ph)CH(B(C6F5)3). Collectively, this reactivity demonstrates that the stannyl phosphaketene 1 can act as a synthon for P-analogues of β-lactam derivatives.
Collapse
Affiliation(s)
- Yong-An Luo
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Zhao Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Ting Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S3H6, Canada.
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
5
|
Wu Y, Zhao Z, Chen T, Tan J, Qu Z, Grimme S, Zhao Y, Stephan DW. The Varied Frustrated Lewis Pair Reactivity of the Germylene Phosphaketene (CH{(CMe)(2,6- i Pr 2 C 6 H 3 N)} 2 )GePCO. Chemistry 2022; 28:e202200666. [PMID: 35262970 PMCID: PMC9314608 DOI: 10.1002/chem.202200666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/08/2023]
Abstract
The germylene species (CH{(CMe)(2,6-iPr2 C6 H3 N)}2 )GePCO 1 is shown to react with the Lewis acids (E(C6 F5 )3 E=B, Al). Nonetheless, 1 participates in FLP chemistry with electron deficient alkynes or olefins, acting as an intramolecular FLP. In contrast, in the presence of B(C6 F5 )3 and an electron rich alkyne, 1 behaves as Ge-based nucleophile to effect intermolecular FLP addition to the alkyne. This reactivity demonstrates that the reaction pathway is controlled by the nature of the electrophile and nucleophile generated in solution, as revealed by extensive DFT calculations.
Collapse
Affiliation(s)
- Yile Wu
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211ZhejiangP. R. China
- State Key Laboratory of Elemento-Organic ChemistryNankai University30071TianjinP. R. China
| | - Zhao Zhao
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211ZhejiangP. R. China
| | - Ting Chen
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211ZhejiangP. R. China
| | - Jingjie Tan
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211ZhejiangP. R. China
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 453115BonnGermany
| | - Yufen Zhao
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211ZhejiangP. R. China
- Department of ChemistryXiamen UniversityXiamen361005FujianP. R. China
| | - Douglas W. Stephan
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211ZhejiangP. R. China
- Department of ChemistryUniversity of Toronto80 St. George StTorontoONM5S3H6Canada
| |
Collapse
|
6
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
7
|
Hagspiel S, Fantuzzi F, Dewhurst RD, Gärtner A, Lindl F, Lamprecht A, Braunschweig H. Adducts of the Parent Boraphosphaketene H 2 BPCO and their Decarbonylative Insertion Chemistry. Angew Chem Int Ed Engl 2021; 60:13666-13670. [PMID: 33843132 PMCID: PMC8252595 DOI: 10.1002/anie.202103521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Indexed: 01/06/2023]
Abstract
The first examples of Lewis base adducts of the parent boraphosphaketene (H2 B-PCO) and their cyclodimers are prepared. One of these adducts is shown to undergo mild decarbonylation and phosphinidene insertion into a B-C bond of a borole, forming very rare examples of 1,2-phosphaborinines, B/P isosteres of benzene. The strong donor properties of these 1,2-phosphaborinines are confirmed by the synthesis of their π complexes with the Group 6 metals.
Collapse
Affiliation(s)
- Stephan Hagspiel
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Annalena Gärtner
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felix Lindl
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Anna Lamprecht
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
8
|
Hagspiel S, Fantuzzi F, Dewhurst RD, Gärtner A, Lindl F, Lamprecht A, Braunschweig H. Addukte des Stammboraphosphaketens H
2
BPCO und deren Insertionsreaktionen mittels Decarbonylierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Hagspiel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Deutschland
| | - Rian D. Dewhurst
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Annalena Gärtner
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Felix Lindl
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Anna Lamprecht
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
9
|
Schreiber RE, Goicoechea JM. Phosphine Carboxylate-Probing the Edge of Stability of a Carbon Dioxide Adduct with Dihydrogenphosphide. Angew Chem Int Ed Engl 2021; 60:3759-3767. [PMID: 33135848 DOI: 10.1002/anie.202013914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 11/08/2022]
Abstract
We present a new adduct of carbon dioxide with dihydrogenphosphide, that may be prepared either by direct reaction of NaPH2 with carbon dioxide or by hydrolysis of the phosphaethynolate ion (PCO- ). In this hydrolysis transformation, a new mechanism is proposed for the electrophilic reactivity of the phosphaethynolate ion. Protonation to form phosphine carboxylic acid (PH2 COOH) and functionalization to form esters is shown to increase the strength of the P-C interaction, allowing for comparisons to be drawn between this species and the analogous carbamic (NH2 COOH) and carbonic acids (H2 CO3 ). Functionalization of the oxygen atom is found to stabilize the phosphine carboxylate while also allowing solubility in organic solvents whereas phosphorus functionalization is shown to facilitate decarboxylation. Substituent migration occurs in some cases.
Collapse
Affiliation(s)
- Roy E Schreiber
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
10
|
Schreiber RE, Goicoechea JM. Phosphine Carboxylate—Probing the Edge of Stability of a Carbon Dioxide Adduct with Dihydrogenphosphide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roy E. Schreiber
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
11
|
Wilson DWN, Mehta M, Franco MP, McGrady JE, Goicoechea JM. Linkage Isomerism Leading to Contrasting Carboboration Chemistry: Access to Three Constitutional Isomers of a Borylated Phosphaalkene. Chemistry 2020; 26:13462-13467. [PMID: 32495945 PMCID: PMC7702093 DOI: 10.1002/chem.202002226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/03/2022]
Abstract
We describe the reactivity of two linkage isomers of a boryl-phosphaethynolate, [B]OCP and [B]PCO (where [B]=N,N'-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), towards tris- (pentafluorophenyl)borane (BCF). These reactions afforded three constitutional isomers all of which contain a phosphaalkene core. [B]OCP reacts with BCF through a 1,2 carboboration reaction to afford a novel phosphaalkene, E-[B]O{(C6 F5 )2 B}C=P(C6 F5 ), which subsequently undergoes a rearrangement process involving migration of both the boryloxy and pentafluorophenyl substituents to afford Z-{(C6 F5 )2 B}(C6 F5 )C=PO[B]. By contrast, [B]PCO undergoes a 1,3-carboboration process accompanied by migration of the N,N'-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl to the carbon centre.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Meera Mehta
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mauricio P. Franco
- Instituto de QuímicaUniversity of São PauloAv. Prof. Lineu Prestes, 748—Vila UniversitariaSão Paulo—SP05508-000Brazil
| | - John E. McGrady
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
12
|
Suter R, Wagner M, Querci L, Conti R, Benkő Z, Grützmacher H. 1,3,4-Azadiphospholides as building blocks for scorpionate and bidentate ligands in multinuclear complexes. Dalton Trans 2020; 49:8201-8208. [PMID: 32501468 DOI: 10.1039/d0dt01864c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulated oxy-substituted 1,3,4-azadiphospholides such as the anion in Na[1] are readily accessible phosphorus heterocycles made from the phosphaethynolate anion (OCP)- and 2-chloropyridines. The sodium salt Na[1] reacts with oxophilic element halides such as OPCl3, PhSiCl3, PhBCl2 and CpTiCl3 at room temperature to form exclusively the oxygen bound tris-substituted compounds E(1)3 (with E = OP, PhSi, PhB- or CpTi). Six equivalents of Na[1] with group four metal chlorides MCl4 (M = Ti, Zr, Hf) form cleanly the hexa-substituted dianions (Na2[M(1)6]) which are isolated in excellent yields. The titanium complexes are deeply coloured species due to ligand to metal charge transfer (LMCT) excitations. In all complexes, the phosphorus atoms of the azadiphosphole moieties are able to coordinate to a soft metal center as shown in their reactions with [Mo(CO)3Mes], yielding complexes in which the Mo(CO)3 binds in a fac manner. Functionalization of the oxy group with amino phosphanes allows isolation of tridentate ligands, which have been used as synthons for macrocyclic molybdenum carbonyl complexes.
Collapse
Affiliation(s)
- Riccardo Suter
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
13
|
Mehta M, McGrady JE, Goicoechea JM. B(C 6 F 5 ) 3 -Enabled Synthesis of a Cyclic cis-Arsaphosphene. Chemistry 2019; 25:5445-5450. [PMID: 30835903 DOI: 10.1002/chem.201901022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 11/06/2022]
Abstract
The synthesis and characterization of an (arsino)phosphaketene, As(PCO){[N(Dipp)](CH2 )}2 (Dipp=2,6-diisopropylphenyl) is reported along with its subsequent reactivity with B(C6 F5 )3 . When reacted in a stoichiometric ratio, B(C6 F5 )3 drove the insertion of the P=C bond of the phosphaketene into one of the As-N bonds of the arsino functionality, affording an acid-stabilized, seven-membered, cyclic arsaphosphene. In contrast, when catalytic amounts of B(C6 F5 )3 were employed, dimeric species, which formed through a formal [2+2] cycloaddition of the cyclic arsaphosphene, were generated. The cyclic arsaphosphene product represents the first example of such a compound in which the two substituents are arranged in a cis-configuration.
Collapse
Affiliation(s)
- Meera Mehta
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - John E McGrady
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
14
|
Mei Y, Borger JE, Wu DJ, Grützmacher H. Salen supported Al–O–CP and Ga–PCO complexes. Dalton Trans 2019; 48:4370-4374. [DOI: 10.1039/c9dt00485h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis and reactivity of salen supported OCP adducts of aluminium and gallium is reported.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Jaap E. Borger
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Dong-Jun Wu
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| |
Collapse
|
15
|
Rey A, Espinosa Ferao A, Streubel R. Quantum Chemical Calculations on CHOP Derivatives-Spanning the Chemical Space of Phosphinidenes, Phosphaketenes, Oxaphosphirenes, and COP - Isomers. Molecules 2018; 23:E3341. [PMID: 30562997 PMCID: PMC6321265 DOI: 10.3390/molecules23123341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 12/04/2022] Open
Abstract
After many decades of intense research in low-coordinate phosphorus chemistry, the advent of Na[OCP] brought new stimuli to the field of CHOP isomers and derivatives thereof. The present theoretical study at the CCSD(T)/def2-TZVPP level describes the chemical space of CHOP isomers in terms of structures and potential energy surfaces, using oxaphosphirene as the starting point, but also covering substituted derivatives and COP- isomers. Bonding properties of the P⁻C, P⁻O, and C⁻O bonds in all neutral and anionic isomeric species are discussed on the basis of theoretical calculations using various bond strengths descriptors such as WBI and MBO, but also the Lagrangian kinetic energy density per electron as well as relaxed force constants. Ring strain energies of the superstrained 1H-oxaphosphirene and its barely strained oxaphosphirane-3-ylidene isomer were comparatively evaluated with homodesmotic and hyperhomodesmotic reactions. Furthermore, first time calculation of the ring strain energy of an anionic ring is described for the case of oxaphosphirenide.
Collapse
Affiliation(s)
- Alicia Rey
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - Arturo Espinosa Ferao
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - Rainer Streubel
- Institut of Inorganic Chemistry, Rheinischen Friedrich-Wilhelms-Universiy of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
16
|
Affiliation(s)
- Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | | |
Collapse
|
17
|
Goicoechea JM, Grützmacher H. The Chemistry of the 2-Phosphaethynolate Anion. Angew Chem Int Ed Engl 2018; 57:16968-16994. [PMID: 29770548 DOI: 10.1002/anie.201803888] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 11/07/2022]
Abstract
In all likelihood the first synthesis of the phosphaethynolate anion, PCO- , was performed in 1894 when NaPH2 was reacted with CO in an attempt to make Na(CP) accompanied by elimination of water. This reaction was repeated 117 years later when it was discovered that Na(OCP) and H2 are the products of this remarkable transformation. Li(OCP) was synthesized and fully characterized in 1992 but this salt proved to be too unstable to allow for a detailed investigation of its chemistry. It was not until the heavier analogues of this lithium salt were isolated, Na(OCP) and K(OCP) (both of which are remarkably stable and can be even dissolved in water), that the chemistry of this new functional group could be explored. Here we review the chemistry of the 2-phosphaethynolate anion, a heavier phosphorus-containing analogue of the cyanate anion, and describe the wide breadth of chemical transformations for which it has been thus far employed. Its use as a ligand, in decarbonylative and deoxygenative processes, and as a building block for novel heterocycles is described. In the mere twenty-six years since Becker first reported the isolation of this remarkable anion, it has become a fascinating reagent for the synthesis of a vast library of, often unprecedented, molecules and compounds.
Collapse
Affiliation(s)
- Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biology, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
18
|
Weber L. 2-Phospha- and 2-Arsaethynolates - Versatile Building Blocks in Modern Synthetic Chemistry. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800179] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lothar Weber
- Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
19
|
Wilson DWN, Hinz A, Goicoechea JM. An Isolable Phosphaethynolatoborane and Its Reactivity. Angew Chem Int Ed Engl 2018; 57:2188-2193. [DOI: 10.1002/anie.201712624] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/05/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander Hinz
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
20
|
Wilson DWN, Hinz A, Goicoechea JM. An Isolable Phosphaethynolatoborane and Its Reactivity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712624] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander Hinz
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M. Goicoechea
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
21
|
Ito S. Topics of 1,3-diphosphacyclobutane-2,4-diyl derivatives: Structural aspects and functionality of isolable heavier congeners of cyclobutane-1,3-diyl and the related molecules. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|