1
|
Zhang Y, Zhou G, Liu S, Shen X. Radical Brook rearrangement: past, present, and future. Chem Soc Rev 2025. [PMID: 39835385 DOI: 10.1039/d4cs01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Brook rearrangement has emerged as one of the most pivotal transformations in organic chemistry, with broad applications spanning organic synthesis, drug design, and materials science. Since its discovery in the 1950s, the anion-mediated Brook rearrangement has been extensively studied, laying the groundwork for the development of numerous innovative reactions. In contrast, the radical Brook rearrangement has garnered comparatively less attention, primarily due to the challenges associated with the controlled generation of alkoxyl radicals under mild conditions. However, recent advancements in visible-light catalysis and transition-metal catalysis have positioned the radical Brook rearrangement as a promising alternative synthetic strategy in organic synthesis. Despite these developments, significant limitations and challenges remain, warranting further investigation. This review provides an overview of the radical Brook rearrangement, tracing its development from past to present, and offers perspectives on future directions in the field to inspire the creation of novel synthetic tools based on this transformation.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Gang Zhou
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| |
Collapse
|
2
|
Wei WX, Kuang Y, Tomanik M. Copper-Catalyzed Cyclization and Alkene Transposition Cascade Enables a Modular Synthesis of Complex Spirocyclic Ethers. J Am Chem Soc 2025; 147:1034-1041. [PMID: 39705595 PMCID: PMC11726577 DOI: 10.1021/jacs.4c14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/22/2024]
Abstract
Complexity-generating reactions that access three-dimensional products from simple starting materials offer substantial value for drug discovery. While oxygen-containing heterocycles frequently feature unique, nonaromatic architectures such as spirocyclic rings, exploration of these chemical spaces is limited by conventional synthetic approaches. Herein, we report a copper-catalyzed annulation and alkene transposition cascade reaction that enables a modular preparation of complex, spirocyclic ethers from readily available alkenol substrates via a copper-catalyzed annulation and transannular 1,5-hydrogen atom transfer-mediated C-H functionalization. Our transformation displays a broad substrate scope, shows excellent heteroatom compatibility, and readily constructs spirocycles of varying ring sizes. The wider synthetic utility of this method is highlighted by numerous product diversifications and a short synthesis of the all-carbon framework of spirotenuipesine A. We anticipate that this transformation can significantly streamline access to a privileged class of three-dimensional oxygen-containing heterocycles and will find broad application in natural product synthesis.
Collapse
Affiliation(s)
- Wan-Xu Wei
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yangjin Kuang
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Martin Tomanik
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Chen F, Cao Z, Zhu C. Intramolecularly remote functional group migration reactions involving free radicals. Chem Commun (Camb) 2024; 60:14912-14923. [PMID: 39601626 DOI: 10.1039/d4cc05739b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The application of rearrangement reactions offers opportunities for the efficient construction of complex molecules that are challenging to obtain through conventional synthetic methods. However, the development of radical-mediated rearrangements has lagged far behind that of ionic-type rearrangements, due to the uncontrollability of radical species. Along with the recent renaissance in radical chemistry, radical-mediated functional group migration (FGM) reactions provide a versatile platform for the selective incorporation of functional groups across different molecular distances, enabling the construction of intricate molecular architectures. In the past few years, FGM reactions have showcased plentiful reaction modes, rendering precious control in terms of chemo- and regio-selectivities. This feature article summarizes our achievements in radical-mediated FGM reactions, wherein brief discussion of related works from other laboratories is also included. In this feature article, we aim to provide a comprehensive understanding of the progress in this emerging area.
Collapse
Affiliation(s)
- Fushan Chen
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Li W, Zhang R, Zhou N, Lu J, Fu N. Dual transition metal electrocatalysis enables selective C(sp 3)-C(sp 3) bond cleavage and arylation of cyclic alcohols. Chem Commun (Camb) 2024; 60:11714-11717. [PMID: 39318170 DOI: 10.1039/d4cc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a dual transition metal electrocatalytic approach for C(sp3)-C(sp3) bond cleavage and arylation of cyclic alcohols, providing an efficient and sustainable method for site-specific arylation of ketones. The reaction involves electrophotochemical cerium-catalysed generation of alkoxyl radicals from readily accessible alcohols. Subsequently, homolytic cleavage of the β-C-C bond leads to the generation of carbon-centered radicals that could be effectively utilized by nickel catalysis powered by cathode reduction to deliver the remote arylated ketone products.
Collapse
Affiliation(s)
- Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ruipu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Naifu Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang S, Luo X, Wang Y, Liu Z, Yu Y, Wang X, Ren D, Wang P, Chen YH, Qi X, Yi H, Lei A. Radical-triggered translocation of C-C double bond and functional group. Nat Chem 2024; 16:1621-1629. [PMID: 39251841 DOI: 10.1038/s41557-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Multi-site functionalization of molecules provides a potent approach to accessing intricate compounds. However, simultaneous functionalization of the reactive site and the inert remote C(sp3)-H poses a formidable challenge, as chemical reactions conventionally occur at the most active site. In addition, achieving precise control over site selectivity for remote C(sp3)-H activation presents an additional hurdle. Here we report an alternative modular method for alkene difunctionalization, encompassing radical-triggered translocation of functional groups and remote C(sp3)-H desaturation via photo/cobalt dual catalysis. By systematically combining radical addition, functional group migration and cobalt-promoted hydrogen atom transfer, we successfully effectuate the translocation of the carbon-carbon double bond and another functional group with precise site selectivity and remarkable E/Z selectivity. This redox-neutral approach shows good compatibility with diverse fluoroalkyl and sulfonyl radical precursors, enabling the migration of benzoyloxy, acetoxy, formyl, cyano and heteroaryl groups. This protocol offers a resolution for the simultaneous transformation of manifold sites.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xu Luo
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yuan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Zhao Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yi Yu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xuejie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Demin Ren
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiaotian Qi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, P. R. China.
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China.
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, P. R. China.
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, P. R. China.
| |
Collapse
|
6
|
Xu J, Li R, Ma Y, Zhu J, Shen C, Jiang H. Site-selective α-C(sp 3)-H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration. Nat Commun 2024; 15:6791. [PMID: 39117735 PMCID: PMC11310330 DOI: 10.1038/s41467-024-51239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Site-selective C(sp3)-H arylation is an appealing strategy to synthesize complex arene structures but remains a challenge facing synthetic chemists. Here we report the use of photoredox-mediated hydrogen atom transfer (HAT) catalysis to accomplish the site-selective α-C(sp3)-H arylation of dialkylamine-derived ureas through 1,4-radical aryl migration, by which a wide array of benzylamine motifs can be incorporated to the medicinally relevant systems in the late-stage installation steps. In contrast to previous efforts, this C-H arylation protocol exhibits specific site-selectivity, proforming predominantly on sterically more-hindered secondary and tertiary α-amino carbon centers, while the C-H functionalization of sterically less-hindered N-methyl group can be effectively circumvented in most cases. Moreover, a diverse range of multi-substituted piperidine derivatives can be obtained with excellent diastereoselectivity. Mechanistic and computational studies demonstrate that the rate-determining step for methylene C-H arylation is the initial H atom abstraction, whereas the radical ipso cyclization step bears the highest energy barrier for N-methyl functionalization. The relatively lower activation free energies for secondary and tertiary α-amino C-H arylation compared with the functionalization of methylic C-H bond lead to the exceptional site-selectivity.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihan Li
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Zhu
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Heng Jiang
- Shanghai key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Ju M, Lee S, Marvich HM, Lin S. Accessing Alkoxy Radicals via Frustrated Radical Pairs: Diverse Oxidative Functionalizations of Tertiary Alcohols. J Am Chem Soc 2024; 146:19696-19703. [PMID: 39012345 PMCID: PMC11366976 DOI: 10.1021/jacs.4c07125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Alkoxy radicals are versatile reactive intermediates in organic synthesis. Here, we leverage the principle of frustrated radical pair to provide convenient access to these highly reactive species directly from tertiary alcohols via oxoammonium-mediated oxidation of the corresponding alkoxides. This approach enabled various synthetically useful transformations including β-scission, radical cyclization, and remote C-H functionalization, giving rise to versatile alkoxyamines that can be further elaborated to various functionalities.
Collapse
Affiliation(s)
- Minsoo Ju
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sukwoo Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Halle M Marvich
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
An B, Zhou L, Liu S, Zheng Y, Li C, Cui F, Yue C, Liu H, Sui Y, Ji C, Yan J, Li Y. Radical Homopolymerization of Linear α-Olefins Enabled by 1,4-Cyano Group Migration. Angew Chem Int Ed Engl 2024; 63:e202402511. [PMID: 38634323 DOI: 10.1002/anie.202402511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
α-Olefins are valued and abundant building blocks from fossil resources. They are widely used to provide small-molecule or polymeric products. Despite numerous advantages of radical polymerization, it has been well-documented as textbook knowledge that α-olefins and their functionalized derivatives cannot be radically homopolymerized because of the degradative chain transfer side reactions. Herein, we report our studies on the homopolymerization of thiocyanate functionalized α-olefins enabled by 1,4-cyano group migration under radical conditions. By this approach, a library of ABC sequence-controlled polymers with high molecular weights can be prepared. We can also extend this strategy to the homopolymerization of α-substituted styrenic and acylate monomers which are known to be challenging to achieve. Overall, the demonstrated functional group migration radical polymerization could provide new possibilities to synthesize polymers with unprecedented main chain sequences and structures. These polymers are promising candidates for novel polymeric materials.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Litao Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaxin Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changhu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaowei Yue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chonglei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
9
|
Qian P, Zhu D, Wang X, Sun Q, Zhang S. Electrochemical Benzylic C(sp 3)-H Imidation Enabled by Benzoic Acid Derived Radicals. J Org Chem 2024; 89:6395-6404. [PMID: 38621116 DOI: 10.1021/acs.joc.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We developed an electrochemical approach for benzylic C(sp3)-H imidation by virtue of the in situ generated oxygen-centered radicals (OCRs). The electrochemical imidation provides a complementary approach to giving distinct imide products compared with previous acyloxylation products. This protocol exhibits good site selectivity and broad substrate generality. Moreover, the utility of the OCR-mediated protocol was extended to the electrochemical oxidation of silane, and its robustness was also highlighted by the imidation of complex substrates, which would otherwise be inaccessible for previous approaches. A plausible reaction mechanism was proposed to rationalize the experimental observations.
Collapse
Affiliation(s)
- Peng Qian
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-Derived, Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Dan Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoli Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
10
|
Xie X, Li J, Li W, Li Y, Guo K, Zhu Y, Chen K. Silver-Catalyzed Decarboxylative Remote Fluorination via a Zwitterion-Promoted 1,4-Heteroaryl Migration. Org Lett 2024; 26:2228-2232. [PMID: 38457330 DOI: 10.1021/acs.orglett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A silver-catalyzed decarboxylative remote fluorination via a zwitterion-promoted 1,4-heteroaryl migration has been developed. A variety of heteroaryl-tethered benzyl fluorides have been readily synthesized with good regioselectivity under mild conditions. The zwitterion of the substrate is suggested to accelerate the 1,4-heteroaryl migration, which determines the regioselectivity of this transformation.
Collapse
Affiliation(s)
- Xiaofei Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weinan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Hebei Normal University for Nationalities, Chengde 067000, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Shi M, Niu G, Zhang T, Xu A, Zheng R, Yusuf A, Shi T, Hu W, Qian Y. Silver-catalyzed pyrazole migration and cycloaddition reaction of diazo pyrazoleamides with ketimines. Chem Commun (Camb) 2023; 59:10311-10314. [PMID: 37548265 DOI: 10.1039/d3cc03253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A novel pyrazole migration and cycloaddition process is well developed via AgOTf-catalyzed annulation reactions of α-diazo pyrazoleamides with ketimines. This protocol discloses efficient access to synthesize a series of spirooxindole-based β-lactams in good to excellent yields and the diastereoselectivity is switchable by tuning the substituents on the α-diazo pyrazoleamides.
Collapse
Affiliation(s)
- Maoqing Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gejun Niu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Tianyuan Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Aimin Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rimei Zheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Abdulla Yusuf
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, China
| | - Taoda Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yu Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Chen K, Zeng Q, Xie L, Xue Z, Wang J, Xu Y. Functional-group translocation of cyano groups by reversible C-H sampling. Nature 2023; 620:1007-1012. [PMID: 37364765 DOI: 10.1038/s41586-023-06347-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Chemical transformations that introduce, remove or manipulate functional groups are ubiquitous in synthetic chemistry1. Unlike conventional functional-group interconversion reactions that swap one functionality for another, transformations that alter solely the location of functional groups are far less explored. Here, by photocatalytic, reversible C-H sampling, we report a functional-group translocation reaction of cyano (CN) groups in common nitriles, allowing for the direct positional exchange between a CN group and an unactivated C-H bond. The reaction shows high fidelity for 1,4-CN translocation, frequently contrary to inherent site selectivity in conventional C-H functionalizations. We also report the direct transannular CN translocation of cyclic systems, providing access to valuable structures that are non-trivial to obtain by other methods. Making use of the synthetic versatility of CN and a key CN translocation step, we showcase concise syntheses of building blocks of bioactive molecules. Furthermore, the combination of C-H cyanation and CN translocation allows access to unconventional C-H derivatives. Overall, the reported reaction represents a way to achieve site-selective C-H transformation reactions without requiring a site-selective C-H cleavage step.
Collapse
Affiliation(s)
- Ken Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qingrui Zeng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhuan Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zisheng Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianbo Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yan Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
13
|
Jiang DF, Zeng XX, Li DF, Wen SM, Hu MH. Synthesis of α-allenic aldehydes/ketones from homopropargylic alcohols using a visible-light irradiation system. Org Biomol Chem 2023. [PMID: 37305989 DOI: 10.1039/d3ob00664f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A visible-light irradiation tandem oxidative aryl migration/carbonyl formation reaction, mediated by K2S2O8 and visible-light photoredox catalysis, has been discovered. The presented transformation provides a straightforward access to important α-allenic aldehyde/ketone derivatives from readily available homopropargylic alcohol derivatives in a regioselective manner of 1,4-aryl shift concomitant with carbonyl formation. The operational simplicity and broad substrate scope demonstrate the great potential of this method for the synthesis of highly functional α-allenic aldehyde/ketone derivatives.
Collapse
Affiliation(s)
- Dong-Fang Jiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial first-class applied discipline (pharmacy), Changsha, 410000, China.
- Harvest (Hunan) Pharmaceuticals Co., Ltd, Changsha, 410000, China
| | - Xing-Xing Zeng
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial first-class applied discipline (pharmacy), Changsha, 410000, China.
| | - De-Feng Li
- Jiangsu Hansoh Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Si-Miaomiao Wen
- Harvest (Hunan) Pharmaceuticals Co., Ltd, Changsha, 410000, China
| | - Ming-Hua Hu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial first-class applied discipline (pharmacy), Changsha, 410000, China.
| |
Collapse
|
14
|
Simons RT, Nandakumar M, Kwon K, Ayer SK, Venneti NM, Roizen JL. Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C-H Bonds. J Am Chem Soc 2023; 145:10.1021/jacs.2c13409. [PMID: 36780585 PMCID: PMC10423309 DOI: 10.1021/jacs.2c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Site-selective functionalization of unactivated C(sp3)-H centers is challenging because of the ubiquity and strength of alkyl C-H bonds. Herein, we disclose a position-selective C(sp3)-C(sp2) cross-coupling reaction. This process engages C(sp3)-H bonds and aryl bromides, utilizing catalytic quantities of a photoredox-capable molecule and a nickel precatalyst. Using this technology, selective C-H functionalization arises owing to a 1,6-hydrogen atom transfer (HAT) process that is guided by a pendant alcohol-anchored sulfamate ester. These transformations proceed directly from N-H bonds, in contrast to previous directed, radical-mediated, C-H arylation processes, which have relied on prior oxidation of the reactive nitrogen center in reactions with nucleophilic arenes. Moreover, these conditions promote arylation at secondary centers in good yields with excellent selectivity.
Collapse
Affiliation(s)
- R. Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Naresh M. Venneti
- Wayne State University, Department of Chemistry, Detroit, MI 48202, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| |
Collapse
|
15
|
Liu J, Hong Y, Liu YL, Tan JY, Liu HM, Dai GL, Chen SL, Liu T, Li JH, Tang S. Nickel-Catalyzed Radical Heck-Type C(sp 3)–C(sp 2) Coupling Cascades Enabled by Bromoalkane-Directed 1,4-Aryl Shift: Access to Olefinated Arylalanines. Org Lett 2022; 24:8192-8196. [DOI: 10.1021/acs.orglett.2c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jian Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Yu Hong
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Yin-Ling Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jing-Ying Tan
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Hao-Miao Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Gang-Liang Dai
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Ting Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
16
|
Jue Z, Huang Y, Qian J, Hu P. Visible Light-Induced Unactivated δ-C(sp 3 )-H Amination of Alcohols Catalyzed by Iron. CHEMSUSCHEM 2022; 15:e202201241. [PMID: 35916215 DOI: 10.1002/cssc.202201241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
An iron-catalyzed remote C(sp3 )-H amination of alcohols through 1,5-hydrogen atom transfer is developed. This protocol provides a method to generate δ-C(sp3 )-N bonds from primary, secondary, and tertiary alcohols under mild conditions. A wide substrate scope and a good functional group tolerance are presented. Mechanistic studies show that a LMCT course of an Fe-OR species and a chlorine radical-induced hydrogen abstraction of an alcohol are possible to generate the alkoxy radical intermediate.
Collapse
Affiliation(s)
- Zhaofan Jue
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiahui Qian
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Garlets ZJ, Boni YT, Sharland JC, Kirby RP, Fu J, Bacsa J, Davies HML. Design, Synthesis, and Evaluation of Extended C 4–Symmetric Dirhodium Tetracarboxylate Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zachary J. Garlets
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yannick T. Boni
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Randall P. Kirby
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jiantao Fu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
Schlegel M, Qian S, Nicewicz DA. Aliphatic C-H Functionalization Using Pyridine N-Oxides as H-Atom Abstraction Agents. ACS Catal 2022; 12:10499-10505. [PMID: 37727583 PMCID: PMC10508875 DOI: 10.1021/acscatal.2c02997] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alkylation and heteroarylation of unactivated tertiary, secondary, and primary C(sp3)-H bonds was achieved by employing an acridinium photoredox catalyst along with readily available pyridine Noxides as hydrogen atom transfer (HAT) precursors under visible light. Oxygen-centered radicals, generated by single-electron oxidation of the Noxides, are the proposed key intermediates whose reactivity can be easily modified by structural adjustments. A broad range of aliphatic C-H substrates with electron-donating or -withdrawing groups as well as various olefinic radical acceptors and heteroarenes were well tolerated.
Collapse
Affiliation(s)
- Marcel Schlegel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Siran Qian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
19
|
Wang Y, Chen S, Chen X, Zangarelli A, Ackermann L. Photo-Induced Ruthenium-Catalyzed Double Remote C(sp 2 )-H / C(sp 3 )-H Functionalizations by Radical Relay. Angew Chem Int Ed Engl 2022; 61:e202205562. [PMID: 35527721 PMCID: PMC9401009 DOI: 10.1002/anie.202205562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 12/25/2022]
Abstract
Distal C(sp2 )-H and C(sp3 )-H functionalizations have recently emerged as step-economical tools for molecular synthesis. However, while the C(sp2 )-C(sp3 ) construction is of fundamental importance, its formation through double remote C(sp2 )-H/C(sp3 )-H activation has proven elusive. By merging the ruthenium-catalyzed meta-C(sp2 )-H functionalization with an aliphatic hydrogen atom transfer (HAT) process, we, herein, describe the catalyzed twofold remote C(sp2 )-H/C(sp3 )-H functionalizations via photo-induced ruthenium-mediated radical relay. Thus, meta-C(sp2 )-H arene bonds and remote C(sp3 )-H alkane bonds were activated by a single catalyst in a single operation. This process was accomplished at room temperature by visible light-notably without exogenous photocatalysts. Experimental and computational theory studies uncovered a manifold comprising ortho-C-H activation, single-electron-transfer (SET), 1,n-HAT (n=5-7) and σ-activation by means of a single ruthenium(II) catalyst.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Shan Chen
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| |
Collapse
|
20
|
Lei Z, Wei S, Zhou L, Zhang Z, Lopez SE, Dolbier WR. Photocatalytic difluoromethylarylation of unactivated alkenes via a (hetero)aryl neophyl-like radical migration. Org Biomol Chem 2022; 20:5712-5715. [PMID: 35838250 DOI: 10.1039/d2ob00813k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoredox-catalyzed addition of the difluoromethylradical to unactivated alkenes has been found to trigger neophyl-like aryl and heteroaryl migrations which allowed the construction of a diverse series of difluoromethyl ketones. The reaction featured mild reaction conditions and broad substrate scope.
Collapse
Affiliation(s)
- Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China. .,Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Simon E Lopez
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
21
|
Harry SA, Xiang MR, Holt E, Zhu A, Ghorbani F, Patel D, Lectka T. Hydroxy-directed fluorination of remote unactivated C(sp 3)-H bonds: a new age of diastereoselective radical fluorination. Chem Sci 2022; 13:7007-7013. [PMID: 35774162 PMCID: PMC9200124 DOI: 10.1039/d2sc01907h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
We report a photochemically induced, hydroxy-directed fluorination that addresses the prevailing challenge of high diastereoselectivity in this burgeoning field. Numerous simple and complex motifs showcase a spectrum of regio- and stereochemical outcomes based on the configuration of the hydroxy group. Notable examples include a long-sought switch in the selectivity of the refractory sclareolide core, an override of benzylic fluorination, and a rare case of 3,3'-difluorination. Furthermore, calculations illuminate a low barrier transition state for fluorination, supporting our notion that alcohols are engaged in coordinated reagent direction. A hydrogen bonding interaction between the innate hydroxy directing group and fluorine is also highlighted for several substrates with 19F-1H HOESY experiments, calculations, and more.
Collapse
Affiliation(s)
- Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Michael Richard Xiang
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Eric Holt
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Andrea Zhu
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Fereshte Ghorbani
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Dhaval Patel
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| |
Collapse
|
22
|
Wang Y, Chen S, Chen X, Zangarelli A, Ackermann L. Foto‐Induzierte Ruthenium‐Katalysierte Doppel C(sp
2
)−H/C(sp
3
)−H Funktionalisierungen durch Radikalübertragungen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Shan Chen
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
23
|
Hareram MD, El Gehani AAMA, Harnedy J, Seastram AC, Jones AC, Burns M, Wirth T, Browne DL, Morrill LC. Electrochemical Deconstructive Functionalization of Cycloalkanols via Alkoxy Radicals Enabled by Proton-Coupled Electron Transfer. Org Lett 2022; 24:3890-3895. [PMID: 35604008 PMCID: PMC9171832 DOI: 10.1021/acs.orglett.2c01552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Herein, we report
a new electrochemical method for alkoxy radical
generation from alcohols using a proton-coupled electron transfer
(PCET) approach, showcased via the deconstructive functionalization
of cycloalkanols. The electrochemical method is applicable across
a diverse array of substituted cycloalkanols, accessing a broad range
of synthetically useful distally functionalized ketones. The orthogonal
derivatization of the products has been demonstrated through chemoselective
transformations, and the electrochemical process has been performed
on a gram scale in continuous single-pass flow.
Collapse
Affiliation(s)
- Mishra Deepak Hareram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Albara A. M. A. El Gehani
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Alex C. Seastram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Andrew C. Jones
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Matthew Burns
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry, University College London, School of Pharmacy, London, W1CN 1AX, United Kingdom
| | - Louis C. Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
24
|
Huang CY, Li J, Li CJ. Photocatalytic C(sp 3) radical generation via C-H, C-C, and C-X bond cleavage. Chem Sci 2022; 13:5465-5504. [PMID: 35694342 PMCID: PMC9116372 DOI: 10.1039/d2sc00202g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section. C(sp3) radicals (R˙) are of broad research interest and synthetic utility.![]()
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Jianbin Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
25
|
Wu X, Zhu C. Combination of radical functional group migration (FGM) and hydrogen atom transfer (HAT). TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Chen Y, Zhang G, Guo C, Lan P, Banwell MG, He Y. Silver‐Promoted Radical Ring‐Opening
/
Pyridylation of Cyclobutanols with
N
‐Methoxypyridinium Salts. Chemistry 2022; 28:e202104627. [DOI: 10.1002/chem.202104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Chen
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Guang‐Yi Zhang
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Chan Guo
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Yu‐Tao He
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| |
Collapse
|
27
|
Petit‐Cancelier F, Ruyet L, Couve‐Bonnaire S, Besset T. Distal Construction of a Carbon‐SCF
2
R Bond on Aliphatic Alcohols Enabled by 1,5‐Hydrogen‐Atom Transfer. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Louise Ruyet
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | | | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
28
|
Zhang JH, Xiao TF, Ji ZQ, Chen HN, Yan PJ, Luo YC, Xu PF, Xu GQ. Organic photoredox catalytic amino-heteroarylation of unactivated olefins to access distal amino ketones. Chem Commun (Camb) 2022; 58:2882-2885. [PMID: 35133366 DOI: 10.1039/d1cc07189k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we describe a metal-free amino-heteroarylation of unactivated olefins via organic photoredox catalysis, providing a concise and efficient approach for the rapid synthesis of various δ (β, ε)-amino ketones under mild conditions. This protocol demonstrates that the new photocatalyst Cz-NI developed by our group has an excellent photoredox catalytic performance. Finally, a series of mechanistic experiments and DFT calculations indicate that this transformation undergoes a photoredox catalytic sequential radical addition/functional group migration process.
Collapse
Affiliation(s)
- Ji-Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zi-Qin Ji
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Han-Nan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Pen-Ji Yan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
29
|
Wei Y, Wu X, Zhu C. Radical Heteroarylation of Alkenes and Alkanes via Heteroaryl Migration. Synlett 2022. [DOI: 10.1055/a-1771-5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heteroarenes are important units in organic chemistry and are ubiquitous in natural products, pharmaceuticals, and numerous artificial molecules. Despite great efforts devoted to accessing heteroarenes, the development of new methods to efficiently produce heteroarenes remains a long-term interest. Recently, the strategy of radical-mediated heteroaryl migration has supplied a robust toolkit for the synthesis of a diversity of heteroaryl-containing compounds. This Account summarizes our recent achievements in this field and provides insight into the incorporation of heteroarenes into organic skeletons.
Collapse
Affiliation(s)
- Yunlong Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xinxin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Chen Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Abstract
Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015. Special attention is paid to descriptions of scope, mechanism, and synthetic applications of each method.
Collapse
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Efrey A. Noten
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Xu Z, Gao Y, Wang S, Zhang Q, Zhang L, Shen L. Free-Radical-Promoted Remote Unactivated C(sp3)–H Dehydrogenative Coupling Reaction of Free Alcohols with Quinone and Chromone. J Org Chem 2022; 87:3461-3467. [DOI: 10.1021/acs.joc.1c03021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Yameng Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Shanshan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Qili Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Liang Shen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| |
Collapse
|
33
|
Yue B, Wu X, Zhu C. Recent Advances in Vinyl Radical-Mediated Hydrogen Atom Transfer. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Li R, Yuan D, Ping M, Zhu Y, Ni S, Li M, Wen L, Zhang LB. Electrochemically-promoted synthesis of benzo[b]thiophene-1,1-dioxides via strained quaternary spirocyclization. Chem Sci 2022; 13:9940-9946. [PMID: 36199637 PMCID: PMC9431990 DOI: 10.1039/d2sc01175a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report an approach for the synthesis of benzothiophene motifs under electrochemical conditions by the reaction of sulfonhydrazides with internal alkynes. Upon the formation of a quaternary spirocyclization intermediate by the selective ipso-addition instead of an ortho-attack, the S-migration process was rationalized to lead to the products. Computational studies revealed the selectivity and the compatibility of drug molecules showcased the potential application of the protocols. We report an approach for the synthesis of benzothiophene motifs under electrochemical conditions by the reaction of sulfonhydrazides with internal alkynes.![]()
Collapse
Affiliation(s)
- Ruitao Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Dafu Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Mengqi Ping
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yuyi Zhu
- Department of Chemistry, Shantou University Shantou Guangdong 515063 P. R. China
| | - Shaofei Ni
- Department of Chemistry, Shantou University Shantou Guangdong 515063 P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lirong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| |
Collapse
|
35
|
Xiong Y, Zhang X, Guo HM, Wu X. Photoredox/Persistent Radical Cation Dual Catalysis for Alkoxy Radical Generation from Alcohols. Org Chem Front 2022. [DOI: 10.1039/d2qo00528j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we present a mild and general strategy for the direct generation of alkoxy radical from simple aliphatic alcohols enabled by visible-light-induced photoredox/persistent radical cation dual catalysis. The...
Collapse
|
36
|
Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. J Org Chem 2021; 86:17816-17832. [PMID: 34875167 DOI: 10.1021/acs.joc.1c02125] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a Minisci-type cross-dehydrogenative alkylation in an aerobic atmosphere using abundant and inexpensive cerium chloride as a photocatalyst and air as an oxidant. This photoreaction exhibits excellent tolerance to functional groups and is suitable for both heteroarene and alkane substrates under mild conditions, generating the corresponding products in moderate-to-good yields. Our method provides an alternative approach for the late-stage functionalization of valuable substrates.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
37
|
Wang J, Fang WH, Qu LB, Shen L, Maseras F, Chen X. An Expanded SET Model Associated with the Functional Hindrance Dominates the Amide-Directed Distal sp 3 C-H Functionalization. J Am Chem Soc 2021; 143:19406-19416. [PMID: 34761900 DOI: 10.1021/jacs.1c07983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanistic understanding of catalytic radical reactions currently lags behind the flourishing development of new types of catalytic activation. Herein, an innovative single electron transfer (SET) model has been expanded by using the nonadiabatic crossing integrated with the rate-determining step of 1,5-hydrogen atom transfer (HAT) reaction to provide the control mechanism of radical decay dynamics through calculating excited-state relaxation paths of a paradigm example of the amide-directed distal sp3 C-H bond alkylation mediated by Ir-complex-based photocatalysts. The stability of carbon radical intermediates, the functional hindrance associated with the back SET, and the energy inversion between the reactive triplet and closed-shell ground states were verified to be key factors in improving catalytic efficiency via blocking radical inhibition. The expanded SET model associated with the dynamic behaviors and kinetic data could guide the design and manipulation of visible-light-driven inert bond activation by the utilization of photocatalysts bearing more or less electron-withdrawing groups and the comprehensive considerations of kinetic solvent effects and electron-withdrawing effects of substrates.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Wei-Hai Fang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Shen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
38
|
Keum H, Jung H, Jeong J, Kim D, Chang S. Visible‐Light Induced C(sp
2
)−H Amidation with an Aryl–Alkyl σ‐Bond Relocation via Redox‐Neutral Radical–Polar Crossover. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Hoimin Jung
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jiwoo Jeong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
39
|
Keum H, Jung H, Jeong J, Kim D, Chang S. Visible-Light Induced C(sp 2 )-H Amidation with an Aryl-Alkyl σ-Bond Relocation via Redox-Neutral Radical-Polar Crossover. Angew Chem Int Ed Engl 2021; 60:25235-25240. [PMID: 34558167 DOI: 10.1002/anie.202108775] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Indexed: 01/15/2023]
Abstract
We report an approach for the intramolecular C(sp2 )-H amidation of N-acyloxyamides under photoredox conditions to produce δ-benzolactams with an aryl-alkyl σ-bond relocation. Computational studies on the designed reductive single electron transfer strategy led us to identify N-[3,5-bis(trifluoromethyl)benzoyl] group as the most effective amidyl radical precursor. Upon the formation of an azaspirocyclic radical intermediate by the selective ipso-addition with outcompeting an ortho-attack, radical-polar crossover was then rationalized to lead to the rearomative ring-expansion with preferential C-C bond migration.
Collapse
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jiwoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
40
|
Xiong N, Li Y, Zeng R. Iron-Catalyzed Photoinduced Remote C(sp 3)-H Amination of Free Alcohols. Org Lett 2021; 23:8968-8972. [PMID: 34714097 DOI: 10.1021/acs.orglett.1c03488] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a general photocatalytic protocol for the remote C(sp3)-H bond amination of free aliphatic alcohols. The electron transfer between the abundant and inexpensive catalyst FeCl3 and simple alkanols under blue LED irradiation enables the alkoxy radical formation under mild redox-neutral conditions, with no need for additional oxidant and prefunctionalization. The subsequent selective 1,5-hydrogen atom transfer (HAT) and amination provide a simple and efficient way to access molecular complexity from readily available and bulk alcohols.
Collapse
Affiliation(s)
- Ni Xiong
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
41
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
42
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
43
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
44
|
Gant Kanegusuku AL, Roizen JL. Recent Advances in Photoredox-Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed Engl 2021; 60:21116-21149. [PMID: 33629454 PMCID: PMC8382814 DOI: 10.1002/anie.202016666] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/18/2022]
Abstract
Photomediated Giese reactions are at the forefront of radical chemistry, much like the classical tin-mediated Giese reactions were nearly forty years ago. With the global recognition of organometallic photocatalysts for the mild and tunable generation of carbon-centered radicals, chemists have developed a torrent of strategies to form previously inaccessible radical intermediates that are capable of engaging in intermolecular conjugate addition reactions. This Review summarizes advances in photoredox-mediated Giese reactions since 2013, with a focus on the breadth of methods that provide access to crucial carbon-centered radical intermediates that can engage in radical conjugate addition processes.
Collapse
Affiliation(s)
| | - Jennifer L Roizen
- Department of Chemistry, Duke University, Box 90346, Durham, NC, 27708-0354, USA
| |
Collapse
|
45
|
Tang S, Xu ZH, Liu T, Wang SW, Yu J, Liu J, Hong Y, Chen SL, He J, Li JH. Radical 1,4-Aryl Migration Enabled Remote Cross-Electrophile Coupling of α-Amino-β-Bromo Acid Esters with Aryl Bromides. Angew Chem Int Ed Engl 2021; 60:21360-21367. [PMID: 34291545 DOI: 10.1002/anie.202106273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Indexed: 12/14/2022]
Abstract
We report an unprecedented, efficient nickel-catalysed radical relay for the remote cross-electrophile coupling of β-bromo-α-benzylamino acid esters with aryl bromides via 1,4-aryl migration/arylation cascades. β-Bromo-α-benzylamino acid esters are considered as unique molecular scaffolds allowing for aryl migration reactions, which are conceptually novel variants for the radical Truce-Smiles rearrangement. This reaction enables the formation of two new C(sp3 )-C(sp2 ) bonds using a bench-stable Ni/bipyridine/Zn system featuring a broad substrate scope and excellent diastereoselectivity, which provides an effective platform for the remote aryl group migration and arylation of amino acid esters via redox-neutral C(sp3 )-C(sp2 ) bond cleavage. Mechanistically, this cascade reaction is accomplished by combining two powerful catalytic cycles consisting of a cross-electrophile coupling and radical 1,4-aryl migration through the generation of C(sp3 )-centred radical intermediates from the homolysis of C(sp3 )-Br bonds and the switching of the transient alkyl radical into a robust α-aminoalkyl radical.
Collapse
Affiliation(s)
- Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhen-Hua Xu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Ting Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Shuo-Wen Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Jian Yu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Jian Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Yu Hong
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Jin He
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| |
Collapse
|
46
|
Tang S, Xu Z, Liu T, Wang S, Yu J, Liu J, Hong Y, Chen S, He J, Li J. Radical 1,4‐Aryl Migration Enabled Remote Cross‐Electrophile Coupling of α‐Amino‐β‐Bromo Acid Esters with Aryl Bromides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shi Tang
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Zhen‐Hua Xu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Ting Liu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Shuo‐Wen Wang
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Jian Yu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Jian Liu
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Yu Hong
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Shi‐Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education Beijing Institute of Technology Beijing 100081 China
| | - Jin He
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000 China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
| |
Collapse
|
47
|
Ji M, Chang C, Wu X, Zhu C. Photocatalytic intermolecular carboarylation of alkenes by selective C-O bond cleavage of diarylethers. Chem Commun (Camb) 2021; 57:9240-9243. [PMID: 34519298 DOI: 10.1039/d1cc04038c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Disclosed herein is a novel radical-mediated intermolecular carboarylation of alkenes by cleaving inert C-O bonds. The strategically designed arylbenzothiazolylether diazonium salts are harnessed as dual-function reagents. A vast array of alkenes are proven to be suitable substrates. The benzothiazolyl moiety in the products serves as the formyl precursor, and the OH residue provides the cross-coupling site for further product elaboration, indicating the robust transformability of the products.
Collapse
Affiliation(s)
- Meishan Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chenyang Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
48
|
Catalyst-free, radical-mediated intermolecular 1,2-arylheteroarylation of alkenes by cleaving inert C-C bond. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Wang D, Jana K, Studer A. Intramolecular Hydrogen Atom Transfer Induced 1,2-Migration of Boronate Complexes. Org Lett 2021; 23:5876-5879. [PMID: 34260254 PMCID: PMC8353630 DOI: 10.1021/acs.orglett.1c01998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Radical α-C-H
functionalization of alk-5-enyl boronic esters
with concomitant functionalization of the alkene moiety is reported.
These cascades comprise perfluoroalkyl radical addition to the alkene
moiety of a boronate complex, intramolecular hydrogen atom transfer
(HAT), single electron oxidation, and 1,2-alkyl/aryl migration. The
boronate complexes are readily generated in situ by reaction of the
alkenyl boronic esters with alkyl or aryl lithium reagents. Products
are formed in a divergent approach by varying carbon radical precursors
as well as alkyl/aryl lithium donors, and reactions proceed under
mild conditions upon UV irradiation.
Collapse
Affiliation(s)
- Dinghai Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Kalipada Jana
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
50
|
Gant Kanegusuku AL, Roizen JL. Recent Advances in Photoredox‐Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jennifer L. Roizen
- Department of Chemistry Duke University Box 90346 Durham NC 27708-0354 USA
| |
Collapse
|