1
|
Paul I, Valiyev I, Ghosh A, Schmittel M. Dynamic negative allosteric effect: regulation of catalysis via multicomponent rotor speed. Chem Commun (Camb) 2024; 60:7085-7088. [PMID: 38896476 DOI: 10.1039/d4cc02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanorotor R1 (420 kHz) was assembled from five components utilizing three orthogonal interactions. Post-modification at the distal position generated the advanced six component rotor R2 (45 kHz). The decrease in R2 speed leads to the inhibition of a three-component reaction by reducing catalyst release.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Amit Ghosh
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| |
Collapse
|
2
|
Elramadi E, Kundu S, Mondal D, Paululat T, Schmittel M. Stepwise Dissipative Control of Multimodal Motion in a Silver(I) Catenate. Angew Chem Int Ed Engl 2024; 63:e202404444. [PMID: 38530118 DOI: 10.1002/anie.202404444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Stepwise dissipative control of two distinct motions, i.e., shuttling and sliding, is demonstrated in a single multicomponent device. When [2]rotaxane 1, which acts as a biped, and deck 2 were treated with AgBF4/PhCH2Br+NEt3 as chemical fuel, the transient catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ was instantly generated showing multimodal motion and autonomous return to 1 and 2. In the dissipative process, catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ cleanly transformed into the follow-up transient device (1) ⋅ [Ag3(2)]3+ exhibiting only sliding motion. Two interference-free dissipative cycles proved the resilience and robustness of the process.
Collapse
Affiliation(s)
- Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie II, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
3
|
Valiyev I, Paul I, Li YF, Elramadi E, Schmittel M. Interconversion between multicomponent slider-on-deck and palladium capsule: regulation of catalysis and encapsulation. Dalton Trans 2024; 53:3454-3458. [PMID: 38305461 DOI: 10.1039/d3dt04300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
When the slider-on-deck [Cu3(1)(2)]3+ and guest G were treated with palladium(II) ions, the biped 2 was released from [Cu3(1)(2)]3+ generating the nanocage [Pd2(2)4(G)]4+ with guest G being encapsulated (NetState-II). This transformation that was reversed by the addition of DMAP enabled modulation of both the overall fluorescence and the activity of copper(I) catalyzing an aza Hopf cyclization.
Collapse
Affiliation(s)
- Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Yi-Fan Li
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| |
Collapse
|
4
|
Kundu S, Valiyev I, Mondal D, Rajasekaran VV, Goswami A, Schmittel M. Proton transfer network with luminescence display controls OFF/ON catalysis that generates a high-speed slider-on-deck. RSC Adv 2023; 13:5168-5171. [PMID: 36777932 PMCID: PMC9909384 DOI: 10.1039/d3ra00062a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
A three-component network for OFF/ON catalysis was built from a protonated nanoswitch and a luminophore. Its activation by addition of silver(i) triggered the proton-catalyzed formation of a biped and the assembly of a fast slider-on-deck (k 298 = 540 kHz).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Abir Goswami
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| |
Collapse
|
5
|
Rajasekaran VV, Ghosh A, Kundu S, Mondal D, Paululat T, Schmittel M. Synchronizing Two Distinct Nano-Circular Sliding Motions in Six-Component Machinery for Double Catalysis. Angew Chem Int Ed Engl 2022; 61:e202212473. [PMID: 36197751 PMCID: PMC9828345 DOI: 10.1002/anie.202212473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/05/2022]
Abstract
The heteroleptic multi-component double slider-on-deck system DS3 exhibits tight coupling of motional speed of two distinct nano-circular sliders (k298 =77 and 41 kHz) despite a 2.2 nm separation. In comparison, the single sliders in DS1 and DS2 move at vastly different speed (k298 =1.1 vs. 350 kHz). Synchronization of the motions in DS3 remains even when one slows the movement of the faster slider using small molecular brake pads. In contrast to the individual DS1 and DS2 systems, DS3 is a powerful catalyst for a two-step reaction by using the motion of both sliders to drive two catalytic processes.
Collapse
Affiliation(s)
- Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Amit Ghosh
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IIUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
6
|
Howlader P, Schmittel M. Heteroleptic metallosupramolecular aggregates /complexation for supramolecular catalysis. Beilstein J Org Chem 2022; 18:597-630. [PMID: 35673407 PMCID: PMC9152274 DOI: 10.3762/bjoc.18.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Supramolecular catalysis is reviewed with an eye on heteroleptic aggregates/complexation. Since most of the current metallosupramolecular catalytic systems are homoleptic in nature, the idea of breaking/reducing symmetry has ignited a vivid search for heteroleptic aggregates that are made up by different components. Their higher degree of functional diversity and structural heterogeneity allows, as demonstrated by Nature by the multicomponent ATP synthase motor, a more detailed and refined configuration of purposeful machinery. Furthermore, (metallo)supramolecular catalysis is shown to extend beyond the single "supramolecular unit" and to reach far into the field and concepts of systems chemistry and information science.
Collapse
Affiliation(s)
- Prodip Howlader
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
7
|
Elramadi E, Ghosh A, Valiyev I, Biswas P, Paululat T, Schmittel M. Catalytic machinery in motion: Controlling catalysis via speed. Chem Commun (Camb) 2022; 58:8073-8076. [DOI: 10.1039/d2cc02555h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 3-component copper(I)-based slider-on-deck systems served as catalysts for a click reaction showing a higher catalytic activity with increasing sliding speed. Upon addition of brake stones, the motion of the...
Collapse
|
8
|
Saha S, Kundu S, Biswas PK, Bolte M, Schmittel M. Dynamics of the alkyne → copper( i) interaction and its use in a heteroleptic four-component catalytic rotor. Chem Commun (Camb) 2022; 58:13019-13022. [DOI: 10.1039/d2cc04497h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of alkyne → copper(i) interactions has been determined and used to self-assemble a fast nanorotor, which underwent a self-catalyzed click transformation to a triazole rotor, an interesting process for the production of biohybrid devices.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Pronay Kumar Biswas
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Michael Bolte
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, Frankfurt am Main D-60438, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| |
Collapse
|
9
|
Bhandari P, Modak R, Bhattacharyya S, Zangrando E, Mukherjee PS. Self-Assembly of Octanuclear Pt II/Pd II Coordination Barrels and Uncommon Structural Isomerization of a Photochromic Guest in Molecular Space. JACS AU 2021; 1:2242-2248. [PMID: 34977895 PMCID: PMC8715494 DOI: 10.1021/jacsau.1c00361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/03/2023]
Abstract
Two tetragonal molecular barrels TB1 and TB2 were successfully synthesized by coordination-driven self-assembly of a tetrapyridyl donor (L) of the thiazolo[5,4-d]thiazole backbone with cis-blocked 90° Pd(II) and Pt(II) acceptors, respectively. The single-crystal structure analysis of TB1 revealed the formation of a two-face opened tetragonal Pd8 molecular barrel architecture. In contrast, the isostructural Pt(II) barrel (TB2) is water-soluble. The large confined hydrophobic molecular cavity including wide open windows and good water solubility of the barrel TB2 made it a potential molecular container for the encapsulation of guests with different sizes and properties. This has been exploited to encapsulate and stabilize the open form of a photochromic molecule (G2) in water, while the same photochromic molecule exists exclusively in a cyclic zwitterionic form in aqueous medium in the absence of the barrel TB2. This cyclic form is very stable in water and does not go back to its parent open form under common external stimuli. Surprisingly, reverse switching of the cyclic form to a colored hydrophobic open form was also possible instantly in water upon addition of the solid barrel TB2 into an aqueous solution of G2. Such a fast reverse isomerization of an irreversible process in aqueous medium by utilizing host-guest interaction of the barrel TB2 and the guest G2 is interesting. The barrel TB2 was also capable of encapsulating the water-insoluble radical initiator G1 in aqueous medium.
Collapse
Affiliation(s)
- Pallab Bhandari
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ritwik Modak
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Mondal D, Ghosh A, Paul I, Schmittel M. Fuel Acid Drives Base Catalysis and Supramolecular Cage-to-Device Transformation under Dissipative Conditions. Org Lett 2021; 24:69-73. [PMID: 34913702 DOI: 10.1021/acs.orglett.1c03654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In State-I, a mixture comprising a DABCO-bridged tris(zinc-porphyrin) double decker and a free biped (=slider), catalysis was OFF. Acid addition (TFA or Di-Stefano fuel acid) to State-I liberated DABCO-H+ while generating a highly dynamic slider-on-deck device (State-II). The released DABCO-H+ acted as a base organocatalyst for a Knoevenagel reaction (catalysis ON). The system was reversed to State-I (catalysis OFF) by reducing the acidity in the system (by adding DBU or via the fuel-derived base).
Collapse
Affiliation(s)
- Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
11
|
Goswami A, Özer MS, Paul I, Schmittel M. Evolution of catalytic machinery: three-component nanorotor catalyzes formation of four-component catalytic machinery. Chem Commun (Camb) 2021; 57:7180-7183. [PMID: 34190276 DOI: 10.1039/d1cc02805g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The three-component nanorotor [Cu2(S)(R)]2+ (k298 = 46.0 kHz) that is a catalyst for a CuAAC reaction binds the click product at each of its copper centers thereby creating a new platform and a dynamic slider-on-deck system. Due to this sliding motion (k298 = 65.0 kHz) the zinc-porphyrin bound N-methylpyrrolidine is efficiently released into solution and catalyzes a follow-up Michael addition.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Merve S Özer
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| |
Collapse
|
12
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
13
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew Chem Int Ed Engl 2021; 60:14109-14116. [PMID: 33834590 DOI: 10.1002/anie.202103822] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/07/2022]
Abstract
Fullerene extracts obtained from fullerene soot lack their real application due to their poor solubility in common solvents and difficulty in purification. Encapsulation of these extracts in a suitable host is an important approach to address these issues. We present a new Pd6 barrel (1), which is composed of three 1,4-dihydropyrrolo[3,2-b]pyrrole panels, clipped through six cis-PdII acceptors. Large open windows and cavity make it an efficient host for a large guest. Favorable interactions between the ligand and fullerene (C60 and C70 ) allows the barrel to encapsulate fullerene efficiently. Thorough investigation reveals that barrel 1 has a stronger binding affinity towards C70 over C60 , resulting in the predominant extraction of C70 from a mixture of the two. Finally, the fullerene encapsulated barrels C60 ⊂1 and C70 ⊂1 were found to be efficient for visible-light-induced singlet oxygen generation. Such preferential binding of C70 and photosensitizing ability of C60 ⊂1 and C70 ⊂1 are noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
14
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self‐Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene‐Encapsulated Barrel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
15
|
Ghosh A, Paul I, Schmittel M. Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components. J Am Chem Soc 2021; 143:5319-5323. [PMID: 33787253 DOI: 10.1021/jacs.1c01948] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 3-fold completive self-sorted library of dynamic motifs was integrated into the design of the pseudorotaxane-based rotor [Zn(2·H+)(3)(4)]2+ operating at k298 = 15.4 kHz. The rotational motion in the five-component device is based on association/dissociation of the pyridyl head of the pseudorotaxane rotator arm between two zinc(II) porphyrin stations. Addition of TFA or 2-cyano-2-phenylpropanoic acid as a chemical fuel to a zinc release system and the loose rotor components 2-4 enabled the liberated zinc(II) ions and protons to act in unison, setting up the rotor through the formation of a heteroleptic zinc complex and a pseudorotaxane linkage. With chemical fuel, the dissipative system was reproducibly pulsed three times without a problem. Due to the double role of the fuel acid, two kinetically distinct processes played a role in both the out-of-equilibrium assembly and disassembly of the rotor, highlighting the complex issues in multitasking of chemical fuels.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
16
|
Schmittel M, Howlader P. Toward Molecular Cybernetics - the Art of Communicating Chemical Systems. CHEM REC 2020; 21:523-543. [PMID: 33350570 DOI: 10.1002/tcr.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
The emerging field of molecular cybernetics has the potential to widely broaden our perception of chemistry. Chemistry will develop beyond its current focus that is mainly concerned with single transformations, pure compounds, and/or defined mixtures. On this way, chemistry will become autonomous, networked and smart through communicating molecules each of which serves a control engineering purpose, like the set of wheels in the machinery of life. The present personal account describes our latest developments in this field.
Collapse
Affiliation(s)
- Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Prodip Howlader
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
17
|
Ghosh A, Schmittel M. Using multiple self-sorting for switching functions in discrete multicomponent systems. Beilstein J Org Chem 2020; 16:2831-2853. [PMID: 33281986 PMCID: PMC7684700 DOI: 10.3762/bjoc.16.233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Over years self-sorting has developed into a powerful tool in supramolecular chemistry, for instance, to promote the error-free formation of intricate multicomponent assemblies. However, in order to use the enormous potential of self-sorting for sophisticated information processing more recent developments have focused on the reversible reconfiguration of multicomponent systems driven by multiple self-sorting protocols. The present mini review will provide an overview over the latest advancements in this field with a focus on reversibly switchable functions in discrete supramolecular systems.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
18
|
Bhattacharyya S, Ali SR, Venkateswarulu M, Howlader P, Zangrando E, De M, Mukherjee PS. Self-Assembled Pd12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme. J Am Chem Soc 2020; 142:18981-18989. [DOI: 10.1021/jacs.0c09567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Bhattacharyya S, Venkateswarulu M, Sahoo J, Zangrando E, De M, Mukherjee PS. Self-Assembled PtII8 Metallosupramolecular Tubular Cage as Dual Warhead Antibacterial Agent in Water. Inorg Chem 2020; 59:12690-12699. [DOI: 10.1021/acs.inorgchem.0c01777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
21
|
He L, Wang SC, Lin LT, Cai JY, Li L, Tu TH, Chan YT. Multicomponent Metallo-Supramolecular Nanocapsules Assembled from Calix[4]resorcinarene-Based Terpyridine Ligands. J Am Chem Soc 2020; 142:7134-7144. [PMID: 32150683 DOI: 10.1021/jacs.0c01482] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrafunctionalized calix[4]resorcinarene cavitands commonly serve as supramolecular scaffolds for construction of coordination-driven self-assembled capsules. However, due to the calix-like shape, the structural diversity of assemblies is mostly restricted to dimeric and hexameric capsules. Previously, we reported a spontaneous heteroleptic complexation strategy based on a pair of self-recognizable terpyridine-based ligands and CdII ions. Building on this complementary ligand pairing system, herein three types of nanocapsules, including a dimeric capsule, a Sierpiński triangular prism, and a cubic star, could be readily obtained through dynamic complexation reactions between a tetratopic cavitand-based ligand and various multitopic counterparts in the presence of CdII ions. The dimeric capsular assemblies display the spacer-length-dependent self-sorting behavior in a four-component system. Moreover, the precise multicomponent self-assembly of a Sierpiński triangular prism and a cubic star possessing three and six cavitand-based motifs, respectively, demonstrates that such self-assembly methodology is able to efficiently enhance architectural complexity for calix[4]resorcinarene-containing metallo-supramolecules.
Collapse
Affiliation(s)
- Lipeng He
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lin-Ting Lin
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jhen-Yu Cai
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Lijie Li
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
22
|
Nishimura T, Sasaki Y, Tachi Y, Suzuki S, Okada K, Kozaki M. Inhibition of Ligand Binding Ability of Three Porphyrins by an Organic Effector. Chem Asian J 2020; 15:594-600. [PMID: 31903693 DOI: 10.1002/asia.201901711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Indexed: 11/09/2022]
Abstract
A stimulus-responsive receptor 1 was designed and prepared to control the ligand-binding ability of three active sites, two zinc tetraphenylporphyrin units (P1) and one zinc diethynyldiphenylporphyrin unit (P2), with one effector molecule 2. Bulky hexarylbenzene units were incorporated as shielding panels in the middle of the flexible side arms of 1. Spectroscopic titrations indicated that a stable supramolecular complex 1⋅2 (K1⋅2 =6.7×106 m-1 ) was produced by the cooperative formation of multiple hydrogen and coordination bonds. As a result, the binding of a ligand to P1 was inhibited by 2 in a competitive manner. Additionally, the formation of 1⋅2 brought about conformational restriction of the side arms to cover both faces of P2 with the shielding panels. The binding constant of 4-phenylpyridine with P2 in 1⋅2 decreased to 8.9 % of that in 1. Namely, the ligand-binding ability of P2 was inhibited according to an allosteric mechanism.
Collapse
Affiliation(s)
- Tomoaki Nishimura
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshito Sasaki
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshimitsu Tachi
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Shuichi Suzuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Keiji Okada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Osaka City University, Advanced Research Institute for Natural Science and Technology (OCARINA), Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Masatoshi Kozaki
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Osaka City University, Advanced Research Institute for Natural Science and Technology (OCARINA), Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
23
|
Bhattacharyya S, Maity M, Chowdhury A, Saha ML, Panja SK, Stang PJ, Mukherjee PS. Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles. Inorg Chem 2020; 59:2083-2091. [PMID: 31971781 PMCID: PMC10615217 DOI: 10.1021/acs.inorgchem.9b03572] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control over the stimuli-responsive behavior of smart molecular systems can influence their capability to execute complex functionalities. Herein, we report the development of a suite of spiropyran-based multi-stimuli-responsive self-assembled platinum(II) macrocycles (5-7), rendering coordination-assisted enhanced photochromism relative to the corresponding ligands. 5 showed shrinking and swelling during photoreversal, while 6 and 7 are fast and fatigue-free supramolecular photoswitches. 6 turns out to be a better fatigue-resistant photoswitch and can retain an intact photoswitching ability of up to 20 reversible cycles. The switching behavior of the macrocycles can also be precisely controlled by tuning the pH of the medium. Our present strategy for the construction of rapid stimuli-responsive supramolecular architectures via coordination-driven self-assembly represents an efficient route for the development of smart molecular switches.
Collapse
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
- Department of Industrial Chemistry , Mizoram University , Aizawl , Mizoram 796004 , India
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Sumit Kumar Panja
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| |
Collapse
|
24
|
Saha S, Ghosh A, Paululat T, Schmittel M. Allosteric regulation of rotational, optical and catalytic properties within multicomponent machinery. Dalton Trans 2020; 49:8693-8700. [DOI: 10.1039/d0dt01961e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allosteric regulation of various functions within multicomponent machinery was triggered by the reversible transformation of nanorotors (k298 = 44–61 kHz) to “dimeric” supramolecular structures (k298 = 0.60 kHz) upon adding a stoichiometric chemical stimulus.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering
- Department Chemie – Biologie
- Organische Chemie I
- D-57068 Siegen
- Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering
- Department Chemie – Biologie
- Organische Chemie I
- D-57068 Siegen
- Germany
| | - Thomas Paululat
- Department Chemie – Biologie
- Organische Chemie II
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering
- Department Chemie – Biologie
- Organische Chemie I
- D-57068 Siegen
- Germany
| |
Collapse
|
25
|
Rajasekaran VV, Paul I, Schmittel M. Reversible switching from a three- to a nine-fold degenerate dynamic slider-on-deck through catenation. Chem Commun (Camb) 2020; 56:12821-12824. [DOI: 10.1039/d0cc05578f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two dynamic slider-on-deck assemblies, i.e. a two-component threefold degenerate (k298 = 34.9 kHz) and a catenated three-component ninefold degenerate (k298 = 27.9 kHz) system with allosteric effects on the sliding rates, were quantitatively interconverted.
Collapse
Affiliation(s)
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- Germany
| |
Collapse
|
26
|
Saha S, Biswas PK, Paul I, Schmittel M. Selective and reversible interconversion of nanosliders commanded by remote control via metal-ion signaling. Chem Commun (Camb) 2019; 55:14733-14736. [PMID: 31750846 DOI: 10.1039/c9cc07415e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A multi-device network mainly consisting of two two-component nanosliders was formed by self-sorting of six components. Addition/removal of zinc(ii) ions reversibly reorganized the network by chemical signaling involving the translocation of copper(i) from a relay station followed by the selective disassembly/assembly of one of both multi-component devices. The thus liberated machine parts served to erect a three-component nanoslider alongside the other unchanged two-component nanoslider.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | | | | | | |
Collapse
|
27
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
28
|
Goswami A, Paululat T, Schmittel M. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery. J Am Chem Soc 2019; 141:15656-15663. [DOI: 10.1021/jacs.9b07737] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
30
|
Saha S, Biswas PK, Schmittel M. Reversible Interconversion of a Static Metallosupramolecular Cage Assembly into a High-Speed Rotor: Stepless Adjustment of Rotational Exchange by Nucleophile Addition. Inorg Chem 2019; 58:3466-3472. [PMID: 30789716 DOI: 10.1021/acs.inorgchem.8b03567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The self-assembled cage ROT-1 was prepared from the pyridine-terminated rotator 1, the phenanthroline-appended stator 2, DABCO, and copper(I) ions in a ratio of 1:1:1:4. This four-component assembly is held together by two pyridine→[Cu(phenAr2)]+ as well as two DABCO→zinc porphyrin interactions (phenAr2 = 2,9-diarylphenanthroline) and does not show any motion on the NMR time scale ( k < 0.1 s-1, 298 K). However, it is converted to the fast nanorotor ROT-1 xCD3CN by addition of CD3CN [ x = (v/v)% of acetonitrile in dichloromethane] due to acceleration of both pyridine→copper(I) dissociation steps. Now the rotator is able to visit all four copper(I)-loaded phenanthroline stations of the stator. Depending on the amount of CD3CN, the exchange frequency of the nanorotor varies from 0.7 s-1 (CD3CN:CD2Cl2 = 1:29) to 8000 s-1 (CD3CN:CD2Cl2 = 1:5) at 25 °C. When iodide (I-) is added to the static assembly ROT-1, the rotational speed increases even more drastically ( k = 20 000 s-1), again due to accelerating the rate-determining pyridine→copper(I) dissociation step. In both cases, a sigmoidal relationship is established between exchange frequency and the concentration of added nucleophile (CD3CN or iodide) that suggests the presence of a cooperative effect. Reversible switching between the static assembly and fast rotor was performed several times without any decomposition of the system. In contrast, addition of the common nucleophile PPh3 to ROT-1 does not increase the rotational speed, a finding that is explained on thermodynamic grounds.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| |
Collapse
|
31
|
Ghosh A, Paul I, Saha S, Paululat T, Schmittel M. Machine Metathesis: Thermal and Catalyzed Exchange of Piston Rods in Multicomponent Nanorotor/Nanoslider Ensemble. Org Lett 2018; 20:7973-7976. [PMID: 30525699 DOI: 10.1021/acs.orglett.8b03541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three-component nanorotor R1 ( k298 = 80 kHz) and two-component slider-on-deck DS2 ( k298 = 440 kHz) were prepared from rotator S1 and stator [Cu3(1)]3+ and from S2 and deck D, respectively. Mixing of R1 with DS2 leads to clean metathesis, furnishing the slower nanodevices R2 ( k298 = 29.6 kHz) and DS1 ( k298 = 32.2 kHz). Exchange of the piston rods S1 and S2 is completed within 22 min (uncatalyzed) or 3 min (catalyzed) at 298 K.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Thomas Paululat
- University of Siegen, Organische Chemie II , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering , University of Siegen, Organische Chemie I , Adolf-Reichwein-Str. 2 , D-57068 Siegen , Germany
| |
Collapse
|
32
|
Dynamic Functional Molecular Systems: From Supramolecular Structures to Multi‐Component Machinery and to Molecular Cybernetics. Isr J Chem 2018. [DOI: 10.1002/ijch.201800124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Lee YH, He L, Chan YT. Stimuli-Responsive Supramolecular Gels Constructed by Hierarchical Self-Assembly Based on Metal-Ligand Coordination and Host-Guest Recognition. Macromol Rapid Commun 2018; 39:e1800465. [DOI: 10.1002/marc.201800465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/02/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yin-Hsuan Lee
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Lipeng He
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| |
Collapse
|
34
|
Biswas PK, Saha S, Paululat T, Schmittel M. Rotating Catalysts Are Superior: Suppressing Product Inhibition by Anchimeric Assistance in Four-Component Catalytic Machinery. J Am Chem Soc 2018; 140:9038-9041. [DOI: 10.1021/jacs.8b04437] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Thomas Paululat
- Universität Siegen, Organische Chemie II, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| |
Collapse
|